/usr/lib/ocaml/batteries/batSet.mli is in libbatteries-ocaml-dev 2.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 | (*
* BatSet - Extended operations on sets
* Copyright (C) 1996 Xavier Leroy
* 2009 David Rajchenbach-Teller, LIFO, Universite d'Orleans
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version,
* with the special exception on linking described in file LICENSE.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*)
(** Sets over ordered types.
This module implements the set data structure, given a total
ordering function over the set elements. All operations over sets
are purely applicative (no side-effects). The implementation uses
balanced binary trees, and is therefore reasonably efficient:
insertion and membership take time logarithmic in the size of the
set, for instance.
{b Note} OCaml, Batteries Included, provides two implementations
of sets: polymorphic sets and functorized sets. Functorized sets
(see {!S} and {!Make}) are slightly more complex to use but offer
stronger type-safety. Polymorphic sets make it easier to shoot
yourself in the foot. In case of doubt, you should use functorized
sets.
The functorized set implementation is built upon Stdlib's
{{:http://caml.inria.fr/pub/docs/manual-ocaml/libref/Set.html}Set}
module, but provides the complete interface.
@author Xavier Leroy
@author Nicolas Cannasse
@author Markus Mottl
@author David Rajchenbach-Teller
*)
(** {4 Functorized Sets} *)
module type OrderedType = BatInterfaces.OrderedType
(** Input signature of the functor {!Set.Make}. *)
module type S =
sig
type elt
(** The type of the set elements. *)
type t
(** The type of sets. *)
val empty: t
(** The empty set. *)
val is_empty: t -> bool
(** Test whether a set is empty or not. *)
val singleton: elt -> t
(** [singleton x] returns the one-element set containing only [x]. *)
val mem: elt -> t -> bool
(** [mem x s] tests whether [x] belongs to the set [s]. *)
val find : elt -> t -> elt
(** [find x s] returns the element in s that tests equal to [x] under its comparison function.
@raise Not_found if no element is equal
*)
val add: elt -> t -> t
(** [add x s] returns a set containing all elements of [s],
plus [x]. If [x] was already in [s], [s] is returned unchanged. *)
val remove: elt -> t -> t
(** [remove x s] returns a set containing all elements of [s],
except [x]. If [x] was not in [s], [s] is returned unchanged. *)
val union: t -> t -> t
(** Set union. *)
val inter: t -> t -> t
(** Set intersection. *)
val diff: t -> t -> t
(** Set difference. *)
val sym_diff: t -> t -> t
(** [sym_diff s t] returns the set of all elements in [s] or [t]
but not both. This is the same as [diff (union s t) (inter s
t)]. *)
val compare: t -> t -> int
(** Total ordering between sets. Can be used as the ordering function
for doing sets of sets. *)
val equal: t -> t -> bool
(** [equal s1 s2] tests whether the sets [s1] and [s2] are
equal, that is, contain equal elements. *)
val subset: t -> t -> bool
(** [subset s1 s2] tests whether the set [s1] is a subset of
the set [s2]. *)
val disjoint: t -> t -> bool
(** [disjoint s1 s2] tests whether the sets [s1] and [s2] contain no shared
elements. (i.e. [inter s1 s2] is empty.) *)
val compare_subset: t -> t -> int
(** Partial ordering between sets as generated by [subset] *)
val iter: (elt -> unit) -> t -> unit
(** [iter f s] applies [f] in turn to all elements of [s].
The elements of [s] are presented to [f] in increasing order
with respect to the ordering over the type of the elements. *)
val map: (elt -> elt) -> t -> t
(** [map f x] creates a new set with elements [f a0],
[f a1]... [f aN], where [a0],[a1]..[aN] are the
values contained in [x]*)
val filter: (elt -> bool) -> t -> t
(** [filter p s] returns the set of all elements in [s]
that satisfy predicate [p]. *)
val filter_map: (elt -> elt option) -> t -> t
(** [filter_map f m] combines the features of [filter] and
[map]. It calls calls [f a0], [f a1], [f aN] where [a0],[a1]..[aN]
are the elements of [m] and returns the set of pairs [bi]
such as [f ai = Some bi] (when [f] returns [None], the
corresponding element of [m] is discarded). *)
val fold: (elt -> 'a -> 'a) -> t -> 'a -> 'a
(** [fold f s a] computes [(f xN ... (f x1 (f x0 a))...)],
where [x0],[x1]..[xN] are the elements of [s], in increasing order. *)
val for_all: (elt -> bool) -> t -> bool
(** [for_all p s] checks if all elements of the set
satisfy the predicate [p]. *)
val exists: (elt -> bool) -> t -> bool
(** [exists p s] checks if at least one element of
the set satisfies the predicate [p]. *)
val partition: (elt -> bool) -> t -> t * t
(** [partition p s] returns a pair of sets [(s1, s2)], where
[s1] is the set of all the elements of [s] that satisfy the
predicate [p], and [s2] is the set of all the elements of
[s] that do not satisfy [p]. *)
val split: elt -> t -> t * bool * t
(** [split x s] returns a triple [(l, present, r)], where
[l] is the set of elements of [s] that are
strictly less than [x];
[r] is the set of elements of [s] that are
strictly greater than [x];
[present] is [false] if [s] contains no element equal to [x],
or [true] if [s] contains an element equal to [x]. *)
val split_opt: elt -> t -> t * elt option * t
(** [split_opt x s] returns a triple [(l, maybe_v, r)], where
[l] is the set of elements of [s] that are
strictly less than [x];
[r] is the set of elements of [s] that are
strictly greater than [x];
[maybe_v] is [None] if [s] contains no element equal to [x],
or [Some v] if [s] contains an element [v] that compares equal to [x].
@since 2.2.0
*)
val split_lt: elt -> t -> t * t
(** [split_lt x s] returns a pair of sets [(l, r)], such that
[l] is the subset of [s] with elements < [x];
[r] is the subset of [s] with elements >= [x].
@since 2.2.0 *)
val split_le: elt -> t -> t * t
(** [split_le x s] returns a pair of sets [(l, r)], such that
[l] is the subset of [s] with elements <= [x];
[r] is the subset of [s] with elements > [x].
@since 2.2.0 *)
val cardinal: t -> int
(** Return the number of elements of a set. *)
val elements: t -> elt list
(** Return the list of all elements of the given set.
The returned list is sorted in increasing order with respect
to the ordering [Ord.compare], where [Ord] is the argument
given to {!Set.Make}. *)
val to_list: t -> elt list
(** Alias for [elements].
@since 2.2.0 *)
val min_elt: t -> elt
(** Return the smallest element of the given set
(with respect to the [Ord.compare] ordering).
@raise Not_found if the set is empty. *)
val max_elt: t -> elt
(** Same as {!Set.S.min_elt}, but returns the largest element of the
given set. *)
val choose: t -> elt
(** Return one element of the given set, or raise [Not_found] if
the set is empty. Which element is chosen is unspecified,
but equal elements will be chosen for equal sets. *)
val pop : t -> elt * t
(** returns one element of the set and the set without that element.
@raise Not_found if given an empty set *)
val enum: t -> elt BatEnum.t
(** Return an enumeration of all elements of the given set.
The returned enumeration is sorted in increasing order with respect
to the ordering [Ord.compare], where [Ord] is the argument
given to {!Set.Make}. *)
val backwards: t -> elt BatEnum.t
(** Return an enumeration of all elements of the given set.
The returned enumeration is sorted in decreasing order with respect
to the ordering [Ord.compare], where [Ord] is the argument
given to {!Set.Make}. *)
val of_enum: elt BatEnum.t -> t
(** {6 Boilerplate code}*)
(** {7 Printing}*)
val print : ?first:string -> ?last:string -> ?sep:string ->
('a BatInnerIO.output -> elt -> unit) ->
'a BatInnerIO.output -> t -> unit
(** {6 Override modules}*)
(**
The following modules replace functions defined in {!Set} with functions
behaving slightly differently but having the same name. This is by design:
the functions meant to override the corresponding functions of {!Set}.
*)
(** Operations on {!Set} without exceptions.*)
module Exceptionless : sig
val min_elt: t -> elt option
val max_elt: t -> elt option
val choose: t -> elt option
val find: elt -> t -> elt option
end
(** Operations on {!Set} with labels.
This module overrides a number of functions of {!Set} by
functions in which some arguments require labels. These labels are
there to improve readability and safety and to let you change the
order of arguments to functions. In every case, the behavior of the
function is identical to that of the corresponding function of {!Set}.
*)
module Labels : sig
val iter : f:(elt -> unit) -> t -> unit
val fold : f:(elt -> 'a -> 'a) -> t -> init:'a -> 'a
val for_all : f:(elt -> bool) -> t -> bool
val exists : f:(elt -> bool) -> t -> bool
val map: f:(elt -> elt) -> t -> t
val filter : f:(elt -> bool) -> t -> t
val filter_map: f:(elt -> elt option) -> t -> t
val partition : f:(elt -> bool) -> t -> t * t
end
end
(** Output signature of the functor {!Set.Make}. *)
(*
module IStringSet : S with type elt = String.t
(** A set of strings. Comparison of strings ignores case (i.e. "foo" = "Foo")*)
module NumStringSet : S with type elt = String.t
(** A set of strings. Comparison of strings takes into account embedded numbers (i.e. "a23" < "a123", "a01" = "a1") *)
module RopeSet : S with type elt = BatRope.t
(** A set of ropes. Comparison of ropes takes case into account (i.e. r"foo" <> r"Foo")*)
module IRopeSet : S with type elt = BatRope.t
(** A set of ropes. Comparison of ropes ignores case (i.e. r"foo" = r"Foo")*)
*)
module Make (Ord : OrderedType) : S with type elt = Ord.t
(** Functor building an implementation of the set structure
given a totally ordered type.
@documents Set.Make
*)
(** {6 Polymorphic sets}
The definitions below describe the polymorphic set interface.
They are similar in functionality to the functorized {!Make}
module, but the compiler cannot ensure that sets using different
element ordering have different types: the responsibility of not
mixing non-sensical comparison functions together is to the
programmer. If in doubt, you should rather use the {!Make}
functor for additional safety.
@author Nicolas Cannasse
@author Markus Mottl
@author David Rajchenbach-Teller
*)
type 'a t
(** The type of sets. *)
include BatEnum.Enumerable with type 'a enumerable = 'a t
include BatInterfaces.Mappable with type 'a mappable = 'a t
val empty: 'a t
(** The empty set, using [compare] as comparison function *)
val is_empty: 'a t -> bool
(** Test whether a set is empty or not. *)
val singleton : 'a -> 'a t
(** Creates a new set with the single given element in it. *)
val mem: 'a -> 'a t -> bool
(** [mem x s] tests whether [x] belongs to the set [s]. *)
val find: 'a -> 'a t -> 'a
(** [find x s] returns the set element that compares equal to [x].
@raise Not_found if no such element exists
@since 2.1
*)
val add: 'a -> 'a t -> 'a t
(** [add x s] returns a set containing all elements of [s],
plus [x]. If [x] was already in [s], [s] is returned unchanged. *)
val remove: 'a -> 'a t -> 'a t
(** [remove x s] returns a set containing all elements of [s],
except [x]. If [x] was not in [s], [s] is returned unchanged. *)
val union: 'a t -> 'a t -> 'a t
(** [union s t] returns the union of [s] and [t] - the set containing
all elements in either [s] and [t]. The returned set uses [t]'s
comparison function. The current implementation works better for
small [s]. *)
(* Set.Make uses intersect *)
val intersect: 'a t -> 'a t -> 'a t
(** [intersect s t] returns a new set of those elements that are in
both [s] and [t]. The returned set uses [s]'s comparison function. *)
val diff: 'a t -> 'a t -> 'a t
(** [diff s t] returns the set of all elements in [s] but not in
[t]. The returned set uses [s]'s comparison function.*)
val sym_diff: 'a t -> 'a t -> 'a t
(** [sym_diff s t] returns the set of all elements in [s] or [t] but
not both, also known as the symmetric difference. This is the
same as [diff (union s t) (inter s t)]. The returned set uses
[s]'s comparison function.*)
val compare: 'a t -> 'a t -> int
(** Total ordering between sets. Can be used as the ordering function
for doing sets of sets. *)
val equal: 'a t -> 'a t -> bool
(** [equal s1 s2] tests whether the sets [s1] and [s2] are
equal, that is, contain equal elements. *)
val subset: 'a t -> 'a t -> bool
(** [subset a b] returns true if [a] is a subset of [b]. O(|a|). *)
val disjoint: 'a t -> 'a t -> bool
(** [disjoint s1 s2] tests whether the sets [s1] and [s2] contain no
shared elements. (i.e. [inter s1 s2] is empty.) *)
val iter: ('a -> unit) -> 'a t -> unit
(** [iter f s] applies [f] in turn to all elements of [s].
The elements of [s] are presented to [f] in increasing order
with respect to the ordering over the type of the elements. *)
val map: ('a -> 'b) -> 'a t -> 'b t
(** [map f x] creates a new set with elements [f a0],
[f a1]... [f aN], where [a0], [a1], ..., [aN] are the
elements of [x].
This function places no restriction on [f]; it can map multiple
input values to the same output value, in which case the
resulting set will have smaller cardinality than the input. [f]
does not need to be order preserving, although if it is, then
[Incubator.op_map] may be more efficient.
*)
val filter: ('a -> bool) -> 'a t -> 'a t
(** [filter p s] returns the set of all elements in [s]
that satisfy predicate [p]. *)
(* as under-specified as 'map' *)
val filter_map: ('a -> 'b option) -> 'a t -> 'b t
(** [filter_map f m] combines the features of [filter] and
[map]. It calls calls [f a0], [f a1], [f aN] where [a0,a1..an]
are the elements of [m] and returns the set of pairs [bi]
such as [f ai = Some bi] (when [f] returns [None], the
corresponding element of [m] is discarded).
The resulting map uses the polymorphic [compare] function to
order elements.
*)
val fold: ('a -> 'b -> 'b) -> 'a t -> 'b -> 'b
(** [fold f s a] computes [(f xN ... (f x1 (f x0 a))...)],
where [x0,x1..xN] are the elements of [s], in increasing order. *)
val exists: ('a -> bool) -> 'a t -> bool
(** [exists p s] checks if at least one element of
the set satisfies the predicate [p]. *)
val for_all : ('a -> bool) -> 'a t -> bool
(** Returns whether the given predicate applies to all elements in the set *)
val partition : ('a -> bool) -> 'a t -> 'a t * 'a t
(** returns two disjoint subsets, those that satisfy the given
predicate and those that don't *)
val split : 'a -> 'a t -> 'a t * bool * 'a t
(** [split x s] returns a triple [(l, present, r)], where
[l] is the set of elements of [s] that are
strictly less than [x];
[r] is the set of elements of [s] that are
strictly greater than [x];
[present] is [false] if [s] contains no element equal to [x],
or [true] if [s] contains an element equal to [x]. *)
val split_opt: 'a -> 'a t -> 'a t * 'a option * 'a t
(** [split_opt x s] returns a triple [(l, maybe_v, r)], where
[l] is the set of elements of [s] that are
strictly less than [x];
[r] is the set of elements of [s] that are
strictly greater than [x];
[maybe_v] is [None] if [s] contains no element equal to [x],
or [Some v] if [s] contains an element [v] that compares equal to [x].
@since 2.2.0
*)
val split_lt: 'a -> 'a t -> 'a t * 'a t
(** [split_lt x s] returns a pair of sets [(l, r)], such that
[l] is the subset of [s] with elements < [x];
[r] is the subset of [s] with elements >= [x].
@since 2.2.0 *)
val split_le: 'a -> 'a t -> 'a t * 'a t
(** [split_le x s] returns a pair of sets [(l, r)], such that
[l] is the subset of [s] with elements <= [x];
[r] is the subset of [s] with elements > [x].
@since 2.2.0 *)
val cardinal: 'a t -> int
(** Return the number of elements of a set. *)
val elements: 'a t -> 'a list
(** Return the list of all elements of the given set.
The returned list is sorted in increasing order with respect
to the ordering of the given set. *)
val to_list: 'a t -> 'a list
(** Alias for [elements].
@since 2.2.0 *)
val min_elt : 'a t -> 'a
(** returns the smallest element of the set.
@raise Invalid_argument if given an empty set. *)
val max_elt : 'a t -> 'a
(** returns the largest element of the set.
@raise Invalid_argument if given an empty set.*)
val choose : 'a t -> 'a
(** returns an arbitrary (but deterministic) element of the given set.
@raise Invalid_argument if given an empty set. *)
val pop : 'a t -> 'a * 'a t
(** returns one element of the set and the set without that element.
@raise Not_found if given an empty set *)
val cartesian_product : 'a t -> 'b t -> ('a * 'b) t
(** cartesian product of the two sets
@since 2.2.0 *)
val enum: 'a t -> 'a BatEnum.t
(** Return an enumeration of all elements of the given set.
The returned enumeration is sorted in increasing order with respect
to the ordering of this set.*)
val of_enum: 'a BatEnum.t -> 'a t
val backwards: 'a t -> 'a BatEnum.t
(** Return an enumeration of all elements of the given set. The
returned enumeration is sorted in decreasing order with respect to
the ordering [Pervasives.compare]. *)
(* of_list has no Set.Make counterpart *)
val of_list: 'a list -> 'a t
(** builds a set from the given list, using the default comparison
function *)
(** {6 Boilerplate code}*)
(** {7 Printing}*)
val print : ?first:string -> ?last:string -> ?sep:string ->
('a BatInnerIO.output -> 'c -> unit) ->
'a BatInnerIO.output -> 'c t -> unit
(** {6 Incubator} *)
module Incubator : sig
val op_map : ('a -> 'b) -> 'a t -> 'b t
(** Order Preserving map; as [map], but [f] must be order preserving;
i.e. if [a < b] then [f a < f b]. This allows the tree structure
to be maintained internally, resulting in O(n) work instead of O(n
log n).
@since 2.1
*)
end
module PSet : sig
(** {6 Polymorphic sets}
The definitions below describe the polymorphic set interface.
They are similar in functionality to the functorized
{!BatSet.Make} module, but the compiler cannot ensure that sets
using different element ordering have different types: the
responsibility of not mixing non-sensical comparison functions
together is to the programmer. If you ever need a custom
comparison function, it is recommended to use the {!BatSet.Make}
functor for additional safety.
@author Nicolas Cannasse
@author Markus Mottl
@author David Rajchenbach-Teller
*)
type 'a t
(** The type of sets. *)
include BatEnum.Enumerable with type 'a enumerable = 'a t
include BatInterfaces.Mappable with type 'a mappable = 'a t
val empty: 'a t
(** The empty set, using [compare] as comparison function *)
val create : ('a -> 'a -> int) -> 'a t
(** Creates a new empty set, using the provided function for key comparison.*)
val is_empty: 'a t -> bool
(** Test whether a set is empty or not. *)
val singleton : ?cmp:('a -> 'a -> int) -> 'a -> 'a t
(** Creates a new set with the single given element in it. *)
val mem: 'a -> 'a t -> bool
(** [mem x s] tests whether [x] belongs to the set [s]. *)
val add: 'a -> 'a t -> 'a t
(** [add x s] returns a set containing all elements of [s],
plus [x]. If [x] was already in [s], [s] is returned unchanged. *)
val remove: 'a -> 'a t -> 'a t
(** [remove x s] returns a set containing all elements of [s],
except [x]. If [x] was not in [s], [s] is returned unchanged. *)
val union: 'a t -> 'a t -> 'a t
(** [union s t] returns the union of [s] and [t] - the set containing
all elements in either [s] and [t]. The returned set uses [t]'s
comparison function. The current implementation works better for
small [s]. *)
(* Set.Make uses intersect *)
val intersect: 'a t -> 'a t -> 'a t
(** [intersect s t] returns a new set of those elements that are in
both [s] and [t]. The returned set uses [s]'s comparison function. *)
val diff: 'a t -> 'a t -> 'a t
(** [diff s t] returns the set of all elements in [s] but not in
[t]. The returned set uses [s]'s comparison function.*)
val sym_diff: 'a t -> 'a t -> 'a t
(** [sym_diff s t] returns the set of all elements in [s] or [t] but not both.
This is the same as [diff (union s t) (inter s t)]. The returned set uses
[s]'s comparison function.*)
val compare: 'a t -> 'a t -> int
(** Total ordering between sets. Can be used as the ordering function
for doing sets of sets. *)
val equal: 'a t -> 'a t -> bool
(** [equal s1 s2] tests whether the sets [s1] and [s2] are
equal, that is, contain equal elements. *)
val subset: 'a t -> 'a t -> bool
(** [subset a b] returns true if [a] is a subset of [b]. O(|a|). *)
val disjoint: 'a t -> 'a t -> bool
(** [disjoint s1 s2] tests whether the sets [s1] and [s2] contain no
shared elements. (i.e. [inter s1 s2] is empty.) *)
val iter: ('a -> unit) -> 'a t -> unit
(** [iter f s] applies [f] in turn to all elements of [s].
The elements of [s] are presented to [f] in increasing order
with respect to the ordering over the type of the elements. *)
(* under-specified; either give a 'b comparison,
or keep ('a -> 'a) (preferred choice) *)
val map: ('a -> 'b) -> 'a t -> 'b t
(** [map f x] creates a new set with elements [f a0],
[f a1]... [f aN], where [a0], [a1], ..., [aN] are the
values contained in [x]
The resulting map uses the polymorphic [compare] function to
order elements.
*)
val filter: ('a -> bool) -> 'a t -> 'a t
(** [filter p s] returns the set of all elements in [s]
that satisfy predicate [p]. *)
(* as under-specified as 'map' *)
val filter_map: ('a -> 'b option) -> 'a t -> 'b t
(** [filter_map f m] combines the features of [filter] and
[map]. It calls calls [f a0], [f a1], [f aN] where [a0,a1..an]
are the elements of [m] and returns the set of pairs [bi]
such as [f ai = Some bi] (when [f] returns [None], the
corresponding element of [m] is discarded).
The resulting map uses the polymorphic [compare] function to
order elements.
*)
val fold: ('a -> 'b -> 'b) -> 'a t -> 'b -> 'b
(** [fold f s a] computes [(f xN ... (f x1 (f x0 a))...)],
where [x0,x1..xN] are the elements of [s], in increasing order. *)
val exists: ('a -> bool) -> 'a t -> bool
(** [exists p s] checks if at least one element of
the set satisfies the predicate [p]. *)
val for_all : ('a -> bool) -> 'a t -> bool
(** Returns whether the given predicate applies to all elements in the set *)
val partition : ('a -> bool) -> 'a t -> 'a t * 'a t
(** returns two disjoint subsets, those that satisfy the given
predicate and those that don't *)
val split : 'a -> 'a t -> 'a t * bool * 'a t
(** [split x s] returns a triple [(l, present, r)], where
[l] is the set of elements of [s] that are
strictly less than [x];
[r] is the set of elements of [s] that are
strictly greater than [x];
[present] is [false] if [s] contains no element equal to [x],
or [true] if [s] contains an element equal to [x]. *)
val split_opt: 'a -> 'a t -> 'a t * 'a option * 'a t
(** [split_opt x s] returns a triple [(l, maybe_v, r)], where
[l] is the set of elements of [s] that are
strictly less than [x];
[r] is the set of elements of [s] that are
strictly greater than [x];
[maybe_v] is [None] if [s] contains no element equal to [x],
or [Some v] if [s] contains an element [v] that compares equal to [x].
*)
val split_lt: 'a -> 'a t -> 'a t * 'a t
(** [split_lt x s] returns a pair of sets [(l, r)], such that
[l] is the subset of [s] with elements < [x];
[r] is the subset of [s] with elements >= [x]. *)
val split_le: 'a -> 'a t -> 'a t * 'a t
(** [split_le x s] returns a pair of sets [(l, r)], such that
[l] is the subset of [s] with elements <= [x];
[r] is the subset of [s] with elements > [x]. *)
val cardinal: 'a t -> int
(** Return the number of elements of a set. *)
val elements: 'a t -> 'a list
(** Return the list of all elements of the given set.
The returned list is sorted in increasing order with respect
to the ordering of the given set. *)
val to_list: 'a t -> 'a list
(** Alias for [elements]. *)
val min_elt : 'a t -> 'a
(** returns the smallest element of the set.
@raise Invalid_argument if given an empty set. *)
val max_elt : 'a t -> 'a
(** returns the largest element of the set.
@raise Invalid_argument if given an empty set.*)
val choose : 'a t -> 'a
(** returns an arbitrary (but deterministic) element of the given set.
@raise Invalid_argument if given an empty set. *)
val pop : 'a t -> 'a * 'a t
(** returns one element of the set and the set without that element.
@raise Not_found if given an empty set *)
val enum: 'a t -> 'a BatEnum.t
(** Return an enumeration of all elements of the given set.
The returned enumeration is sorted in increasing order with respect
to the ordering of this set.*)
val of_enum: 'a BatEnum.t -> 'a t
val of_enum_cmp: cmp:('a -> 'a -> int) -> 'a BatEnum.t -> 'a t
(* of_list has no Set.Make counterpart *)
val of_list: 'a list -> 'a t
(** builds a set from the given list, using the default comparison
function *)
(** {6 Boilerplate code}*)
(** {7 Printing}*)
val print : ?first:string -> ?last:string -> ?sep:string ->
('a BatInnerIO.output -> 'c -> unit) ->
'a BatInnerIO.output -> 'c t -> unit
(** get the comparison function used for a polymorphic map *)
val get_cmp : 'a t -> ('a -> 'a -> int)
end
|