This file is indexed.

/usr/include/armadillo_bits/operator_times.hpp is in libarmadillo-dev 1:4.200.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
// Copyright (C) 2008-2012 Conrad Sanderson
// Copyright (C) 2008-2012 NICTA (www.nicta.com.au)
// Copyright (C) 2012 Ryan Curtin
// 
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.



//! \addtogroup operator_times
//! @{



//! Base * scalar
template<typename T1>
arma_inline
typename enable_if2< is_arma_type<T1>::value, const eOp<T1, eop_scalar_times> >::result
operator*
(const T1& X, const typename T1::elem_type k)
  {
  arma_extra_debug_sigprint();
  
  return eOp<T1, eop_scalar_times>(X,k);
  }



//! scalar * Base
template<typename T1>
arma_inline
typename enable_if2< is_arma_type<T1>::value, const eOp<T1, eop_scalar_times> >::result
operator*
(const typename T1::elem_type k, const T1& X)
  {
  arma_extra_debug_sigprint();
  
  return eOp<T1, eop_scalar_times>(X,k);  // NOTE: order is swapped
  }



//! non-complex Base * complex scalar
template<typename T1>
arma_inline
typename
enable_if2
  <
  (is_arma_type<T1>::value && is_cx<typename T1::elem_type>::no),
  const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_times>
  >::result
operator*
  (
  const T1&                                  X,
  const std::complex<typename T1::pod_type>& k
  )
  {
  arma_extra_debug_sigprint();
  
  return mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_times>('j', X, k);
  }



//! complex scalar * non-complex Base
template<typename T1>
arma_inline
typename
enable_if2
  <
  (is_arma_type<T1>::value && is_cx<typename T1::elem_type>::no),
  const mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_times>
  >::result
operator*
  (
  const std::complex<typename T1::pod_type>& k,
  const T1&                                  X
  )
  {
  arma_extra_debug_sigprint();
  
  return mtOp<typename std::complex<typename T1::pod_type>, T1, op_cx_scalar_times>('j', X, k);
  }



//! scalar * trans(T1)
template<typename T1>
arma_inline
const Op<T1, op_htrans2>
operator*
(const typename T1::elem_type k, const Op<T1, op_htrans>& X)
  {
  arma_extra_debug_sigprint();
  
  return Op<T1, op_htrans2>(X.m, k);
  }



//! trans(T1) * scalar
template<typename T1>
arma_inline
const Op<T1, op_htrans2>
operator*
(const Op<T1, op_htrans>& X, const typename T1::elem_type k)
  {
  arma_extra_debug_sigprint();
  
  return Op<T1, op_htrans2>(X.m, k);
  }



//! Base * diagmat
template<typename T1, typename T2>
arma_inline
typename
enable_if2
  <
  (is_arma_type<T1>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value),
  const Glue<T1, Op<T2, op_diagmat>, glue_times_diag>
  >::result
operator*
(const T1& X, const Op<T2, op_diagmat>& Y)
  {
  arma_extra_debug_sigprint();
  
  return Glue<T1, Op<T2, op_diagmat>, glue_times_diag>(X, Y);
  }



//! diagmat * Base
template<typename T1, typename T2>
arma_inline
typename
enable_if2
  <
  (is_arma_type<T2>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value),
  const Glue<Op<T1, op_diagmat>, T2, glue_times_diag>
  >::result
operator*
(const Op<T1, op_diagmat>& X, const T2& Y)
  {
  arma_extra_debug_sigprint();
  
  return Glue<Op<T1, op_diagmat>, T2, glue_times_diag>(X, Y);
  }



//! diagmat * diagmat
template<typename T1, typename T2>
inline
Mat< typename promote_type<typename T1::elem_type, typename T2::elem_type>::result >
operator*
(const Op<T1, op_diagmat>& X, const Op<T2, op_diagmat>& Y)
  {
  arma_extra_debug_sigprint();
  
  typedef typename T1::elem_type eT1;
  typedef typename T2::elem_type eT2;
  
  typedef typename promote_type<eT1,eT2>::result out_eT;
  
  promote_type<eT1,eT2>::check();
  
  const diagmat_proxy<T1> A(X.m);
  const diagmat_proxy<T2> B(Y.m);
  
  arma_debug_assert_mul_size(A.n_elem, A.n_elem, B.n_elem, B.n_elem, "matrix multiplication");
  
  const uword N = A.n_elem;
  
  Mat<out_eT> out(N,N);
  
  out.zeros();
  
  for(uword i=0; i<N; ++i)
    {
    out.at(i,i) = upgrade_val<eT1,eT2>::apply( A[i] ) * upgrade_val<eT1,eT2>::apply( B[i] );
    }
  
  return out;
  }



//! multiplication of Base objects with same element type
template<typename T1, typename T2>
arma_inline
typename
enable_if2
  <
  is_arma_type<T1>::value && is_arma_type<T2>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value,
  const Glue<T1, T2, glue_times>
  >::result
operator*
(const T1& X, const T2& Y)
  {
  arma_extra_debug_sigprint();
  
  return Glue<T1, T2, glue_times>(X, Y);
  }



//! multiplication of Base objects with different element types
template<typename T1, typename T2>
inline
typename
enable_if2
  <
  (is_arma_type<T1>::value && is_arma_type<T2>::value && (is_same_type<typename T1::elem_type, typename T2::elem_type>::no)),
  const mtGlue< typename promote_type<typename T1::elem_type, typename T2::elem_type>::result, T1, T2, glue_mixed_times >
  >::result
operator*
  (
  const T1& X,
  const T2& Y
  )
  {
  arma_extra_debug_sigprint();
  
  typedef typename T1::elem_type eT1;
  typedef typename T2::elem_type eT2;
  
  typedef typename promote_type<eT1,eT2>::result out_eT;
  
  promote_type<eT1,eT2>::check();
  
  return mtGlue<out_eT, T1, T2, glue_mixed_times>( X, Y );
  }



//! sparse multiplied by scalar
template<typename T1>
inline
typename
enable_if2
  <
  is_arma_sparse_type<T1>::value,
  SpOp<T1,spop_scalar_times>
  >::result
operator*
  (
  const T1& X,
  const typename T1::elem_type k
  )
  {
  arma_extra_debug_sigprint();
  
  return SpOp<T1,spop_scalar_times>(X, k);
  }



template<typename T1>
inline
typename
enable_if2
  <
  is_arma_sparse_type<T1>::value,
  SpOp<T1,spop_scalar_times>
  >::result
operator*
  (
  const typename T1::elem_type k,
  const T1& X
  )
  {
  arma_extra_debug_sigprint();
  
  return SpOp<T1,spop_scalar_times>(X, k);
  }



//! multiplication of two sparse objects
template<typename T1, typename T2>
inline
arma_hot
typename
enable_if2
  <
  (is_arma_sparse_type<T1>::value && is_arma_sparse_type<T2>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value),
  const SpGlue<T1,T2,spglue_times>
  >::result
operator*
  (
  const T1& x,
  const T2& y
  )
  {
  arma_extra_debug_sigprint();

  return SpGlue<T1,T2,spglue_times>(x, y);
  }



//! convert "(sparse + sparse) * scalar" to specialised operation "scalar * (sparse + sparse)"
template<typename T1, typename T2>
inline
const SpGlue<T1,T2,spglue_plus2>
operator*
  (
  const SpGlue<T1,T2,spglue_plus>& X,
  const typename T1::elem_type k
  )
  {
  arma_extra_debug_sigprint();
  
  return SpGlue<T1,T2,spglue_plus2>(X.A, X.B, k);
  }



//! convert "scalar * (sparse + sparse)" to specialised operation 
template<typename T1, typename T2>
inline
const SpGlue<T1,T2,spglue_plus2>
operator*
  (
  const typename T1::elem_type k,
  const SpGlue<T1,T2,spglue_plus>& X
  )
  {
  arma_extra_debug_sigprint();
  
  return SpGlue<T1,T2,spglue_plus2>(X.A, X.B, k);
  }



//! convert "(sparse - sparse) * scalar" to specialised operation "scalar * (sparse - sparse)"
template<typename T1, typename T2>
inline
const SpGlue<T1,T2,spglue_minus2>
operator*
  (
  const SpGlue<T1,T2,spglue_minus>& X,
  const typename T1::elem_type k
  )
  {
  arma_extra_debug_sigprint();
  
  return SpGlue<T1,T2,spglue_minus2>(X.A, X.B, k);
  }



//! convert "scalar * (sparse - sparse)" to specialised operation 
template<typename T1, typename T2>
inline
const SpGlue<T1,T2,spglue_minus2>
operator*
  (
  const typename T1::elem_type k,
  const SpGlue<T1,T2,spglue_minus>& X
  )
  {
  arma_extra_debug_sigprint();
  
  return SpGlue<T1,T2,spglue_minus2>(X.A, X.B, k);
  }



//! convert "(sparse*sparse) * scalar" to specialised operation "scalar * (sparse*sparse)"
template<typename T1, typename T2>
inline
const SpGlue<T1,T2,spglue_times2>
operator*
  (
  const SpGlue<T1,T2,spglue_times>& X,
  const typename T1::elem_type k
  )
  {
  arma_extra_debug_sigprint();
  
  return SpGlue<T1,T2,spglue_times2>(X.A, X.B, k);
  }



//! convert "scalar * (sparse*sparse)" to specialised operation
template<typename T1, typename T2>
inline
const SpGlue<T1,T2,spglue_times2>
operator*
  (
  const typename T1::elem_type k,
  const SpGlue<T1,T2,spglue_times>& X
  )
  {
  arma_extra_debug_sigprint();
  
  return SpGlue<T1,T2,spglue_times2>(X.A, X.B, k);
  }



//! convert "(scalar*sparse) * sparse" to specialised operation "scalar * (sparse*sparse)"
template<typename T1, typename T2>
inline
typename
enable_if2
  <
  is_arma_sparse_type<T2>::value,
  const SpGlue<T1,T2,spglue_times2>
  >::result
operator*
  (
  const SpOp<T1,spop_scalar_times>& X,
  const T2& Y
  )
  {
  arma_extra_debug_sigprint();
  
  return SpGlue<T1,T2,spglue_times2>(X.m, Y, X.aux);
  }



//! convert "sparse * (scalar*sparse)" to specialised operation "scalar * (sparse*sparse)"
template<typename T1, typename T2>
inline
typename
enable_if2
  <
  is_arma_sparse_type<T1>::value,
  const SpGlue<T1,T2,spglue_times2>
  >::result
operator*
  (
  const T1& X,
  const SpOp<T2,spop_scalar_times>& Y
  )
  {
  arma_extra_debug_sigprint();
  
  return SpGlue<T1,T2,spglue_times2>(X, Y.m, Y.aux);
  }



//! multiplication of one sparse and one dense object
template<typename T1, typename T2>
inline
typename
enable_if2
  <
  (is_arma_sparse_type<T1>::value && is_arma_type<T2>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value),
  Mat<typename T1::elem_type>
  >::result
operator*
  (
  const T1& x,
  const T2& y
  )
  {
  arma_extra_debug_sigprint();
  
  const SpProxy<T1> pa(x);
  const   Proxy<T2> pb(y);
  
  arma_debug_assert_mul_size(pa.get_n_rows(), pa.get_n_cols(), pb.get_n_rows(), pb.get_n_cols(), "matrix multiplication");
  
  Mat<typename T1::elem_type> result(pa.get_n_rows(), pb.get_n_cols());
  result.zeros();
  
  if( (pa.get_n_nonzero() > 0) && (pb.get_n_elem() > 0) )
    {
    typename SpProxy<T1>::const_iterator_type x_it     = pa.begin();
    typename SpProxy<T1>::const_iterator_type x_it_end = pa.end();
    
    const uword result_n_cols = result.n_cols;
      
    while(x_it != x_it_end)
      {
      for(uword col = 0; col < result_n_cols; ++col)
        {
        result.at(x_it.row(), col) += (*x_it) * pb.at(x_it.col(), col);
        }
      
      ++x_it;
      }
    }
  
  return result;
  }



//! multiplication of one dense and one sparse object
template<typename T1, typename T2>
inline
typename
enable_if2
  <
  (is_arma_type<T1>::value && is_arma_sparse_type<T2>::value && is_same_type<typename T1::elem_type, typename T2::elem_type>::value),
  Mat<typename T1::elem_type>
  >::result
operator*
  (
  const T1& x,
  const T2& y
  )
  {
  arma_extra_debug_sigprint();
  
  const   Proxy<T1> pa(x);
  const SpProxy<T2> pb(y);
  
  arma_debug_assert_mul_size(pa.get_n_rows(), pa.get_n_cols(), pb.get_n_rows(), pb.get_n_cols(), "matrix multiplication");
  
  Mat<typename T1::elem_type> result(pa.get_n_rows(), pb.get_n_cols());
  result.zeros();
  
  if( (pa.get_n_elem() > 0) && (pb.get_n_nonzero() > 0) )
    {
    typename SpProxy<T2>::const_iterator_type y_col_it     = pb.begin();
    typename SpProxy<T2>::const_iterator_type y_col_it_end = pb.end();
    
    const uword result_n_rows = result.n_rows;
    
    while(y_col_it != y_col_it_end)
      {
      for(uword row = 0; row < result_n_rows; ++row)
        {
        result.at(row, y_col_it.col()) += pa.at(row, y_col_it.row()) * (*y_col_it);
        }
      
      ++y_col_it;
      }
    }
  
  return result;
  }



//! @}