This file is indexed.

/usr/include/Box2D/Dynamics/b2Body.h is in libbox2d-dev 2.3.0+ds-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
/*
* Copyright (c) 2006-2011 Erin Catto http://www.box2d.org
*
* This software is provided 'as-is', without any express or implied
* warranty.  In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/

#ifndef B2_BODY_H
#define B2_BODY_H

#include <Box2D/Common/b2Math.h>
#include <Box2D/Collision/Shapes/b2Shape.h>
#include <memory>

class b2Fixture;
class b2Joint;
class b2Contact;
class b2Controller;
class b2World;
struct b2FixtureDef;
struct b2JointEdge;
struct b2ContactEdge;

/// The body type.
/// static: zero mass, zero velocity, may be manually moved
/// kinematic: zero mass, non-zero velocity set by user, moved by solver
/// dynamic: positive mass, non-zero velocity determined by forces, moved by solver
enum b2BodyType
{
	b2_staticBody = 0,
	b2_kinematicBody,
	b2_dynamicBody

	// TODO_ERIN
	//b2_bulletBody,
};

/// A body definition holds all the data needed to construct a rigid body.
/// You can safely re-use body definitions. Shapes are added to a body after construction.
struct b2BodyDef
{
	/// This constructor sets the body definition default values.
	b2BodyDef()
	{
		userData = NULL;
		position.Set(0.0f, 0.0f);
		angle = 0.0f;
		linearVelocity.Set(0.0f, 0.0f);
		angularVelocity = 0.0f;
		linearDamping = 0.0f;
		angularDamping = 0.0f;
		allowSleep = true;
		awake = true;
		fixedRotation = false;
		bullet = false;
		type = b2_staticBody;
		active = true;
		gravityScale = 1.0f;
	}

	/// The body type: static, kinematic, or dynamic.
	/// Note: if a dynamic body would have zero mass, the mass is set to one.
	b2BodyType type;

	/// The world position of the body. Avoid creating bodies at the origin
	/// since this can lead to many overlapping shapes.
	b2Vec2 position;

	/// The world angle of the body in radians.
	float32 angle;

	/// The linear velocity of the body's origin in world co-ordinates.
	b2Vec2 linearVelocity;

	/// The angular velocity of the body.
	float32 angularVelocity;

	/// Linear damping is use to reduce the linear velocity. The damping parameter
	/// can be larger than 1.0f but the damping effect becomes sensitive to the
	/// time step when the damping parameter is large.
	float32 linearDamping;

	/// Angular damping is use to reduce the angular velocity. The damping parameter
	/// can be larger than 1.0f but the damping effect becomes sensitive to the
	/// time step when the damping parameter is large.
	float32 angularDamping;

	/// Set this flag to false if this body should never fall asleep. Note that
	/// this increases CPU usage.
	bool allowSleep;

	/// Is this body initially awake or sleeping?
	bool awake;

	/// Should this body be prevented from rotating? Useful for characters.
	bool fixedRotation;

	/// Is this a fast moving body that should be prevented from tunneling through
	/// other moving bodies? Note that all bodies are prevented from tunneling through
	/// kinematic and static bodies. This setting is only considered on dynamic bodies.
	/// @warning You should use this flag sparingly since it increases processing time.
	bool bullet;

	/// Does this body start out active?
	bool active;

	/// Use this to store application specific body data.
	void* userData;

	/// Scale the gravity applied to this body.
	float32 gravityScale;
};

/// A rigid body. These are created via b2World::CreateBody.
class b2Body
{
public:
	/// Creates a fixture and attach it to this body. Use this function if you need
	/// to set some fixture parameters, like friction. Otherwise you can create the
	/// fixture directly from a shape.
	/// If the density is non-zero, this function automatically updates the mass of the body.
	/// Contacts are not created until the next time step.
	/// @param def the fixture definition.
	/// @warning This function is locked during callbacks.
	b2Fixture* CreateFixture(const b2FixtureDef* def);

	/// Creates a fixture from a shape and attach it to this body.
	/// This is a convenience function. Use b2FixtureDef if you need to set parameters
	/// like friction, restitution, user data, or filtering.
	/// If the density is non-zero, this function automatically updates the mass of the body.
	/// @param shape the shape to be cloned.
	/// @param density the shape density (set to zero for static bodies).
	/// @warning This function is locked during callbacks.
	b2Fixture* CreateFixture(const b2Shape* shape, float32 density);

	/// Destroy a fixture. This removes the fixture from the broad-phase and
	/// destroys all contacts associated with this fixture. This will
	/// automatically adjust the mass of the body if the body is dynamic and the
	/// fixture has positive density.
	/// All fixtures attached to a body are implicitly destroyed when the body is destroyed.
	/// @param fixture the fixture to be removed.
	/// @warning This function is locked during callbacks.
	void DestroyFixture(b2Fixture* fixture);

	/// Set the position of the body's origin and rotation.
	/// Manipulating a body's transform may cause non-physical behavior.
	/// Note: contacts are updated on the next call to b2World::Step.
	/// @param position the world position of the body's local origin.
	/// @param angle the world rotation in radians.
	void SetTransform(const b2Vec2& position, float32 angle);

	/// Get the body transform for the body's origin.
	/// @return the world transform of the body's origin.
	const b2Transform& GetTransform() const;

	/// Get the world body origin position.
	/// @return the world position of the body's origin.
	const b2Vec2& GetPosition() const;

	/// Get the angle in radians.
	/// @return the current world rotation angle in radians.
	float32 GetAngle() const;

	/// Get the world position of the center of mass.
	const b2Vec2& GetWorldCenter() const;

	/// Get the local position of the center of mass.
	const b2Vec2& GetLocalCenter() const;

	/// Set the linear velocity of the center of mass.
	/// @param v the new linear velocity of the center of mass.
	void SetLinearVelocity(const b2Vec2& v);

	/// Get the linear velocity of the center of mass.
	/// @return the linear velocity of the center of mass.
	const b2Vec2& GetLinearVelocity() const;

	/// Set the angular velocity.
	/// @param omega the new angular velocity in radians/second.
	void SetAngularVelocity(float32 omega);

	/// Get the angular velocity.
	/// @return the angular velocity in radians/second.
	float32 GetAngularVelocity() const;

	/// Apply a force at a world point. If the force is not
	/// applied at the center of mass, it will generate a torque and
	/// affect the angular velocity. This wakes up the body.
	/// @param force the world force vector, usually in Newtons (N).
	/// @param point the world position of the point of application.
	/// @param wake also wake up the body
	void ApplyForce(const b2Vec2& force, const b2Vec2& point, bool wake);

	/// Apply a force to the center of mass. This wakes up the body.
	/// @param force the world force vector, usually in Newtons (N).
	/// @param wake also wake up the body
	void ApplyForceToCenter(const b2Vec2& force, bool wake);

	/// Apply a torque. This affects the angular velocity
	/// without affecting the linear velocity of the center of mass.
	/// This wakes up the body.
	/// @param torque about the z-axis (out of the screen), usually in N-m.
	/// @param wake also wake up the body
	void ApplyTorque(float32 torque, bool wake);

	/// Apply an impulse at a point. This immediately modifies the velocity.
	/// It also modifies the angular velocity if the point of application
	/// is not at the center of mass. This wakes up the body.
	/// @param impulse the world impulse vector, usually in N-seconds or kg-m/s.
	/// @param point the world position of the point of application.
	/// @param wake also wake up the body
	void ApplyLinearImpulse(const b2Vec2& impulse, const b2Vec2& point, bool wake);

	/// Apply an angular impulse.
	/// @param impulse the angular impulse in units of kg*m*m/s
	/// @param wake also wake up the body
	void ApplyAngularImpulse(float32 impulse, bool wake);

	/// Get the total mass of the body.
	/// @return the mass, usually in kilograms (kg).
	float32 GetMass() const;

	/// Get the rotational inertia of the body about the local origin.
	/// @return the rotational inertia, usually in kg-m^2.
	float32 GetInertia() const;

	/// Get the mass data of the body.
	/// @return a struct containing the mass, inertia and center of the body.
	void GetMassData(b2MassData* data) const;

	/// Set the mass properties to override the mass properties of the fixtures.
	/// Note that this changes the center of mass position.
	/// Note that creating or destroying fixtures can also alter the mass.
	/// This function has no effect if the body isn't dynamic.
	/// @param massData the mass properties.
	void SetMassData(const b2MassData* data);

	/// This resets the mass properties to the sum of the mass properties of the fixtures.
	/// This normally does not need to be called unless you called SetMassData to override
	/// the mass and you later want to reset the mass.
	void ResetMassData();

	/// Get the world coordinates of a point given the local coordinates.
	/// @param localPoint a point on the body measured relative the the body's origin.
	/// @return the same point expressed in world coordinates.
	b2Vec2 GetWorldPoint(const b2Vec2& localPoint) const;

	/// Get the world coordinates of a vector given the local coordinates.
	/// @param localVector a vector fixed in the body.
	/// @return the same vector expressed in world coordinates.
	b2Vec2 GetWorldVector(const b2Vec2& localVector) const;

	/// Gets a local point relative to the body's origin given a world point.
	/// @param a point in world coordinates.
	/// @return the corresponding local point relative to the body's origin.
	b2Vec2 GetLocalPoint(const b2Vec2& worldPoint) const;

	/// Gets a local vector given a world vector.
	/// @param a vector in world coordinates.
	/// @return the corresponding local vector.
	b2Vec2 GetLocalVector(const b2Vec2& worldVector) const;

	/// Get the world linear velocity of a world point attached to this body.
	/// @param a point in world coordinates.
	/// @return the world velocity of a point.
	b2Vec2 GetLinearVelocityFromWorldPoint(const b2Vec2& worldPoint) const;

	/// Get the world velocity of a local point.
	/// @param a point in local coordinates.
	/// @return the world velocity of a point.
	b2Vec2 GetLinearVelocityFromLocalPoint(const b2Vec2& localPoint) const;

	/// Get the linear damping of the body.
	float32 GetLinearDamping() const;

	/// Set the linear damping of the body.
	void SetLinearDamping(float32 linearDamping);

	/// Get the angular damping of the body.
	float32 GetAngularDamping() const;

	/// Set the angular damping of the body.
	void SetAngularDamping(float32 angularDamping);

	/// Get the gravity scale of the body.
	float32 GetGravityScale() const;

	/// Set the gravity scale of the body.
	void SetGravityScale(float32 scale);

	/// Set the type of this body. This may alter the mass and velocity.
	void SetType(b2BodyType type);

	/// Get the type of this body.
	b2BodyType GetType() const;

	/// Should this body be treated like a bullet for continuous collision detection?
	void SetBullet(bool flag);

	/// Is this body treated like a bullet for continuous collision detection?
	bool IsBullet() const;

	/// You can disable sleeping on this body. If you disable sleeping, the
	/// body will be woken.
	void SetSleepingAllowed(bool flag);

	/// Is this body allowed to sleep
	bool IsSleepingAllowed() const;

	/// Set the sleep state of the body. A sleeping body has very
	/// low CPU cost.
	/// @param flag set to true to wake the body, false to put it to sleep.
	void SetAwake(bool flag);

	/// Get the sleeping state of this body.
	/// @return true if the body is awake.
	bool IsAwake() const;

	/// Set the active state of the body. An inactive body is not
	/// simulated and cannot be collided with or woken up.
	/// If you pass a flag of true, all fixtures will be added to the
	/// broad-phase.
	/// If you pass a flag of false, all fixtures will be removed from
	/// the broad-phase and all contacts will be destroyed.
	/// Fixtures and joints are otherwise unaffected. You may continue
	/// to create/destroy fixtures and joints on inactive bodies.
	/// Fixtures on an inactive body are implicitly inactive and will
	/// not participate in collisions, ray-casts, or queries.
	/// Joints connected to an inactive body are implicitly inactive.
	/// An inactive body is still owned by a b2World object and remains
	/// in the body list.
	void SetActive(bool flag);

	/// Get the active state of the body.
	bool IsActive() const;

	/// Set this body to have fixed rotation. This causes the mass
	/// to be reset.
	void SetFixedRotation(bool flag);

	/// Does this body have fixed rotation?
	bool IsFixedRotation() const;

	/// Get the list of all fixtures attached to this body.
	b2Fixture* GetFixtureList();
	const b2Fixture* GetFixtureList() const;

	/// Get the list of all joints attached to this body.
	b2JointEdge* GetJointList();
	const b2JointEdge* GetJointList() const;

	/// Get the list of all contacts attached to this body.
	/// @warning this list changes during the time step and you may
	/// miss some collisions if you don't use b2ContactListener.
	b2ContactEdge* GetContactList();
	const b2ContactEdge* GetContactList() const;

	/// Get the next body in the world's body list.
	b2Body* GetNext();
	const b2Body* GetNext() const;

	/// Get the user data pointer that was provided in the body definition.
	void* GetUserData() const;

	/// Set the user data. Use this to store your application specific data.
	void SetUserData(void* data);

	/// Get the parent world of this body.
	b2World* GetWorld();
	const b2World* GetWorld() const;

	/// Dump this body to a log file
	void Dump();

private:

	friend class b2World;
	friend class b2Island;
	friend class b2ContactManager;
	friend class b2ContactSolver;
	friend class b2Contact;
	
	friend class b2DistanceJoint;
	friend class b2FrictionJoint;
	friend class b2GearJoint;
	friend class b2MotorJoint;
	friend class b2MouseJoint;
	friend class b2PrismaticJoint;
	friend class b2PulleyJoint;
	friend class b2RevoluteJoint;
	friend class b2RopeJoint;
	friend class b2WeldJoint;
	friend class b2WheelJoint;

	// m_flags
	enum
	{
		e_islandFlag		= 0x0001,
		e_awakeFlag			= 0x0002,
		e_autoSleepFlag		= 0x0004,
		e_bulletFlag		= 0x0008,
		e_fixedRotationFlag	= 0x0010,
		e_activeFlag		= 0x0020,
		e_toiFlag			= 0x0040
	};

	b2Body(const b2BodyDef* bd, b2World* world);
	~b2Body();

	void SynchronizeFixtures();
	void SynchronizeTransform();

	// This is used to prevent connected bodies from colliding.
	// It may lie, depending on the collideConnected flag.
	bool ShouldCollide(const b2Body* other) const;

	void Advance(float32 t);

	b2BodyType m_type;

	uint16 m_flags;

	int32 m_islandIndex;

	b2Transform m_xf;		// the body origin transform
	b2Sweep m_sweep;		// the swept motion for CCD

	b2Vec2 m_linearVelocity;
	float32 m_angularVelocity;

	b2Vec2 m_force;
	float32 m_torque;

	b2World* m_world;
	b2Body* m_prev;
	b2Body* m_next;

	b2Fixture* m_fixtureList;
	int32 m_fixtureCount;

	b2JointEdge* m_jointList;
	b2ContactEdge* m_contactList;

	float32 m_mass, m_invMass;

	// Rotational inertia about the center of mass.
	float32 m_I, m_invI;

	float32 m_linearDamping;
	float32 m_angularDamping;
	float32 m_gravityScale;

	float32 m_sleepTime;

	void* m_userData;
};

inline b2BodyType b2Body::GetType() const
{
	return m_type;
}

inline const b2Transform& b2Body::GetTransform() const
{
	return m_xf;
}

inline const b2Vec2& b2Body::GetPosition() const
{
	return m_xf.p;
}

inline float32 b2Body::GetAngle() const
{
	return m_sweep.a;
}

inline const b2Vec2& b2Body::GetWorldCenter() const
{
	return m_sweep.c;
}

inline const b2Vec2& b2Body::GetLocalCenter() const
{
	return m_sweep.localCenter;
}

inline void b2Body::SetLinearVelocity(const b2Vec2& v)
{
	if (m_type == b2_staticBody)
	{
		return;
	}

	if (b2Dot(v,v) > 0.0f)
	{
		SetAwake(true);
	}

	m_linearVelocity = v;
}

inline const b2Vec2& b2Body::GetLinearVelocity() const
{
	return m_linearVelocity;
}

inline void b2Body::SetAngularVelocity(float32 w)
{
	if (m_type == b2_staticBody)
	{
		return;
	}

	if (w * w > 0.0f)
	{
		SetAwake(true);
	}

	m_angularVelocity = w;
}

inline float32 b2Body::GetAngularVelocity() const
{
	return m_angularVelocity;
}

inline float32 b2Body::GetMass() const
{
	return m_mass;
}

inline float32 b2Body::GetInertia() const
{
	return m_I + m_mass * b2Dot(m_sweep.localCenter, m_sweep.localCenter);
}

inline void b2Body::GetMassData(b2MassData* data) const
{
	data->mass = m_mass;
	data->I = m_I + m_mass * b2Dot(m_sweep.localCenter, m_sweep.localCenter);
	data->center = m_sweep.localCenter;
}

inline b2Vec2 b2Body::GetWorldPoint(const b2Vec2& localPoint) const
{
	return b2Mul(m_xf, localPoint);
}

inline b2Vec2 b2Body::GetWorldVector(const b2Vec2& localVector) const
{
	return b2Mul(m_xf.q, localVector);
}

inline b2Vec2 b2Body::GetLocalPoint(const b2Vec2& worldPoint) const
{
	return b2MulT(m_xf, worldPoint);
}

inline b2Vec2 b2Body::GetLocalVector(const b2Vec2& worldVector) const
{
	return b2MulT(m_xf.q, worldVector);
}

inline b2Vec2 b2Body::GetLinearVelocityFromWorldPoint(const b2Vec2& worldPoint) const
{
	return m_linearVelocity + b2Cross(m_angularVelocity, worldPoint - m_sweep.c);
}

inline b2Vec2 b2Body::GetLinearVelocityFromLocalPoint(const b2Vec2& localPoint) const
{
	return GetLinearVelocityFromWorldPoint(GetWorldPoint(localPoint));
}

inline float32 b2Body::GetLinearDamping() const
{
	return m_linearDamping;
}

inline void b2Body::SetLinearDamping(float32 linearDamping)
{
	m_linearDamping = linearDamping;
}

inline float32 b2Body::GetAngularDamping() const
{
	return m_angularDamping;
}

inline void b2Body::SetAngularDamping(float32 angularDamping)
{
	m_angularDamping = angularDamping;
}

inline float32 b2Body::GetGravityScale() const
{
	return m_gravityScale;
}

inline void b2Body::SetGravityScale(float32 scale)
{
	m_gravityScale = scale;
}

inline void b2Body::SetBullet(bool flag)
{
	if (flag)
	{
		m_flags |= e_bulletFlag;
	}
	else
	{
		m_flags &= ~e_bulletFlag;
	}
}

inline bool b2Body::IsBullet() const
{
	return (m_flags & e_bulletFlag) == e_bulletFlag;
}

inline void b2Body::SetAwake(bool flag)
{
	if (flag)
	{
		if ((m_flags & e_awakeFlag) == 0)
		{
			m_flags |= e_awakeFlag;
			m_sleepTime = 0.0f;
		}
	}
	else
	{
		m_flags &= ~e_awakeFlag;
		m_sleepTime = 0.0f;
		m_linearVelocity.SetZero();
		m_angularVelocity = 0.0f;
		m_force.SetZero();
		m_torque = 0.0f;
	}
}

inline bool b2Body::IsAwake() const
{
	return (m_flags & e_awakeFlag) == e_awakeFlag;
}

inline bool b2Body::IsActive() const
{
	return (m_flags & e_activeFlag) == e_activeFlag;
}

inline bool b2Body::IsFixedRotation() const
{
	return (m_flags & e_fixedRotationFlag) == e_fixedRotationFlag;
}

inline void b2Body::SetSleepingAllowed(bool flag)
{
	if (flag)
	{
		m_flags |= e_autoSleepFlag;
	}
	else
	{
		m_flags &= ~e_autoSleepFlag;
		SetAwake(true);
	}
}

inline bool b2Body::IsSleepingAllowed() const
{
	return (m_flags & e_autoSleepFlag) == e_autoSleepFlag;
}

inline b2Fixture* b2Body::GetFixtureList()
{
	return m_fixtureList;
}

inline const b2Fixture* b2Body::GetFixtureList() const
{
	return m_fixtureList;
}

inline b2JointEdge* b2Body::GetJointList()
{
	return m_jointList;
}

inline const b2JointEdge* b2Body::GetJointList() const
{
	return m_jointList;
}

inline b2ContactEdge* b2Body::GetContactList()
{
	return m_contactList;
}

inline const b2ContactEdge* b2Body::GetContactList() const
{
	return m_contactList;
}

inline b2Body* b2Body::GetNext()
{
	return m_next;
}

inline const b2Body* b2Body::GetNext() const
{
	return m_next;
}

inline void b2Body::SetUserData(void* data)
{
	m_userData = data;
}

inline void* b2Body::GetUserData() const
{
	return m_userData;
}

inline void b2Body::ApplyForce(const b2Vec2& force, const b2Vec2& point, bool wake)
{
	if (m_type != b2_dynamicBody)
	{
		return;
	}

	if (wake && (m_flags & e_awakeFlag) == 0)
	{
		SetAwake(true);
	}

	// Don't accumulate a force if the body is sleeping.
	if (m_flags & e_awakeFlag)
	{
		m_force += force;
		m_torque += b2Cross(point - m_sweep.c, force);
	}
}

inline void b2Body::ApplyForceToCenter(const b2Vec2& force, bool wake)
{
	if (m_type != b2_dynamicBody)
	{
		return;
	}

	if (wake && (m_flags & e_awakeFlag) == 0)
	{
		SetAwake(true);
	}

	// Don't accumulate a force if the body is sleeping
	if (m_flags & e_awakeFlag)
	{
		m_force += force;
	}
}

inline void b2Body::ApplyTorque(float32 torque, bool wake)
{
	if (m_type != b2_dynamicBody)
	{
		return;
	}

	if (wake && (m_flags & e_awakeFlag) == 0)
	{
		SetAwake(true);
	}

	// Don't accumulate a force if the body is sleeping
	if (m_flags & e_awakeFlag)
	{
		m_torque += torque;
	}
}

inline void b2Body::ApplyLinearImpulse(const b2Vec2& impulse, const b2Vec2& point, bool wake)
{
	if (m_type != b2_dynamicBody)
	{
		return;
	}

	if (wake && (m_flags & e_awakeFlag) == 0)
	{
		SetAwake(true);
	}

	// Don't accumulate velocity if the body is sleeping
	if (m_flags & e_awakeFlag)
	{
		m_linearVelocity += m_invMass * impulse;
		m_angularVelocity += m_invI * b2Cross(point - m_sweep.c, impulse);
	}
}

inline void b2Body::ApplyAngularImpulse(float32 impulse, bool wake)
{
	if (m_type != b2_dynamicBody)
	{
		return;
	}

	if (wake && (m_flags & e_awakeFlag) == 0)
	{
		SetAwake(true);
	}

	// Don't accumulate velocity if the body is sleeping
	if (m_flags & e_awakeFlag)
	{
		m_angularVelocity += m_invI * impulse;
	}
}

inline void b2Body::SynchronizeTransform()
{
	m_xf.q.Set(m_sweep.a);
	m_xf.p = m_sweep.c - b2Mul(m_xf.q, m_sweep.localCenter);
}

inline void b2Body::Advance(float32 alpha)
{
	// Advance to the new safe time. This doesn't sync the broad-phase.
	m_sweep.Advance(alpha);
	m_sweep.c = m_sweep.c0;
	m_sweep.a = m_sweep.a0;
	m_xf.q.Set(m_sweep.a);
	m_xf.p = m_sweep.c - b2Mul(m_xf.q, m_sweep.localCenter);
}

inline b2World* b2Body::GetWorld()
{
	return m_world;
}

inline const b2World* b2Body::GetWorld() const
{
	return m_world;
}

#endif