This file is indexed.

/usr/include/bullet/BulletCollision/BroadphaseCollision/btAxisSweep3.h is in libbullet-dev 2.81-rev2613+dfsg2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
//Bullet Continuous Collision Detection and Physics Library
//Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

//
// btAxisSweep3.h
//
// Copyright (c) 2006 Simon Hobbs
//
// This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
//
// 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
//
// 3. This notice may not be removed or altered from any source distribution.

#ifndef BT_AXIS_SWEEP_3_H
#define BT_AXIS_SWEEP_3_H

#include "LinearMath/btVector3.h"
#include "btOverlappingPairCache.h"
#include "btBroadphaseInterface.h"
#include "btBroadphaseProxy.h"
#include "btOverlappingPairCallback.h"
#include "btDbvtBroadphase.h"

//#define DEBUG_BROADPHASE 1
#define USE_OVERLAP_TEST_ON_REMOVES 1

/// The internal templace class btAxisSweep3Internal implements the sweep and prune broadphase.
/// It uses quantized integers to represent the begin and end points for each of the 3 axis.
/// Dont use this class directly, use btAxisSweep3 or bt32BitAxisSweep3 instead.
template <typename BP_FP_INT_TYPE>
class btAxisSweep3Internal : public btBroadphaseInterface
{
protected:

	BP_FP_INT_TYPE	m_bpHandleMask;
	BP_FP_INT_TYPE	m_handleSentinel;

public:
	
 BT_DECLARE_ALIGNED_ALLOCATOR();

	class Edge
	{
	public:
		BP_FP_INT_TYPE m_pos;			// low bit is min/max
		BP_FP_INT_TYPE m_handle;

		BP_FP_INT_TYPE IsMax() const {return static_cast<BP_FP_INT_TYPE>(m_pos & 1);}
	};

public:
	class	Handle : public btBroadphaseProxy
	{
	public:
	BT_DECLARE_ALIGNED_ALLOCATOR();
	
		// indexes into the edge arrays
		BP_FP_INT_TYPE m_minEdges[3], m_maxEdges[3];		// 6 * 2 = 12
//		BP_FP_INT_TYPE m_uniqueId;
		btBroadphaseProxy*	m_dbvtProxy;//for faster raycast
		//void* m_pOwner; this is now in btBroadphaseProxy.m_clientObject
	
		SIMD_FORCE_INLINE void SetNextFree(BP_FP_INT_TYPE next) {m_minEdges[0] = next;}
		SIMD_FORCE_INLINE BP_FP_INT_TYPE GetNextFree() const {return m_minEdges[0];}
	};		// 24 bytes + 24 for Edge structures = 44 bytes total per entry

	
protected:
	btVector3 m_worldAabbMin;						// overall system bounds
	btVector3 m_worldAabbMax;						// overall system bounds

	btVector3 m_quantize;						// scaling factor for quantization

	BP_FP_INT_TYPE m_numHandles;						// number of active handles
	BP_FP_INT_TYPE m_maxHandles;						// max number of handles
	Handle* m_pHandles;						// handles pool
	
	BP_FP_INT_TYPE m_firstFreeHandle;		// free handles list

	Edge* m_pEdges[3];						// edge arrays for the 3 axes (each array has m_maxHandles * 2 + 2 sentinel entries)
	void* m_pEdgesRawPtr[3];

	btOverlappingPairCache* m_pairCache;

	///btOverlappingPairCallback is an additional optional user callback for adding/removing overlapping pairs, similar interface to btOverlappingPairCache.
	btOverlappingPairCallback* m_userPairCallback;
	
	bool	m_ownsPairCache;

	int	m_invalidPair;

	///additional dynamic aabb structure, used to accelerate ray cast queries.
	///can be disabled using a optional argument in the constructor
	btDbvtBroadphase*	m_raycastAccelerator;
	btOverlappingPairCache*	m_nullPairCache;


	// allocation/deallocation
	BP_FP_INT_TYPE allocHandle();
	void freeHandle(BP_FP_INT_TYPE handle);
	

	bool testOverlap2D(const Handle* pHandleA, const Handle* pHandleB,int axis0,int axis1);

#ifdef DEBUG_BROADPHASE
	void debugPrintAxis(int axis,bool checkCardinality=true);
#endif //DEBUG_BROADPHASE

	//Overlap* AddOverlap(BP_FP_INT_TYPE handleA, BP_FP_INT_TYPE handleB);
	//void RemoveOverlap(BP_FP_INT_TYPE handleA, BP_FP_INT_TYPE handleB);

	

	void sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
	void sortMinUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
	void sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );
	void sortMaxUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps );

public:

	btAxisSweep3Internal(const btVector3& worldAabbMin,const btVector3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel, BP_FP_INT_TYPE maxHandles = 16384, btOverlappingPairCache* pairCache=0,bool disableRaycastAccelerator = false);

	virtual	~btAxisSweep3Internal();

	BP_FP_INT_TYPE getNumHandles() const
	{
		return m_numHandles;
	}

	virtual void	calculateOverlappingPairs(btDispatcher* dispatcher);
	
	BP_FP_INT_TYPE addHandle(const btVector3& aabbMin,const btVector3& aabbMax, void* pOwner,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher,void* multiSapProxy);
	void removeHandle(BP_FP_INT_TYPE handle,btDispatcher* dispatcher);
	void updateHandle(BP_FP_INT_TYPE handle, const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher);
	SIMD_FORCE_INLINE Handle* getHandle(BP_FP_INT_TYPE index) const {return m_pHandles + index;}

	virtual void resetPool(btDispatcher* dispatcher);

	void	processAllOverlappingPairs(btOverlapCallback* callback);

	//Broadphase Interface
	virtual btBroadphaseProxy*	createProxy(  const btVector3& aabbMin,  const btVector3& aabbMax,int shapeType,void* userPtr ,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher,void* multiSapProxy);
	virtual void	destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher);
	virtual void	setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher);
	virtual void  getAabb(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const;
	
	virtual void	rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback, const btVector3& aabbMin=btVector3(0,0,0), const btVector3& aabbMax = btVector3(0,0,0));
	virtual void	aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback);

	
	void quantize(BP_FP_INT_TYPE* out, const btVector3& point, int isMax) const;
	///unQuantize should be conservative: aabbMin/aabbMax should be larger then 'getAabb' result
	void unQuantize(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const;
	
	bool	testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1);

	btOverlappingPairCache*	getOverlappingPairCache()
	{
		return m_pairCache;
	}
	const btOverlappingPairCache*	getOverlappingPairCache() const
	{
		return m_pairCache;
	}

	void	setOverlappingPairUserCallback(btOverlappingPairCallback* pairCallback)
	{
		m_userPairCallback = pairCallback;
	}
	const btOverlappingPairCallback*	getOverlappingPairUserCallback() const
	{
		return m_userPairCallback;
	}

	///getAabb returns the axis aligned bounding box in the 'global' coordinate frame
	///will add some transform later
	virtual void getBroadphaseAabb(btVector3& aabbMin,btVector3& aabbMax) const
	{
		aabbMin = m_worldAabbMin;
		aabbMax = m_worldAabbMax;
	}

	virtual void	printStats()
	{
/*		printf("btAxisSweep3.h\n");
		printf("numHandles = %d, maxHandles = %d\n",m_numHandles,m_maxHandles);
		printf("aabbMin=%f,%f,%f,aabbMax=%f,%f,%f\n",m_worldAabbMin.getX(),m_worldAabbMin.getY(),m_worldAabbMin.getZ(),
			m_worldAabbMax.getX(),m_worldAabbMax.getY(),m_worldAabbMax.getZ());
			*/

	}

};

////////////////////////////////////////////////////////////////////




#ifdef DEBUG_BROADPHASE
#include <stdio.h>

template <typename BP_FP_INT_TYPE>
void btAxisSweep3<BP_FP_INT_TYPE>::debugPrintAxis(int axis, bool checkCardinality)
{
	int numEdges = m_pHandles[0].m_maxEdges[axis];
	printf("SAP Axis %d, numEdges=%d\n",axis,numEdges);

	int i;
	for (i=0;i<numEdges+1;i++)
	{
		Edge* pEdge = m_pEdges[axis] + i;
		Handle* pHandlePrev = getHandle(pEdge->m_handle);
		int handleIndex = pEdge->IsMax()? pHandlePrev->m_maxEdges[axis] : pHandlePrev->m_minEdges[axis];
		char beginOrEnd;
		beginOrEnd=pEdge->IsMax()?'E':'B';
		printf("	[%c,h=%d,p=%x,i=%d]\n",beginOrEnd,pEdge->m_handle,pEdge->m_pos,handleIndex);
	}

	if (checkCardinality)
		btAssert(numEdges == m_numHandles*2+1);
}
#endif //DEBUG_BROADPHASE

template <typename BP_FP_INT_TYPE>
btBroadphaseProxy*	btAxisSweep3Internal<BP_FP_INT_TYPE>::createProxy(  const btVector3& aabbMin,  const btVector3& aabbMax,int shapeType,void* userPtr,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher,void* multiSapProxy)
{
		(void)shapeType;
		BP_FP_INT_TYPE handleId = addHandle(aabbMin,aabbMax, userPtr,collisionFilterGroup,collisionFilterMask,dispatcher,multiSapProxy);
		
		Handle* handle = getHandle(handleId);
		
		if (m_raycastAccelerator)
		{
			btBroadphaseProxy* rayProxy = m_raycastAccelerator->createProxy(aabbMin,aabbMax,shapeType,userPtr,collisionFilterGroup,collisionFilterMask,dispatcher,0);
			handle->m_dbvtProxy = rayProxy;
		}
		return handle;
}



template <typename BP_FP_INT_TYPE>
void	btAxisSweep3Internal<BP_FP_INT_TYPE>::destroyProxy(btBroadphaseProxy* proxy,btDispatcher* dispatcher)
{
	Handle* handle = static_cast<Handle*>(proxy);
	if (m_raycastAccelerator)
		m_raycastAccelerator->destroyProxy(handle->m_dbvtProxy,dispatcher);
	removeHandle(static_cast<BP_FP_INT_TYPE>(handle->m_uniqueId), dispatcher);
}

template <typename BP_FP_INT_TYPE>
void	btAxisSweep3Internal<BP_FP_INT_TYPE>::setAabb(btBroadphaseProxy* proxy,const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher)
{
	Handle* handle = static_cast<Handle*>(proxy);
	handle->m_aabbMin = aabbMin;
	handle->m_aabbMax = aabbMax;
	updateHandle(static_cast<BP_FP_INT_TYPE>(handle->m_uniqueId), aabbMin, aabbMax,dispatcher);
	if (m_raycastAccelerator)
		m_raycastAccelerator->setAabb(handle->m_dbvtProxy,aabbMin,aabbMax,dispatcher);

}

template <typename BP_FP_INT_TYPE>
void	btAxisSweep3Internal<BP_FP_INT_TYPE>::rayTest(const btVector3& rayFrom,const btVector3& rayTo, btBroadphaseRayCallback& rayCallback,const btVector3& aabbMin,const btVector3& aabbMax)
{
	if (m_raycastAccelerator)
	{
		m_raycastAccelerator->rayTest(rayFrom,rayTo,rayCallback,aabbMin,aabbMax);
	} else
	{
		//choose axis?
		BP_FP_INT_TYPE axis = 0;
		//for each proxy
		for (BP_FP_INT_TYPE i=1;i<m_numHandles*2+1;i++)
		{
			if (m_pEdges[axis][i].IsMax())
			{
				rayCallback.process(getHandle(m_pEdges[axis][i].m_handle));
			}
		}
	}
}

template <typename BP_FP_INT_TYPE>
void	btAxisSweep3Internal<BP_FP_INT_TYPE>::aabbTest(const btVector3& aabbMin, const btVector3& aabbMax, btBroadphaseAabbCallback& callback)
{
	if (m_raycastAccelerator)
	{
		m_raycastAccelerator->aabbTest(aabbMin,aabbMax,callback);
	} else
	{
		//choose axis?
		BP_FP_INT_TYPE axis = 0;
		//for each proxy
		for (BP_FP_INT_TYPE i=1;i<m_numHandles*2+1;i++)
		{
			if (m_pEdges[axis][i].IsMax())
			{
				Handle* handle = getHandle(m_pEdges[axis][i].m_handle);
				if (TestAabbAgainstAabb2(aabbMin,aabbMax,handle->m_aabbMin,handle->m_aabbMax))
				{
					callback.process(handle);
				}
			}
		}
	}
}



template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::getAabb(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const
{
	Handle* pHandle = static_cast<Handle*>(proxy);
	aabbMin = pHandle->m_aabbMin;
	aabbMax = pHandle->m_aabbMax;
}


template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::unQuantize(btBroadphaseProxy* proxy,btVector3& aabbMin, btVector3& aabbMax ) const
{
	Handle* pHandle = static_cast<Handle*>(proxy);

	unsigned short vecInMin[3];
	unsigned short vecInMax[3];

	vecInMin[0] = m_pEdges[0][pHandle->m_minEdges[0]].m_pos ;
	vecInMax[0] = m_pEdges[0][pHandle->m_maxEdges[0]].m_pos +1 ;
	vecInMin[1] = m_pEdges[1][pHandle->m_minEdges[1]].m_pos ;
	vecInMax[1] = m_pEdges[1][pHandle->m_maxEdges[1]].m_pos +1 ;
	vecInMin[2] = m_pEdges[2][pHandle->m_minEdges[2]].m_pos ;
	vecInMax[2] = m_pEdges[2][pHandle->m_maxEdges[2]].m_pos +1 ;
	
	aabbMin.setValue((btScalar)(vecInMin[0]) / (m_quantize.getX()),(btScalar)(vecInMin[1]) / (m_quantize.getY()),(btScalar)(vecInMin[2]) / (m_quantize.getZ()));
	aabbMin += m_worldAabbMin;
	
	aabbMax.setValue((btScalar)(vecInMax[0]) / (m_quantize.getX()),(btScalar)(vecInMax[1]) / (m_quantize.getY()),(btScalar)(vecInMax[2]) / (m_quantize.getZ()));
	aabbMax += m_worldAabbMin;
}




template <typename BP_FP_INT_TYPE>
btAxisSweep3Internal<BP_FP_INT_TYPE>::btAxisSweep3Internal(const btVector3& worldAabbMin,const btVector3& worldAabbMax, BP_FP_INT_TYPE handleMask, BP_FP_INT_TYPE handleSentinel,BP_FP_INT_TYPE userMaxHandles, btOverlappingPairCache* pairCache , bool disableRaycastAccelerator)
:m_bpHandleMask(handleMask),
m_handleSentinel(handleSentinel),
m_pairCache(pairCache),
m_userPairCallback(0),
m_ownsPairCache(false),
m_invalidPair(0),
m_raycastAccelerator(0)
{
	BP_FP_INT_TYPE maxHandles = static_cast<BP_FP_INT_TYPE>(userMaxHandles+1);//need to add one sentinel handle

	if (!m_pairCache)
	{
		void* ptr = btAlignedAlloc(sizeof(btHashedOverlappingPairCache),16);
		m_pairCache = new(ptr) btHashedOverlappingPairCache();
		m_ownsPairCache = true;
	}

	if (!disableRaycastAccelerator)
	{
		m_nullPairCache = new (btAlignedAlloc(sizeof(btNullPairCache),16)) btNullPairCache();
		m_raycastAccelerator = new (btAlignedAlloc(sizeof(btDbvtBroadphase),16)) btDbvtBroadphase(m_nullPairCache);//m_pairCache);
		m_raycastAccelerator->m_deferedcollide = true;//don't add/remove pairs
	}

	//btAssert(bounds.HasVolume());

	// init bounds
	m_worldAabbMin = worldAabbMin;
	m_worldAabbMax = worldAabbMax;

	btVector3 aabbSize = m_worldAabbMax - m_worldAabbMin;

	BP_FP_INT_TYPE	maxInt = m_handleSentinel;

	m_quantize = btVector3(btScalar(maxInt),btScalar(maxInt),btScalar(maxInt)) / aabbSize;

	// allocate handles buffer, using btAlignedAlloc, and put all handles on free list
	m_pHandles = new Handle[maxHandles];
	
	m_maxHandles = maxHandles;
	m_numHandles = 0;

	// handle 0 is reserved as the null index, and is also used as the sentinel
	m_firstFreeHandle = 1;
	{
		for (BP_FP_INT_TYPE i = m_firstFreeHandle; i < maxHandles; i++)
			m_pHandles[i].SetNextFree(static_cast<BP_FP_INT_TYPE>(i + 1));
		m_pHandles[maxHandles - 1].SetNextFree(0);
	}

	{
		// allocate edge buffers
		for (int i = 0; i < 3; i++)
		{
			m_pEdgesRawPtr[i] = btAlignedAlloc(sizeof(Edge)*maxHandles*2,16);
			m_pEdges[i] = new(m_pEdgesRawPtr[i]) Edge[maxHandles * 2];
		}
	}
	//removed overlap management

	// make boundary sentinels
	
	m_pHandles[0].m_clientObject = 0;

	for (int axis = 0; axis < 3; axis++)
	{
		m_pHandles[0].m_minEdges[axis] = 0;
		m_pHandles[0].m_maxEdges[axis] = 1;

		m_pEdges[axis][0].m_pos = 0;
		m_pEdges[axis][0].m_handle = 0;
		m_pEdges[axis][1].m_pos = m_handleSentinel;
		m_pEdges[axis][1].m_handle = 0;
#ifdef DEBUG_BROADPHASE
		debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE

	}

}

template <typename BP_FP_INT_TYPE>
btAxisSweep3Internal<BP_FP_INT_TYPE>::~btAxisSweep3Internal()
{
	if (m_raycastAccelerator)
	{
		m_nullPairCache->~btOverlappingPairCache();
		btAlignedFree(m_nullPairCache);
		m_raycastAccelerator->~btDbvtBroadphase();
		btAlignedFree (m_raycastAccelerator);
	}

	for (int i = 2; i >= 0; i--)
	{
		btAlignedFree(m_pEdgesRawPtr[i]);
	}
	delete [] m_pHandles;

	if (m_ownsPairCache)
	{
		m_pairCache->~btOverlappingPairCache();
		btAlignedFree(m_pairCache);
	}
}

template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::quantize(BP_FP_INT_TYPE* out, const btVector3& point, int isMax) const
{
#ifdef OLD_CLAMPING_METHOD
	///problem with this clamping method is that the floating point during quantization might still go outside the range [(0|isMax) .. (m_handleSentinel&m_bpHandleMask]|isMax]
	///see http://code.google.com/p/bullet/issues/detail?id=87
	btVector3 clampedPoint(point);
	clampedPoint.setMax(m_worldAabbMin);
	clampedPoint.setMin(m_worldAabbMax);
	btVector3 v = (clampedPoint - m_worldAabbMin) * m_quantize;
	out[0] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getX() & m_bpHandleMask) | isMax);
	out[1] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getY() & m_bpHandleMask) | isMax);
	out[2] = (BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v.getZ() & m_bpHandleMask) | isMax);
#else
	btVector3 v = (point - m_worldAabbMin) * m_quantize;
	out[0]=(v[0]<=0)?(BP_FP_INT_TYPE)isMax:(v[0]>=m_handleSentinel)?(BP_FP_INT_TYPE)((m_handleSentinel&m_bpHandleMask)|isMax):(BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[0]&m_bpHandleMask)|isMax);
	out[1]=(v[1]<=0)?(BP_FP_INT_TYPE)isMax:(v[1]>=m_handleSentinel)?(BP_FP_INT_TYPE)((m_handleSentinel&m_bpHandleMask)|isMax):(BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[1]&m_bpHandleMask)|isMax);
	out[2]=(v[2]<=0)?(BP_FP_INT_TYPE)isMax:(v[2]>=m_handleSentinel)?(BP_FP_INT_TYPE)((m_handleSentinel&m_bpHandleMask)|isMax):(BP_FP_INT_TYPE)(((BP_FP_INT_TYPE)v[2]&m_bpHandleMask)|isMax);
#endif //OLD_CLAMPING_METHOD
}


template <typename BP_FP_INT_TYPE>
BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::allocHandle()
{
	btAssert(m_firstFreeHandle);

	BP_FP_INT_TYPE handle = m_firstFreeHandle;
	m_firstFreeHandle = getHandle(handle)->GetNextFree();
	m_numHandles++;

	return handle;
}

template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::freeHandle(BP_FP_INT_TYPE handle)
{
	btAssert(handle > 0 && handle < m_maxHandles);

	getHandle(handle)->SetNextFree(m_firstFreeHandle);
	m_firstFreeHandle = handle;

	m_numHandles--;
}


template <typename BP_FP_INT_TYPE>
BP_FP_INT_TYPE btAxisSweep3Internal<BP_FP_INT_TYPE>::addHandle(const btVector3& aabbMin,const btVector3& aabbMax, void* pOwner,short int collisionFilterGroup,short int collisionFilterMask,btDispatcher* dispatcher,void* multiSapProxy)
{
	// quantize the bounds
	BP_FP_INT_TYPE min[3], max[3];
	quantize(min, aabbMin, 0);
	quantize(max, aabbMax, 1);

	// allocate a handle
	BP_FP_INT_TYPE handle = allocHandle();
	

	Handle* pHandle = getHandle(handle);
	
	pHandle->m_uniqueId = static_cast<int>(handle);
	//pHandle->m_pOverlaps = 0;
	pHandle->m_clientObject = pOwner;
	pHandle->m_collisionFilterGroup = collisionFilterGroup;
	pHandle->m_collisionFilterMask = collisionFilterMask;
	pHandle->m_multiSapParentProxy = multiSapProxy;

	// compute current limit of edge arrays
	BP_FP_INT_TYPE limit = static_cast<BP_FP_INT_TYPE>(m_numHandles * 2);

	
	// insert new edges just inside the max boundary edge
	for (BP_FP_INT_TYPE axis = 0; axis < 3; axis++)
	{

		m_pHandles[0].m_maxEdges[axis] += 2;

		m_pEdges[axis][limit + 1] = m_pEdges[axis][limit - 1];

		m_pEdges[axis][limit - 1].m_pos = min[axis];
		m_pEdges[axis][limit - 1].m_handle = handle;

		m_pEdges[axis][limit].m_pos = max[axis];
		m_pEdges[axis][limit].m_handle = handle;

		pHandle->m_minEdges[axis] = static_cast<BP_FP_INT_TYPE>(limit - 1);
		pHandle->m_maxEdges[axis] = limit;
	}

	// now sort the new edges to their correct position
	sortMinDown(0, pHandle->m_minEdges[0], dispatcher,false);
	sortMaxDown(0, pHandle->m_maxEdges[0], dispatcher,false);
	sortMinDown(1, pHandle->m_minEdges[1], dispatcher,false);
	sortMaxDown(1, pHandle->m_maxEdges[1], dispatcher,false);
	sortMinDown(2, pHandle->m_minEdges[2], dispatcher,true);
	sortMaxDown(2, pHandle->m_maxEdges[2], dispatcher,true);


	return handle;
}


template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::removeHandle(BP_FP_INT_TYPE handle,btDispatcher* dispatcher)
{

	Handle* pHandle = getHandle(handle);

	//explicitly remove the pairs containing the proxy
	//we could do it also in the sortMinUp (passing true)
	///@todo: compare performance
	if (!m_pairCache->hasDeferredRemoval())
	{
		m_pairCache->removeOverlappingPairsContainingProxy(pHandle,dispatcher);
	}

	// compute current limit of edge arrays
	int limit = static_cast<int>(m_numHandles * 2);
	
	int axis;

	for (axis = 0;axis<3;axis++)
	{
		m_pHandles[0].m_maxEdges[axis] -= 2;
	}

	// remove the edges by sorting them up to the end of the list
	for ( axis = 0; axis < 3; axis++)
	{
		Edge* pEdges = m_pEdges[axis];
		BP_FP_INT_TYPE max = pHandle->m_maxEdges[axis];
		pEdges[max].m_pos = m_handleSentinel;

		sortMaxUp(axis,max,dispatcher,false);


		BP_FP_INT_TYPE i = pHandle->m_minEdges[axis];
		pEdges[i].m_pos = m_handleSentinel;


		sortMinUp(axis,i,dispatcher,false);

		pEdges[limit-1].m_handle = 0;
		pEdges[limit-1].m_pos = m_handleSentinel;
		
#ifdef DEBUG_BROADPHASE
			debugPrintAxis(axis,false);
#endif //DEBUG_BROADPHASE


	}


	// free the handle
	freeHandle(handle);

	
}

template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::resetPool(btDispatcher* /*dispatcher*/)
{
	if (m_numHandles == 0)
	{
		m_firstFreeHandle = 1;
		{
			for (BP_FP_INT_TYPE i = m_firstFreeHandle; i < m_maxHandles; i++)
				m_pHandles[i].SetNextFree(static_cast<BP_FP_INT_TYPE>(i + 1));
			m_pHandles[m_maxHandles - 1].SetNextFree(0);
		}
	}
}       


extern int gOverlappingPairs;
//#include <stdio.h>

template <typename BP_FP_INT_TYPE>
void	btAxisSweep3Internal<BP_FP_INT_TYPE>::calculateOverlappingPairs(btDispatcher* dispatcher)
{

	if (m_pairCache->hasDeferredRemoval())
	{
	
		btBroadphasePairArray&	overlappingPairArray = m_pairCache->getOverlappingPairArray();

		//perform a sort, to find duplicates and to sort 'invalid' pairs to the end
		overlappingPairArray.quickSort(btBroadphasePairSortPredicate());

		overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
		m_invalidPair = 0;

		
		int i;

		btBroadphasePair previousPair;
		previousPair.m_pProxy0 = 0;
		previousPair.m_pProxy1 = 0;
		previousPair.m_algorithm = 0;
		
		
		for (i=0;i<overlappingPairArray.size();i++)
		{
		
			btBroadphasePair& pair = overlappingPairArray[i];

			bool isDuplicate = (pair == previousPair);

			previousPair = pair;

			bool needsRemoval = false;

			if (!isDuplicate)
			{
				///important to use an AABB test that is consistent with the broadphase
				bool hasOverlap = testAabbOverlap(pair.m_pProxy0,pair.m_pProxy1);

				if (hasOverlap)
				{
					needsRemoval = false;//callback->processOverlap(pair);
				} else
				{
					needsRemoval = true;
				}
			} else
			{
				//remove duplicate
				needsRemoval = true;
				//should have no algorithm
				btAssert(!pair.m_algorithm);
			}
			
			if (needsRemoval)
			{
				m_pairCache->cleanOverlappingPair(pair,dispatcher);

		//		m_overlappingPairArray.swap(i,m_overlappingPairArray.size()-1);
		//		m_overlappingPairArray.pop_back();
				pair.m_pProxy0 = 0;
				pair.m_pProxy1 = 0;
				m_invalidPair++;
				gOverlappingPairs--;
			} 
			
		}

	///if you don't like to skip the invalid pairs in the array, execute following code:
	#define CLEAN_INVALID_PAIRS 1
	#ifdef CLEAN_INVALID_PAIRS

		//perform a sort, to sort 'invalid' pairs to the end
		overlappingPairArray.quickSort(btBroadphasePairSortPredicate());

		overlappingPairArray.resize(overlappingPairArray.size() - m_invalidPair);
		m_invalidPair = 0;
	#endif//CLEAN_INVALID_PAIRS
		
		//printf("overlappingPairArray.size()=%d\n",overlappingPairArray.size());
	}

}


template <typename BP_FP_INT_TYPE>
bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testAabbOverlap(btBroadphaseProxy* proxy0,btBroadphaseProxy* proxy1)
{
	const Handle* pHandleA = static_cast<Handle*>(proxy0);
	const Handle* pHandleB = static_cast<Handle*>(proxy1);
	
	//optimization 1: check the array index (memory address), instead of the m_pos

	for (int axis = 0; axis < 3; axis++)
	{ 
		if (pHandleA->m_maxEdges[axis] < pHandleB->m_minEdges[axis] || 
			pHandleB->m_maxEdges[axis] < pHandleA->m_minEdges[axis]) 
		{ 
			return false; 
		} 
	} 
	return true;
}

template <typename BP_FP_INT_TYPE>
bool btAxisSweep3Internal<BP_FP_INT_TYPE>::testOverlap2D(const Handle* pHandleA, const Handle* pHandleB,int axis0,int axis1)
{
	//optimization 1: check the array index (memory address), instead of the m_pos

	if (pHandleA->m_maxEdges[axis0] < pHandleB->m_minEdges[axis0] || 
		pHandleB->m_maxEdges[axis0] < pHandleA->m_minEdges[axis0] ||
		pHandleA->m_maxEdges[axis1] < pHandleB->m_minEdges[axis1] ||
		pHandleB->m_maxEdges[axis1] < pHandleA->m_minEdges[axis1]) 
	{ 
		return false; 
	} 
	return true;
}

template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::updateHandle(BP_FP_INT_TYPE handle, const btVector3& aabbMin,const btVector3& aabbMax,btDispatcher* dispatcher)
{
//	btAssert(bounds.IsFinite());
	//btAssert(bounds.HasVolume());

	Handle* pHandle = getHandle(handle);

	// quantize the new bounds
	BP_FP_INT_TYPE min[3], max[3];
	quantize(min, aabbMin, 0);
	quantize(max, aabbMax, 1);

	// update changed edges
	for (int axis = 0; axis < 3; axis++)
	{
		BP_FP_INT_TYPE emin = pHandle->m_minEdges[axis];
		BP_FP_INT_TYPE emax = pHandle->m_maxEdges[axis];

		int dmin = (int)min[axis] - (int)m_pEdges[axis][emin].m_pos;
		int dmax = (int)max[axis] - (int)m_pEdges[axis][emax].m_pos;

		m_pEdges[axis][emin].m_pos = min[axis];
		m_pEdges[axis][emax].m_pos = max[axis];

		// expand (only adds overlaps)
		if (dmin < 0)
			sortMinDown(axis, emin,dispatcher,true);

		if (dmax > 0)
			sortMaxUp(axis, emax,dispatcher,true);

		// shrink (only removes overlaps)
		if (dmin > 0)
			sortMinUp(axis, emin,dispatcher,true);

		if (dmax < 0)
			sortMaxDown(axis, emax,dispatcher,true);

#ifdef DEBUG_BROADPHASE
	debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE
	}

	
}




// sorting a min edge downwards can only ever *add* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* /* dispatcher */, bool updateOverlaps)
{

	Edge* pEdge = m_pEdges[axis] + edge;
	Edge* pPrev = pEdge - 1;
	Handle* pHandleEdge = getHandle(pEdge->m_handle);

	while (pEdge->m_pos < pPrev->m_pos)
	{
		Handle* pHandlePrev = getHandle(pPrev->m_handle);

		if (pPrev->IsMax())
		{
			// if previous edge is a maximum check the bounds and add an overlap if necessary
			const int axis1 = (1  << axis) & 3;
			const int axis2 = (1  << axis1) & 3;
			if (updateOverlaps && testOverlap2D(pHandleEdge, pHandlePrev,axis1,axis2))
			{
				m_pairCache->addOverlappingPair(pHandleEdge,pHandlePrev);
				if (m_userPairCallback)
					m_userPairCallback->addOverlappingPair(pHandleEdge,pHandlePrev);

				//AddOverlap(pEdge->m_handle, pPrev->m_handle);

			}

			// update edge reference in other handle
			pHandlePrev->m_maxEdges[axis]++;
		}
		else
			pHandlePrev->m_minEdges[axis]++;

		pHandleEdge->m_minEdges[axis]--;

		// swap the edges
		Edge swap = *pEdge;
		*pEdge = *pPrev;
		*pPrev = swap;

		// decrement
		pEdge--;
		pPrev--;
	}

#ifdef DEBUG_BROADPHASE
	debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE

}

// sorting a min edge upwards can only ever *remove* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMinUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps)
{
	Edge* pEdge = m_pEdges[axis] + edge;
	Edge* pNext = pEdge + 1;
	Handle* pHandleEdge = getHandle(pEdge->m_handle);

	while (pNext->m_handle && (pEdge->m_pos >= pNext->m_pos))
	{
		Handle* pHandleNext = getHandle(pNext->m_handle);

		if (pNext->IsMax())
		{
			Handle* handle0 = getHandle(pEdge->m_handle);
			Handle* handle1 = getHandle(pNext->m_handle);
			const int axis1 = (1  << axis) & 3;
			const int axis2 = (1  << axis1) & 3;
			
			// if next edge is maximum remove any overlap between the two handles
			if (updateOverlaps 
#ifdef USE_OVERLAP_TEST_ON_REMOVES
				&& testOverlap2D(handle0,handle1,axis1,axis2)
#endif //USE_OVERLAP_TEST_ON_REMOVES
				)
			{
				

				m_pairCache->removeOverlappingPair(handle0,handle1,dispatcher);	
				if (m_userPairCallback)
					m_userPairCallback->removeOverlappingPair(handle0,handle1,dispatcher);
				
			}


			// update edge reference in other handle
			pHandleNext->m_maxEdges[axis]--;
		}
		else
			pHandleNext->m_minEdges[axis]--;

		pHandleEdge->m_minEdges[axis]++;

		// swap the edges
		Edge swap = *pEdge;
		*pEdge = *pNext;
		*pNext = swap;

		// increment
		pEdge++;
		pNext++;
	}


}

// sorting a max edge downwards can only ever *remove* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxDown(int axis, BP_FP_INT_TYPE edge, btDispatcher* dispatcher, bool updateOverlaps)
{

	Edge* pEdge = m_pEdges[axis] + edge;
	Edge* pPrev = pEdge - 1;
	Handle* pHandleEdge = getHandle(pEdge->m_handle);

	while (pEdge->m_pos < pPrev->m_pos)
	{
		Handle* pHandlePrev = getHandle(pPrev->m_handle);

		if (!pPrev->IsMax())
		{
			// if previous edge was a minimum remove any overlap between the two handles
			Handle* handle0 = getHandle(pEdge->m_handle);
			Handle* handle1 = getHandle(pPrev->m_handle);
			const int axis1 = (1  << axis) & 3;
			const int axis2 = (1  << axis1) & 3;

			if (updateOverlaps  
#ifdef USE_OVERLAP_TEST_ON_REMOVES
				&& testOverlap2D(handle0,handle1,axis1,axis2)
#endif //USE_OVERLAP_TEST_ON_REMOVES
				)
			{
				//this is done during the overlappingpairarray iteration/narrowphase collision

				
				m_pairCache->removeOverlappingPair(handle0,handle1,dispatcher);
				if (m_userPairCallback)
					m_userPairCallback->removeOverlappingPair(handle0,handle1,dispatcher);
			


			}

			// update edge reference in other handle
			pHandlePrev->m_minEdges[axis]++;;
		}
		else
			pHandlePrev->m_maxEdges[axis]++;

		pHandleEdge->m_maxEdges[axis]--;

		// swap the edges
		Edge swap = *pEdge;
		*pEdge = *pPrev;
		*pPrev = swap;

		// decrement
		pEdge--;
		pPrev--;
	}

	
#ifdef DEBUG_BROADPHASE
	debugPrintAxis(axis);
#endif //DEBUG_BROADPHASE

}

// sorting a max edge upwards can only ever *add* overlaps
template <typename BP_FP_INT_TYPE>
void btAxisSweep3Internal<BP_FP_INT_TYPE>::sortMaxUp(int axis, BP_FP_INT_TYPE edge, btDispatcher* /* dispatcher */, bool updateOverlaps)
{
	Edge* pEdge = m_pEdges[axis] + edge;
	Edge* pNext = pEdge + 1;
	Handle* pHandleEdge = getHandle(pEdge->m_handle);

	while (pNext->m_handle && (pEdge->m_pos >= pNext->m_pos))
	{
		Handle* pHandleNext = getHandle(pNext->m_handle);

		const int axis1 = (1  << axis) & 3;
		const int axis2 = (1  << axis1) & 3;

		if (!pNext->IsMax())
		{
			// if next edge is a minimum check the bounds and add an overlap if necessary
			if (updateOverlaps && testOverlap2D(pHandleEdge, pHandleNext,axis1,axis2))
			{
				Handle* handle0 = getHandle(pEdge->m_handle);
				Handle* handle1 = getHandle(pNext->m_handle);
				m_pairCache->addOverlappingPair(handle0,handle1);
				if (m_userPairCallback)
					m_userPairCallback->addOverlappingPair(handle0,handle1);
			}

			// update edge reference in other handle
			pHandleNext->m_minEdges[axis]--;
		}
		else
			pHandleNext->m_maxEdges[axis]--;

		pHandleEdge->m_maxEdges[axis]++;

		// swap the edges
		Edge swap = *pEdge;
		*pEdge = *pNext;
		*pNext = swap;

		// increment
		pEdge++;
		pNext++;
	}
	
}



////////////////////////////////////////////////////////////////////


/// The btAxisSweep3 is an efficient implementation of the 3d axis sweep and prune broadphase.
/// It uses arrays rather then lists for storage of the 3 axis. Also it operates using 16 bit integer coordinates instead of floats.
/// For large worlds and many objects, use bt32BitAxisSweep3 or btDbvtBroadphase instead. bt32BitAxisSweep3 has higher precision and allows more then 16384 objects at the cost of more memory and bit of performance.
class btAxisSweep3 : public btAxisSweep3Internal<unsigned short int>
{
public:

	btAxisSweep3(const btVector3& worldAabbMin,const btVector3& worldAabbMax, unsigned short int maxHandles = 16384, btOverlappingPairCache* pairCache = 0, bool disableRaycastAccelerator = false);

};

/// The bt32BitAxisSweep3 allows higher precision quantization and more objects compared to the btAxisSweep3 sweep and prune.
/// This comes at the cost of more memory per handle, and a bit slower performance.
/// It uses arrays rather then lists for storage of the 3 axis.
class bt32BitAxisSweep3 : public btAxisSweep3Internal<unsigned int>
{
public:

	bt32BitAxisSweep3(const btVector3& worldAabbMin,const btVector3& worldAabbMax, unsigned int maxHandles = 1500000, btOverlappingPairCache* pairCache = 0, bool disableRaycastAccelerator = false);

};

#endif