/usr/include/beecrypt/elgamal.h is in libbeecrypt-dev 4.2.1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 | /*
* Copyright (c) 2000, 2001, 2002 X-Way Rights BV
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
/*!\file elgamal.h
* \brief ElGamal algorithm.
*
* For more information on this algorithm, see:
* "Handbook of Applied Cryptography",
* 11.5.2: "The ElGamal signature scheme", p. 454-459
*
* Two of the signature variants in Note 11.70 are implemented.
*
* \todo Implement ElGamal encryption and decryption.
*
* \todo Explore the possibility of using simultaneous multiple exponentiation,
* as described in HAC, 14.87 (iii).
*
* \author Bob Deblier <bob.deblier@telenet.be>
* \ingroup DL_m DL_elgamal_m
*/
#ifndef _ELGAMAL_H
#define _ELGAMAL_H
#include "beecrypt/mpbarrett.h"
#ifdef __cplusplus
extern "C" {
#endif
/*!\fn int elgv1sign(const mpbarrett* p, const mpbarrett* n, const mpnumber* g, randomGeneratorContext* rgc, const mpnumber* hm, const mpnumber* x, mpnumber* r, mpnumber* s)
* \brief This function performs raw ElGamal signing, variant 1.
*
* Signing equations:
*
* \li \f$r=g^{k}\ \textrm{mod}\ p\f$
* \li \f$s=k^{-1}(h(m)-xr)\ \textrm{mod}\ (p-1)\f$
*
* \param p The prime.
* \param n The reducer mod (p-1).
* \param g The generator.
* \param rgc The pseudo-random generat
* \param hm The hash to be signed.
* \param x The private key value.
* \param r The signature's \e r value.
* \param s The signature's \e s value.
* \retval 0 on success.
* \retval -1 on failure.
*/
BEECRYPTAPI
int elgv1sign(const mpbarrett* p, const mpbarrett* n, const mpnumber* g, randomGeneratorContext*, const mpnumber* hm, const mpnumber* x, mpnumber* r, mpnumber* s);
/*!\fn int elgv1vrfy(const mpbarrett* p, const mpbarrett* n, const mpnumber* g, const mpnumber* hm, const mpnumber* y, const mpnumber* r, const mpnumber* s)
* \brief This function performs raw ElGamal verification, variant 1.
*
* Verifying equations:
*
* \li Check \f$0<r<p\f$ and \f$0<s<(p-1)\f$
* \li \f$v_1=y^{r}r^{s}\ \textrm{mod}\ p\f$
* \li \f$v_2=g^{h(m)}\ \textrm{mod}\ p\f$
* \li Check \f$v_1=v_2\f$
*
* \param p The prime.
* \param n The reducer mod (p-1).
* \param g The generator.
* \param hm The hash to be signed.
* \param y The public key value.
* \param r The signature's \e r value.
* \param s The signature's \e s value.
* \retval 1 on success.
* \retval 0 on failure.
*/
BEECRYPTAPI
int elgv3sign(const mpbarrett* p, const mpbarrett* n, const mpnumber* g, randomGeneratorContext*, const mpnumber* hm, const mpnumber* x, mpnumber* r, mpnumber* s);
/*!\fn int elgv3sign(const mpbarrett* p, const mpbarrett* n, const mpnumber* g, randomGeneratorContext* rgc, const mpnumber* hm, const mpnumber* x, mpnumber* r, mpnumber* s)
* \brief This function performs raw ElGamal signing, variant 3.
*
* Signing equations:
*
* \li \f$r=g^{k}\ \textrm{mod}\ p\f$
* \li \f$s=xr+kh(m)\ \textrm{mod}\ (p-1)\f$
*
* \param p The prime.
* \param n The reducer mod (p-1).
* \param g The generator.
* \param rgc The pseudo-random generat
* \param hm The hash to be signed.
* \param x The private key value.
* \param r The signature's \e r value.
* \param s The signature's \e s value.
* \retval 0 on success.
* \retval -1 on failure.
*/
BEECRYPTAPI
int elgv1vrfy(const mpbarrett* p, const mpbarrett* n, const mpnumber* g, const mpnumber* hm, const mpnumber* y, const mpnumber* r, const mpnumber* s);
/*!\fn int elgv3vrfy(const mpbarrett* p, const mpbarrett* n, const mpnumber* g, const mpnumber* hm, const mpnumber* y, const mpnumber* r, const mpnumber* s)
* \brief This function performs raw ElGamal verification, variant 3.
*
* Verifying equations:
*
* \li Check \f$0<r<p\f$ and \f$0<s<(p-1)\f$
* \li \f$v_1=g^{s}\ \textrm{mod}\ p\f$
* \li \f$v_2=y^{r}r^{h(m)}\ \textrm{mod}\ p\f$
* \li Check \f$v_1=v_2\f$
*
* \param p The prime.
* \param n The reducer mod (p-1).
* \param g The generator.
* \param hm The hash to be signed.
* \param y The public key value.
* \param r The signature's \e r value.
* \param s The signature's \e s value.
* \retval 1 on success.
* \retval 0 on failure.
*/
BEECRYPTAPI
int elgv3vrfy(const mpbarrett* p, const mpbarrett* n, const mpnumber* g, const mpnumber* hm, const mpnumber* y, const mpnumber* r, const mpnumber* s);
#ifdef __cplusplus
}
#endif
#endif
|