/usr/include/bliss/graph.hh is in libbliss-dev 0.72-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 | #ifndef BLISS_GRAPH_HH
#define BLISS_GRAPH_HH
/*
Copyright (c) 2006-2011 Tommi Junttila
Released under the GNU General Public License version 3.
This file is part of bliss.
bliss is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License version 3
as published by the Free Software Foundation.
bliss is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Foobar. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* \namespace bliss
* The namespace bliss contains all the classes and functions of the bliss
* tool except for the C programming language API.
*/
namespace bliss {
class AbstractGraph;
}
#include <cstdio>
#include <vector>
#include "kstack.hh"
#include "kqueue.hh"
#include "heap.hh"
#include "orbit.hh"
#include "partition.hh"
#include "bignum.hh"
#include "uintseqhash.hh"
namespace bliss {
/**
* \brief Statistics returned by the bliss search algorithm.
*/
class Stats
{
friend class AbstractGraph;
/** \internal The size of the automorphism group. */
BigNum group_size;
/** \internal An approximation (due to possible overflows) of
* the size of the automorphism group. */
long double group_size_approx;
/** \internal The number of nodes in the search tree. */
long unsigned int nof_nodes;
/** \internal The number of leaf nodes in the search tree. */
long unsigned int nof_leaf_nodes;
/** \internal The number of bad nodes in the search tree. */
long unsigned int nof_bad_nodes;
/** \internal The number of canonical representative updates. */
long unsigned int nof_canupdates;
/** \internal The number of generator permutations. */
long unsigned int nof_generators;
/** \internal The maximal depth of the search tree. */
unsigned long int max_level;
/** */
void reset()
{
group_size.assign(1);
group_size_approx = 1.0;
nof_nodes = 0;
nof_leaf_nodes = 0;
nof_bad_nodes = 0;
nof_canupdates = 0;
nof_generators = 0;
max_level = 0;
}
public:
Stats() { reset(); }
/** Print the statistics. */
size_t print(FILE* const fp) const
{
size_t r = 0;
r += fprintf(fp, "Nodes: %lu\n", nof_nodes);
r += fprintf(fp, "Leaf nodes: %lu\n", nof_leaf_nodes);
r += fprintf(fp, "Bad nodes: %lu\n", nof_bad_nodes);
r += fprintf(fp, "Canrep updates: %lu\n", nof_canupdates);
r += fprintf(fp, "Generators: %lu\n", nof_generators);
r += fprintf(fp, "Max level: %lu\n", max_level);
r += fprintf(fp, "|Aut|: ")+group_size.print(fp)+fprintf(fp, "\n");
fflush(fp);
return r;
}
/** An approximation (due to possible overflows/rounding errors) of
* the size of the automorphism group. */
long double get_group_size_approx() const {return group_size_approx;}
/** The number of nodes in the search tree. */
long unsigned int get_nof_nodes() const {return nof_nodes;}
/** The number of leaf nodes in the search tree. */
long unsigned int get_nof_leaf_nodes() const {return nof_leaf_nodes;}
/** The number of bad nodes in the search tree. */
long unsigned int get_nof_bad_nodes() const {return nof_bad_nodes;}
/** The number of canonical representative updates. */
long unsigned int get_nof_canupdates() const {return nof_canupdates;}
/** The number of generator permutations. */
long unsigned int get_nof_generators() const {return nof_generators;}
/** The maximal depth of the search tree. */
unsigned long int get_max_level() const {return max_level;}
};
/**
* \brief An abstract base class for different types of graphs.
*/
class AbstractGraph
{
friend class Partition;
protected:
/** \internal
* How much verbose output is produced (0 means none) */
unsigned int verbose_level;
/** \internal
* The output stream for verbose output. */
FILE *verbstr;
protected:
/** \internal
* The ordered partition used in the search algorithm. */
Partition p;
/** \internal
* Whether the search for automorphisms and a canonical labeling is
* in progress.
*/
bool in_search;
/** \internal
* Is failure recording in use?
*/
bool opt_use_failure_recording;
/* The "tree-specific" invariant value for the point when current path
* got different from the first path */
unsigned int failure_recording_fp_deviation;
/** \internal
* Is component recursion in use?
*/
bool opt_use_comprec;
unsigned int refine_current_path_certificate_index;
bool refine_compare_certificate;
bool refine_equal_to_first;
unsigned int refine_first_path_subcertificate_end;
int refine_cmp_to_best;
unsigned int refine_best_path_subcertificate_end;
static const unsigned int CERT_SPLIT = 0; //UINT_MAX;
static const unsigned int CERT_EDGE = 1; //UINT_MAX-1;
/** \internal
* Add a triple (v1,v2,v3) in the certificate.
* May modify refine_equal_to_first and refine_cmp_to_best.
* May also update eqref_hash and failure_recording_fp_deviation. */
void cert_add(const unsigned int v1,
const unsigned int v2,
const unsigned int v3);
/** \internal
* Add a redundant triple (v1,v2,v3) in the certificate.
* Can also just dicard the triple.
* May modify refine_equal_to_first and refine_cmp_to_best.
* May also update eqref_hash and failure_recording_fp_deviation. */
void cert_add_redundant(const unsigned int x,
const unsigned int y,
const unsigned int z);
/**\internal
* Is the long prune method in use?
*/
bool opt_use_long_prune;
/**\internal
* Maximum amount of memory (in megabytes) available for
* the long prune method
*/
static const unsigned int long_prune_options_max_mem = 50;
/**\internal
* Maximum amount of automorphisms stored for the long prune method;
* less than this is stored if the memory limit above is reached first
*/
static const unsigned int long_prune_options_max_stored_auts = 100;
unsigned int long_prune_max_stored_autss;
std::vector<std::vector<bool> *> long_prune_fixed;
std::vector<std::vector<bool> *> long_prune_mcrs;
std::vector<bool> long_prune_temp;
unsigned int long_prune_begin;
unsigned int long_prune_end;
/** \internal
* Initialize the "long prune" data structures.
*/
void long_prune_init();
/** \internal
* Release the memory allocated for "long prune" data structures.
*/
void long_prune_deallocate();
void long_prune_add_automorphism(const unsigned int *aut);
std::vector<bool>& long_prune_get_fixed(const unsigned int index);
std::vector<bool>& long_prune_allocget_fixed(const unsigned int index);
std::vector<bool>& long_prune_get_mcrs(const unsigned int index);
std::vector<bool>& long_prune_allocget_mcrs(const unsigned int index);
/** \internal
* Swap the i:th and j:th stored automorphism information;
* i and j must be "in window, i.e. in [long_prune_begin,long_prune_end[
*/
void long_prune_swap(const unsigned int i, const unsigned int j);
/*
* Data structures and routines for refining the partition p into equitable
*/
Heap neighbour_heap;
virtual bool split_neighbourhood_of_unit_cell(Partition::Cell *) = 0;
virtual bool split_neighbourhood_of_cell(Partition::Cell * const) = 0;
void refine_to_equitable();
void refine_to_equitable(Partition::Cell * const unit_cell);
void refine_to_equitable(Partition::Cell * const unit_cell1,
Partition::Cell * const unit_cell2);
/** \internal
* \return false if it was detected that the current certificate
* is different from the first and/or best (whether this is checked
* depends on in_search and refine_compare_certificate flags.
*/
bool do_refine_to_equitable();
unsigned int eqref_max_certificate_index;
/** \internal
* Whether eqref_hash is updated during equitable refinement process.
*/
bool compute_eqref_hash;
UintSeqHash eqref_hash;
/** \internal
* Check whether the current partition p is equitable.
* Performance: very slow, use only for debugging purposes.
*/
virtual bool is_equitable() const = 0;
unsigned int *first_path_labeling;
unsigned int *first_path_labeling_inv;
Orbit first_path_orbits;
unsigned int *first_path_automorphism;
unsigned int *best_path_labeling;
unsigned int *best_path_labeling_inv;
Orbit best_path_orbits;
unsigned int *best_path_automorphism;
void update_labeling(unsigned int * const lab);
void update_labeling_and_its_inverse(unsigned int * const lab,
unsigned int * const lab_inv);
void update_orbit_information(Orbit &o, const unsigned int *perm);
void reset_permutation(unsigned int *perm);
/* Mainly for debugging purposes */
virtual bool is_automorphism(unsigned int* const perm);
std::vector<unsigned int> certificate_current_path;
std::vector<unsigned int> certificate_first_path;
std::vector<unsigned int> certificate_best_path;
unsigned int certificate_index;
virtual void initialize_certificate() = 0;
virtual void remove_duplicate_edges() = 0;
virtual void make_initial_equitable_partition() = 0;
virtual Partition::Cell* find_next_cell_to_be_splitted(Partition::Cell *cell) = 0;
void search(const bool canonical, Stats &stats);
void (*report_hook)(void *user_param,
unsigned int n,
const unsigned int *aut);
void *report_user_param;
/*
*
* Nonuniform component recursion (NUCR)
*
*/
/** The currently traversed component */
unsigned int cr_level;
/** \internal
* The "Component End Point" data structure
*/
class CR_CEP {
public:
/** At which level in the search was this CEP created */
unsigned int creation_level;
/** The current component has been fully traversed when the partition has
* this many discrete cells left */
unsigned int discrete_cell_limit;
/** The component to be traversed after the current one */
unsigned int next_cr_level;
/** The next component end point */
unsigned int next_cep_index;
bool first_checked;
bool best_checked;
};
/** \internal
* A stack for storing Component End Points
*/
std::vector<CR_CEP> cr_cep_stack;
/** \internal
* Find the first non-uniformity component at the component recursion
* level \a level.
* The component is stored in \a cr_component.
* If no component is found, \a cr_component is empty.
* Returns false if all the cells in the component recursion level \a level
* were discrete.
* Modifies the max_ival and max_ival_count fields of Partition:Cell
* (assumes that they are 0 when called and
* quarantees that they are 0 when returned).
*/
virtual bool nucr_find_first_component(const unsigned int level) {assert(false); }
virtual bool nucr_find_first_component(const unsigned int level,
std::vector<unsigned int>& component,
unsigned int& component_elements,
Partition::Cell*& sh_return)
{assert(false); }
/** \internal
* The non-uniformity component found by nucr_find_first_component()
* is stored here.
*/
std::vector<unsigned int> cr_component;
/** \internal
* The number of vertices in the component \a cr_component
*/
unsigned int cr_component_elements;
public:
AbstractGraph();
virtual ~AbstractGraph();
/**
* Check whether \a perm is an automorphism of this graph.
* Unoptimized, mainly for debugging purposes.
*/
virtual bool is_automorphism(const std::vector<unsigned int>& perm) const;
/**
* Set the verbose output level for the algorithms.
* \param level the level of verbose output, 0 means no verbose output
*/
void set_verbose_level(const unsigned int level);
/**
* Set the file stream for the verbose output.
* \param fp the file stream; if null, no verbose output is written
*/
void set_verbose_file(FILE * const fp);
/** Activate/deactivate failure recording.
* May not be called during the search, i.e. from an automorphism reporting
* hook function.
* \param active if true, activate failure recording, deactivate otherwise
*/
void set_failure_recording(const bool active) {assert(!in_search); opt_use_failure_recording = active;}
/** Activate/deactivate component recursion.
* The choice affects the computed canonical labelings;
* therefore, if you want to compare whether two graphs are isomorphic by
* computing and comparing (for equality) their canonical versions,
* be sure to use the same choice for both graphs.
* May not be called during the search, i.e. from an automorphism reporting
* hook function.
* \param active if true, activate component recursion, deactivate otherwise
*/
void set_component_recursion(const bool active) {assert(!in_search); opt_use_comprec = active;}
/**
* Return the number of vertices in the graph.
*/
virtual unsigned int get_nof_vertices() const = 0;
/**
* Return a new graph that is the result of applying the permutation \a perm
* to this graph. This graph is not modified.
* \a perm must contain N=this.get_nof_vertices() elements and be a bijection
* on {0,1,...,N-1}, otherwise the result is undefined or a segfault.
*/
virtual AbstractGraph* permute(const unsigned int* const perm) const = 0;
virtual AbstractGraph* permute(const std::vector<unsigned int>& perm) const = 0;
/**
* Find a set of generators for the automorphism group of the graph.
* The function \a hook (if non-null) is called each time a new generator
* for the automorphism group is found.
* The first argument \a user_param for the hook is the
* \a hook_user_param given below,
* the second argument \a n is the length of the automorphism (equal to
* get_nof_vertices()) and
* the third argument \a aut is the automorphism
* (a bijection on {0,...,get_nof_vertices()-1}).
* The memory for the automorphism \a aut will be invalidated immediately
* after the return from the hook function;
* if you want to use the automorphism later, you have to take a copy of it.
* Do not call any member functions in the hook.
* The search statistics are copied in \a stats.
*/
void find_automorphisms(Stats& stats,
void (*hook)(void* user_param,
unsigned int n,
const unsigned int* aut),
void* hook_user_param);
/**
* Otherwise the same as find_automorphisms() except that
* a canonical labeling of the graph (a bijection on
* {0,...,get_nof_vertices()-1}) is returned.
* The memory allocated for the returned canonical labeling will remain
* valid only until the next call to a member function with the exception
* that constant member functions (for example, bliss::Graph::permute()) can
* be called without invalidating the labeling.
* To compute the canonical version of an undirected graph, call this
* function and then bliss::Graph::permute() with the returned canonical
* labeling.
* Note that the computed canonical version may depend on the applied version
* of bliss as well as on some other options (for instance, the splitting
* heuristic selected with bliss::Graph::set_splitting_heuristic()).
*/
const unsigned int* canonical_form(Stats& stats,
void (*hook)(void* user_param,
unsigned int n,
const unsigned int* aut),
void* hook_user_param);
/**
* Write the graph to a file in a variant of the DIMACS format.
* See the <A href="http://www.tcs.hut.fi/Software/bliss/">bliss website</A>
* for the definition of the file format.
* Note that in the DIMACS file the vertices are numbered from 1 to N while
* in this C++ API they are from 0 to N-1.
* Thus the vertex n in the file corresponds to the vertex n-1 in the API.
* \param fp the file stream where the graph is written
*/
virtual void write_dimacs(FILE * const fp) = 0;
/**
* Write the graph to a file in the graphviz dotty format.
* \param fp the file stream where the graph is written
*/
virtual void write_dot(FILE * const fp) = 0;
/**
* Write the graph in a file in the graphviz dotty format.
* Do nothing if the file cannot be written.
* \param file_name the name of the file to which the graph is written
*/
virtual void write_dot(const char * const file_name) = 0;
/**
* Get a hash value for the graph.
* \return the hash value
*/
virtual unsigned int get_hash() = 0;
/**
* Disable/enable the "long prune" method.
* The choice affects the computed canonical labelings;
* therefore, if you want to compare whether two graphs are isomorphic by
* computing and comparing (for equality) their canonical versions,
* be sure to use the same choice for both graphs.
* May not be called during the search, i.e. from an automorphism reporting
* hook function.
* \param active if true, activate "long prune", deactivate otherwise
*/
void set_long_prune_activity(const bool active) {
assert(!in_search);
opt_use_long_prune = active;
}
};
/**
* \brief The class for undirected, vertex colored graphs.
*
* Multiple edges between vertices are not allowed (i.e., are ignored).
*/
class Graph : public AbstractGraph
{
public:
/**
* The possible splitting heuristics.
* The selected splitting heuristics affects the computed canonical
* labelings; therefore, if you want to compare whether two graphs
* are isomorphic by computing and comparing (for equality) their
* canonical versions, be sure to use the same splitting heuristics
* for both graphs.
*/
typedef enum {
/** First non-unit cell.
* Very fast but may result in large search spaces on difficult graphs.
* Use for large but easy graphs. */
shs_f = 0,
/** First smallest non-unit cell.
* Fast, should usually produce smaller search spaces than shs_f. */
shs_fs,
/** First largest non-unit cell.
* Fast, should usually produce smaller search spaces than shs_f. */
shs_fl,
/** First maximally non-trivially connected non-unit cell.
* Not so fast, should usually produce smaller search spaces than shs_f,
* shs_fs, and shs_fl. */
shs_fm,
/** First smallest maximally non-trivially connected non-unit cell.
* Not so fast, should usually produce smaller search spaces than shs_f,
* shs_fs, and shs_fl. */
shs_fsm,
/** First largest maximally non-trivially connected non-unit cell.
* Not so fast, should usually produce smaller search spaces than shs_f,
* shs_fs, and shs_fl. */
shs_flm
} SplittingHeuristic;
protected:
class Vertex {
public:
Vertex();
~Vertex();
void add_edge(const unsigned int other_vertex);
void remove_duplicate_edges(std::vector<bool>& tmp);
void sort_edges();
unsigned int color;
std::vector<unsigned int> edges;
unsigned int nof_edges() const {return edges.size(); }
};
std::vector<Vertex> vertices;
void sort_edges();
void remove_duplicate_edges();
/** \internal
* Partition independent invariant.
* Returns the color of the vertex.
* Time complexity: O(1).
*/
static unsigned int vertex_color_invariant(const Graph* const g,
const unsigned int v);
/** \internal
* Partition independent invariant.
* Returns the degree of the vertex.
* DUPLICATE EDGES MUST HAVE BEEN REMOVED BEFORE.
* Time complexity: O(1).
*/
static unsigned int degree_invariant(const Graph* const g,
const unsigned int v);
/** \internal
* Partition independent invariant.
* Returns 1 if there is an edge from the vertex to itself, 0 if not.
* Time complexity: O(k), where k is the number of edges leaving the vertex.
*/
static unsigned int selfloop_invariant(const Graph* const g,
const unsigned int v);
bool refine_according_to_invariant(unsigned int (*inv)(const Graph* const g,
const unsigned int v));
/*
* Routines needed when refining the partition p into equitable
*/
bool split_neighbourhood_of_unit_cell(Partition::Cell *);
bool split_neighbourhood_of_cell(Partition::Cell * const);
/** \internal
* \copydoc AbstractGraph::is_equitable() const
*/
bool is_equitable() const;
/* Splitting heuristics, documented in more detail in graph.cc */
SplittingHeuristic sh;
Partition::Cell* find_next_cell_to_be_splitted(Partition::Cell *cell);
Partition::Cell* sh_first();
Partition::Cell* sh_first_smallest();
Partition::Cell* sh_first_largest();
Partition::Cell* sh_first_max_neighbours();
Partition::Cell* sh_first_smallest_max_neighbours();
Partition::Cell* sh_first_largest_max_neighbours();
void make_initial_equitable_partition();
void initialize_certificate();
bool is_automorphism(unsigned int* const perm);
bool nucr_find_first_component(const unsigned int level);
bool nucr_find_first_component(const unsigned int level,
std::vector<unsigned int>& component,
unsigned int& component_elements,
Partition::Cell*& sh_return);
public:
/**
* Create a new graph with \a N vertices and no edges.
*/
Graph(const unsigned int N = 0);
/**
* Destroy the graph.
*/
~Graph();
/**
* Read the graph from the file \a fp in a variant of the DIMACS format.
* See the <A href="http://www.tcs.hut.fi/Software/bliss/">bliss website</A>
* for the definition of the file format.
* Note that in the DIMACS file the vertices are numbered from 1 to N while
* in this C++ API they are from 0 to N-1.
* Thus the vertex n in the file corresponds to the vertex n-1 in the API.
*
* \param fp the file stream for the graph file
* \param errstr if non-null, the possible error messages are printed
* in this file stream
* \return a new Graph object or 0 if reading failed for some
* reason
*/
static Graph* read_dimacs(FILE* const fp, FILE* const errstr = stderr);
/**
* Write the graph to a file in a variant of the DIMACS format.
* See the <A href="http://www.tcs.hut.fi/Software/bliss/">bliss website</A>
* for the definition of the file format.
*/
void write_dimacs(FILE* const fp);
/**
* \copydoc AbstractGraph::write_dot(FILE * const fp)
*/
void write_dot(FILE* const fp);
/**
* \copydoc AbstractGraph::write_dot(const char * const file_name)
*/
void write_dot(const char* const file_name);
/**
* \copydoc AbstractGraph::is_automorphism(const std::vector<unsigned int>& perm) const
*/
bool is_automorphism(const std::vector<unsigned int>& perm) const;
/**
* \copydoc AbstractGraph::get_hash()
*/
virtual unsigned int get_hash();
/**
* Return the number of vertices in the graph.
*/
unsigned int get_nof_vertices() const {return vertices.size(); }
/**
* \copydoc AbstractGraph::permute(const unsigned int* const perm) const
*/
Graph* permute(const unsigned int* const perm) const;
Graph* permute(const std::vector<unsigned int>& perm) const;
/**
* Add a new vertex with color \a color in the graph and return its index.
*/
unsigned int add_vertex(const unsigned int color = 0);
/**
* Add an edge between vertices \a v1 and \a v2.
* Duplicate edges between vertices are ignored but try to avoid introducing
* them in the first place as they are not ignored immediately but will
* consume memory and computation resources for a while.
*/
void add_edge(const unsigned int v1, const unsigned int v2);
/**
* Change the color of the vertex \a vertex to \a color.
*/
void change_color(const unsigned int vertex, const unsigned int color);
/**
* Compare this graph with the graph \a other.
* Returns 0 if the graphs are equal, and a negative (positive) integer
* if this graph is "smaller than" ("greater than", resp.) than \a other.
*/
int cmp(Graph& other);
/**
* Set the splitting heuristic used by the automorphism and canonical
* labeling algorithm.
* The selected splitting heuristics affects the computed canonical
* labelings; therefore, if you want to compare whether two graphs
* are isomorphic by computing and comparing (for equality) their
* canonical versions, be sure to use the same splitting heuristics
* for both graphs.
*/
void set_splitting_heuristic(const SplittingHeuristic shs) {sh = shs; }
};
/**
* \brief The class for directed, vertex colored graphs.
*
* Multiple edges between vertices are not allowed (i.e., are ignored).
*/
class Digraph : public AbstractGraph
{
public:
/**
* The possible splitting heuristics.
* The selected splitting heuristics affects the computed canonical
* labelings; therefore, if you want to compare whether two graphs
* are isomorphic by computing and comparing (for equality) their
* canonical versions, be sure to use the same splitting heuristics
* for both graphs.
*/
typedef enum {
/** First non-unit cell.
* Very fast but may result in large search spaces on difficult graphs.
* Use for large but easy graphs. */
shs_f = 0,
/** First smallest non-unit cell.
* Fast, should usually produce smaller search spaces than shs_f. */
shs_fs,
/** First largest non-unit cell.
* Fast, should usually produce smaller search spaces than shs_f. */
shs_fl,
/** First maximally non-trivially connected non-unit cell.
* Not so fast, should usually produce smaller search spaces than shs_f,
* shs_fs, and shs_fl. */
shs_fm,
/** First smallest maximally non-trivially connected non-unit cell.
* Not so fast, should usually produce smaller search spaces than shs_f,
* shs_fs, and shs_fl. */
shs_fsm,
/** First largest maximally non-trivially connected non-unit cell.
* Not so fast, should usually produce smaller search spaces than shs_f,
* shs_fs, and shs_fl. */
shs_flm
} SplittingHeuristic;
protected:
class Vertex {
public:
Vertex();
~Vertex();
void add_edge_to(const unsigned int dest_vertex);
void add_edge_from(const unsigned int source_vertex);
void remove_duplicate_edges(std::vector<bool>& tmp);
void sort_edges();
unsigned int color;
std::vector<unsigned int> edges_out;
std::vector<unsigned int> edges_in;
unsigned int nof_edges_in() const {return edges_in.size(); }
unsigned int nof_edges_out() const {return edges_out.size(); }
};
std::vector<Vertex> vertices;
void remove_duplicate_edges();
/** \internal
* Partition independent invariant.
* Returns the color of the vertex.
* Time complexity: O(1).
*/
static unsigned int vertex_color_invariant(const Digraph* const g,
const unsigned int v);
/** \internal
* Partition independent invariant.
* Returns the indegree of the vertex.
* DUPLICATE EDGES MUST HAVE BEEN REMOVED BEFORE.
* Time complexity: O(1).
*/
static unsigned int indegree_invariant(const Digraph* const g,
const unsigned int v);
/** \internal
* Partition independent invariant.
* Returns the outdegree of the vertex.
* DUPLICATE EDGES MUST HAVE BEEN REMOVED BEFORE.
* Time complexity: O(1).
*/
static unsigned int outdegree_invariant(const Digraph* const g,
const unsigned int v);
/** \internal
* Partition independent invariant.
* Returns 1 if there is an edge from the vertex to itself, 0 if not.
* Time complexity: O(k), where k is the number of edges leaving the vertex.
*/
static unsigned int selfloop_invariant(const Digraph* const g,
const unsigned int v);
/** \internal
* Refine the partition \a p according to
* the partition independent invariant \a inv.
*/
bool refine_according_to_invariant(unsigned int (*inv)(const Digraph* const g,
const unsigned int v));
/*
* Routines needed when refining the partition p into equitable
*/
bool split_neighbourhood_of_unit_cell(Partition::Cell* const);
bool split_neighbourhood_of_cell(Partition::Cell* const);
/** \internal
* \copydoc AbstractGraph::is_equitable() const
*/
bool is_equitable() const;
/* Splitting heuristics, documented in more detail in the cc-file. */
SplittingHeuristic sh;
Partition::Cell* find_next_cell_to_be_splitted(Partition::Cell *cell);
Partition::Cell* sh_first();
Partition::Cell* sh_first_smallest();
Partition::Cell* sh_first_largest();
Partition::Cell* sh_first_max_neighbours();
Partition::Cell* sh_first_smallest_max_neighbours();
Partition::Cell* sh_first_largest_max_neighbours();
void make_initial_equitable_partition();
void initialize_certificate();
bool is_automorphism(unsigned int* const perm);
void sort_edges();
bool nucr_find_first_component(const unsigned int level);
bool nucr_find_first_component(const unsigned int level,
std::vector<unsigned int>& component,
unsigned int& component_elements,
Partition::Cell*& sh_return);
public:
/**
* Create a new directed graph with \a N vertices and no edges.
*/
Digraph(const unsigned int N = 0);
/**
* Destroy the graph.
*/
~Digraph();
/**
* Read the graph from the file \a fp in a variant of the DIMACS format.
* See the <A href="http://www.tcs.hut.fi/Software/bliss/">bliss website</A>
* for the definition of the file format.
* Note that in the DIMACS file the vertices are numbered from 1 to N while
* in this C++ API they are from 0 to N-1.
* Thus the vertex n in the file corresponds to the vertex n-1 in the API.
* \param fp the file stream for the graph file
* \param errstr if non-null, the possible error messages are printed
* in this file stream
* \return a new Digraph object or 0 if reading failed for some
* reason
*/
static Digraph* read_dimacs(FILE* const fp, FILE* const errstr = stderr);
/**
* \copydoc AbstractGraph::write_dimacs(FILE * const fp)
*/
void write_dimacs(FILE* const fp);
/**
* \copydoc AbstractGraph::write_dot(FILE *fp)
*/
void write_dot(FILE * const fp);
/**
* \copydoc AbstractGraph::write_dot(const char * const file_name)
*/
void write_dot(const char * const file_name);
/**
* \copydoc AbstractGraph::is_automorphism(const std::vector<unsigned int>& perm) const
*/
bool is_automorphism(const std::vector<unsigned int>& perm) const;
/**
* \copydoc AbstractGraph::get_hash()
*/
virtual unsigned int get_hash();
/**
* Return the number of vertices in the graph.
*/
unsigned int get_nof_vertices() const {return vertices.size(); }
/**
* Add a new vertex with color 'color' in the graph and return its index.
*/
unsigned int add_vertex(const unsigned int color = 0);
/**
* Add an edge from vertix \a v1 to vertex \a v2.
* Duplicate edges are ignored but try to avoid introducing
* them in the first place as they are not ignored immediately but will
* consume memory and computation resources for a while.
*/
void add_edge(const unsigned int v1, const unsigned int v2);
/**
* Change the color of the vertex 'vertex' to 'color'.
*/
void change_color(const unsigned int vertex, const unsigned int color);
/**
* Compare this graph with the graph \a other.
* Returns 0 if the graphs are equal, and a negative (positive) integer
* if this graph is "smaller than" ("greater than", resp.) than \a other.
*/
int cmp(Digraph& other);
/**
* Set the splitting heuristic used by the automorphism and canonical
* labeling algorithm.
* The selected splitting heuristics affects the computed canonical
* labelings; therefore, if you want to compare whether two graphs
* are isomorphic by computing and comparing (for equality) their
* canonical versions, be sure to use the same splitting heuristics
* for both graphs.
*/
void set_splitting_heuristic(SplittingHeuristic shs) {sh = shs; }
/**
* \copydoc AbstractGraph::permute(const unsigned int* const perm) const
*/
Digraph* permute(const unsigned int* const perm) const;
Digraph* permute(const std::vector<unsigned int>& perm) const;
};
}
#endif
|