/usr/include/botan-1.10/botan/numthry.h is in libbotan1.10-dev 1.10.5-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | /*
* Number Theory Functions
* (C) 1999-2007 Jack Lloyd
*
* Distributed under the terms of the Botan license
*/
#ifndef BOTAN_NUMBER_THEORY_H__
#define BOTAN_NUMBER_THEORY_H__
#include <botan/bigint.h>
#include <botan/pow_mod.h>
#include <botan/rng.h>
namespace Botan {
/**
* Fused multiply-add
* @param a an integer
* @param b an integer
* @param c an integer
* @return (a*b)+c
*/
BigInt BOTAN_DLL mul_add(const BigInt& a,
const BigInt& b,
const BigInt& c);
/**
* Fused subtract-multiply
* @param a an integer
* @param b an integer
* @param c an integer
* @return (a-b)*c
*/
BigInt BOTAN_DLL sub_mul(const BigInt& a,
const BigInt& b,
const BigInt& c);
/**
* Return the absolute value
* @param n an integer
* @return absolute value of n
*/
inline BigInt abs(const BigInt& n) { return n.abs(); }
/**
* Compute the greatest common divisor
* @param x a positive integer
* @param y a positive integer
* @return gcd(x,y)
*/
BigInt BOTAN_DLL gcd(const BigInt& x, const BigInt& y);
/**
* Least common multiple
* @param x a positive integer
* @param y a positive integer
* @return z, smallest integer such that z % x == 0 and z % y == 0
*/
BigInt BOTAN_DLL lcm(const BigInt& x, const BigInt& y);
/**
* @param x an integer
* @return (x*x)
*/
BigInt BOTAN_DLL square(const BigInt& x);
/**
* Modular inversion
* @param x a positive integer
* @param modulus a positive integer
* @return y st (x*y) % modulus == 1
*/
BigInt BOTAN_DLL inverse_mod(const BigInt& x,
const BigInt& modulus);
/**
* Compute the Jacobi symbol. If n is prime, this is equivalent
* to the Legendre symbol.
* @see http://mathworld.wolfram.com/JacobiSymbol.html
*
* @param a is a non-negative integer
* @param n is an odd integer > 1
* @return (n / m)
*/
s32bit BOTAN_DLL jacobi(const BigInt& a,
const BigInt& n);
/**
* Modular exponentation
* @param b an integer base
* @param x a positive exponent
* @param m a positive modulus
* @return (b^x) % m
*/
BigInt BOTAN_DLL power_mod(const BigInt& b,
const BigInt& x,
const BigInt& m);
/**
* Compute the square root of x modulo a prime using the
* Shanks-Tonnelli algorithm
*
* @param x the input
* @param p the prime
* @return y such that (y*y)%p == x, or -1 if no such integer
*/
BigInt BOTAN_DLL ressol(const BigInt& x, const BigInt& p);
/**
* @param x an integer
* @return count of the zero bits in x, or, equivalently, the largest
* value of n such that 2^n divides x evently
*/
size_t BOTAN_DLL low_zero_bits(const BigInt& x);
/**
* Primality Testing
* @param n a positive integer to test for primality
* @param rng a random number generator
* @param level how hard to test
* @return true if all primality tests passed, otherwise false
*/
bool BOTAN_DLL primality_test(const BigInt& n,
RandomNumberGenerator& rng,
size_t level = 1);
/**
* Quickly check for primality
* @param n a positive integer to test for primality
* @param rng a random number generator
* @return true if all primality tests passed, otherwise false
*/
inline bool quick_check_prime(const BigInt& n, RandomNumberGenerator& rng)
{ return primality_test(n, rng, 0); }
/**
* Check for primality
* @param n a positive integer to test for primality
* @param rng a random number generator
* @return true if all primality tests passed, otherwise false
*/
inline bool check_prime(const BigInt& n, RandomNumberGenerator& rng)
{ return primality_test(n, rng, 1); }
/**
* Verify primality - this function is slow but useful if you want to
* ensure that a possibly malicious entity did not provide you with
* something that 'looks like' a prime
* @param n a positive integer to test for primality
* @param rng a random number generator
* @return true if all primality tests passed, otherwise false
*/
inline bool verify_prime(const BigInt& n, RandomNumberGenerator& rng)
{ return primality_test(n, rng, 2); }
/**
* Randomly generate a prime
* @param rng a random number generator
* @param bits how large the resulting prime should be in bits
* @param coprime a positive integer the result should be coprime to
* @param equiv a non-negative number that the result should be
equivalent to modulo equiv_mod
* @param equiv_mod the modulus equiv should be checked against
* @return random prime with the specified criteria
*/
BigInt BOTAN_DLL random_prime(RandomNumberGenerator& rng,
size_t bits, const BigInt& coprime = 1,
size_t equiv = 1, size_t equiv_mod = 2);
/**
* Return a 'safe' prime, of the form p=2*q+1 with q prime
* @param rng a random number generator
* @param bits is how long the resulting prime should be
* @return prime randomly chosen from safe primes of length bits
*/
BigInt BOTAN_DLL random_safe_prime(RandomNumberGenerator& rng,
size_t bits);
class Algorithm_Factory;
/**
* Generate DSA parameters using the FIPS 186 kosherizer
* @param rng a random number generator
* @param af an algorithm factory
* @param p_out where the prime p will be stored
* @param q_out where the prime q will be stored
* @param pbits how long p will be in bits
* @param qbits how long q will be in bits
* @return random seed used to generate this parameter set
*/
SecureVector<byte> BOTAN_DLL
generate_dsa_primes(RandomNumberGenerator& rng,
Algorithm_Factory& af,
BigInt& p_out, BigInt& q_out,
size_t pbits, size_t qbits);
/**
* Generate DSA parameters using the FIPS 186 kosherizer
* @param rng a random number generator
* @param af an algorithm factory
* @param p_out where the prime p will be stored
* @param q_out where the prime q will be stored
* @param pbits how long p will be in bits
* @param qbits how long q will be in bits
* @param seed the seed used to generate the parameters
* @return true if seed generated a valid DSA parameter set, otherwise
false. p_out and q_out are only valid if true was returned.
*/
bool BOTAN_DLL
generate_dsa_primes(RandomNumberGenerator& rng,
Algorithm_Factory& af,
BigInt& p_out, BigInt& q_out,
size_t pbits, size_t qbits,
const MemoryRegion<byte>& seed);
/**
* The size of the PRIMES[] array
*/
const size_t PRIME_TABLE_SIZE = 6541;
/**
* A const array of all primes less than 65535
*/
extern const u16bit BOTAN_DLL PRIMES[];
}
#endif
|