This file is indexed.

/usr/lib/ocaml/batteries/batComplex.mli is in libbatteries-ocaml-dev 2.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
(*
 * BatComplex - Extended Complex
 * Copyright (C) 2007 Bluestorm <bluestorm dot dylc on-the-server gmail dot com>
 *               2008 David Teller
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version,
 * with the special exception on linking described in file LICENSE.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *)

(** Additional and modified functions for complex numbers.*)

(** Complex numbers.

    This module provides arithmetic operations on complex numbers.
    Complex numbers are represented by their real and imaginary parts
    (cartesian representation).  Each part is represented by a
    double-precision floating-point number (type {!float}).

    @author Xavier Leroy (base module)
    @author Gabriel Scherer
    @author David Teller
*)

type t = Complex.t = { re : float; im : float; }

val zero: t
(** The complex number [0]. *)

val one: t
(** The complex number [1]. *)

val i: t
(** The complex number [i]. *)

val neg: t -> t
(** Unary negation. *)

val conj: t -> t
(** Conjugate: given the complex [x + i.y], returns [x - i.y]. *)

val add: t -> t -> t
(** Addition *)

val sub: t -> t -> t
(** Subtraction *)

val mul: t -> t -> t
(** Multiplication *)

val inv: t -> t
(** Multiplicative inverse ([1/z]). *)

val div: t -> t -> t
(** Division *)

val sqrt: t -> t
(** Square root.  The result [x + i.y] is such that [x > 0] or [x =
    0] and [y >= 0].  This function has a discontinuity along the
    negative real axis. *)

val norm2: t -> float
(** Norm squared: given [x + i.y], returns [x^2 + y^2]. *)

val norm: t -> float
(** Norm: given [x + i.y], returns [sqrt(x^2 + y^2)]. *)

val arg: t -> float
(** Argument.  The argument of a complex number is the angle
    in the complex plane between the positive real axis and a line
    passing through zero and the number.  This angle ranges from
    [-pi] to [pi].  This function has a discontinuity along the
    negative real axis. *)

val polar: float -> float -> t
(** [polar norm arg] returns the complex having norm [norm]
    and argument [arg]. *)

val exp: t -> t
(** Exponentiation.  [exp z] returns [e] to the [z] power. *)

val log: t -> t
(** Natural logarithm (in base [e]). *)

val pow: t -> t -> t
(** Power function.  [pow z1 z2] returns [z1] to the [z2] power. *)

val operations : t BatNumber.numeric

val inv : t -> t
(** [inv x] returns the value of [1/x]*)

val succ : t -> t
(** Add {!one} to this number.*)

val pred : t -> t
(** Remove {!one} from this number.*)

val abs : t -> t
(** [abs c] returns the module of this complex number,
    i.e. [abs c = Float.sqrt((re c) *. (re c) +. (im c) *. (im c) )]*)

val modulo : t -> t -> t
val pow : t -> t -> t
val compare : t -> t -> int
val ord : t -> t -> BatOrd.order
val equal : t -> t -> bool

val of_int : int -> t
val to_int : t -> int
(** [to_int c] is the integer part of the real part of [c] *)

val of_string : string -> t
(** [of_string s] accepts strings with the following formats:

    (<int>|<float>) (+|-) i ( * | . |  ) (<int>|<float>)

    where (a|b|c) is either a or b or c.

    In addition the following degenerate formats are also accepted:

    (+|-) i ( * | . |  ) (<int>|<float>)

    (<int>|<float>) (+|-) i

    (<int>|<float>)
*)

val to_string : t -> string
val ( + ) : t -> t -> t
val ( - ) : t -> t -> t
val ( * ) : t -> t -> t
val ( / ) : t -> t -> t
val ( ** ) : t -> t -> t
(* Available only in `Compare` submodule
   val ( <> ) : t -> t -> bool
   val ( >= ) : t -> t -> bool
   val ( <= ) : t -> t -> bool
   val ( > ) : t -> t -> bool
   val ( < ) : t -> t -> bool
   val ( = ) : t -> t -> bool
*)
val ( -- ): t -> t -> t BatEnum.t
val ( --- ): t -> t -> t BatEnum.t

val of_float : float -> t
(** [Complex.of_float x] returns the complex number [x+0i] *)

val to_float : t -> float
(** [Complex.to_float (a+bi)] returns the float [a] *)

(** {6 Submodules grouping all infix operators} *)

module Infix : BatNumber.Infix with type bat__infix_t = t
module Compare : BatNumber.Compare with type bat__compare_t = t

(** {6 Boilerplate code}*)

(** {7 Printing}*)
val print: 'a BatInnerIO.output -> t -> unit