This file is indexed.

/usr/include/bullet/LinearMath/btVector3.h is in libbullet-dev 2.81-rev2613+dfsg2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/



#ifndef BT_VECTOR3_H
#define BT_VECTOR3_H

//#include <stdint.h>
#include "btScalar.h"
#include "btMinMax.h"
#include "btAlignedAllocator.h"

#ifdef BT_USE_DOUBLE_PRECISION
#define btVector3Data btVector3DoubleData
#define btVector3DataName "btVector3DoubleData"
#else
#define btVector3Data btVector3FloatData
#define btVector3DataName "btVector3FloatData"
#endif //BT_USE_DOUBLE_PRECISION

#if defined BT_USE_SSE

//typedef  uint32_t __m128i __attribute__ ((vector_size(16)));

#ifdef _MSC_VER
#pragma warning(disable: 4556) // value of intrinsic immediate argument '4294967239' is out of range '0 - 255'
#endif


#define BT_SHUFFLE(x,y,z,w) ((w)<<6 | (z)<<4 | (y)<<2 | (x))
//#define bt_pshufd_ps( _a, _mask ) (__m128) _mm_shuffle_epi32((__m128i)(_a), (_mask) )
#define bt_pshufd_ps( _a, _mask ) _mm_shuffle_ps((_a), (_a), (_mask) )
#define bt_splat3_ps( _a, _i ) bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i, 3) )
#define bt_splat_ps( _a, _i )  bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i,_i) )

#define btv3AbsiMask (_mm_set_epi32(0x00000000, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF))
#define btvAbsMask (_mm_set_epi32( 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF))
#define btvFFF0Mask (_mm_set_epi32(0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF))
#define btv3AbsfMask btCastiTo128f(btv3AbsiMask)
#define btvFFF0fMask btCastiTo128f(btvFFF0Mask)
#define btvxyzMaskf btvFFF0fMask
#define btvAbsfMask btCastiTo128f(btvAbsMask)



const __m128 ATTRIBUTE_ALIGNED16(btvMzeroMask) = {-0.0f, -0.0f, -0.0f, -0.0f};
const __m128 ATTRIBUTE_ALIGNED16(v1110) = {1.0f, 1.0f, 1.0f, 0.0f};
const __m128 ATTRIBUTE_ALIGNED16(vHalf) = {0.5f, 0.5f, 0.5f, 0.5f};
const __m128 ATTRIBUTE_ALIGNED16(v1_5)  = {1.5f, 1.5f, 1.5f, 1.5f};

#endif

#ifdef BT_USE_NEON

const float32x4_t ATTRIBUTE_ALIGNED16(btvMzeroMask) = (float32x4_t){-0.0f, -0.0f, -0.0f, -0.0f};
const int32x4_t ATTRIBUTE_ALIGNED16(btvFFF0Mask) = (int32x4_t){0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0};
const int32x4_t ATTRIBUTE_ALIGNED16(btvAbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
const int32x4_t ATTRIBUTE_ALIGNED16(btv3AbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x0};

#endif

/**@brief btVector3 can be used to represent 3D points and vectors.
 * It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user
 * Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers
 */
ATTRIBUTE_ALIGNED16(class) btVector3
{
public:

	BT_DECLARE_ALIGNED_ALLOCATOR();

#if defined (__SPU__) && defined (__CELLOS_LV2__)
		btScalar	m_floats[4];
public:
	SIMD_FORCE_INLINE const vec_float4&	get128() const
	{
		return *((const vec_float4*)&m_floats[0]);
	}
public:
#else //__CELLOS_LV2__ __SPU__
    #if defined (BT_USE_SSE) || defined(BT_USE_NEON) // _WIN32 || ARM
        union {
            btSimdFloat4      mVec128;
            btScalar	m_floats[4];
        };
        SIMD_FORCE_INLINE	btSimdFloat4	get128() const
        {
            return mVec128;
        }
        SIMD_FORCE_INLINE	void	set128(btSimdFloat4 v128)
        {
            mVec128 = v128;
        }
    #else
        btScalar	m_floats[4];
    #endif
#endif //__CELLOS_LV2__ __SPU__

	public:

  /**@brief No initialization constructor */
	SIMD_FORCE_INLINE btVector3() 
	{

	}

 
	
  /**@brief Constructor from scalars 
   * @param x X value
   * @param y Y value 
   * @param z Z value 
   */
	SIMD_FORCE_INLINE btVector3(const btScalar& _x, const btScalar& _y, const btScalar& _z)
	{
		m_floats[0] = _x;
		m_floats[1] = _y;
		m_floats[2] = _z;
		m_floats[3] = btScalar(0.f);
	}

#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) )|| defined (BT_USE_NEON)
	// Set Vector 
	SIMD_FORCE_INLINE btVector3( btSimdFloat4 v)
	{
		mVec128 = v;
	}

	// Copy constructor
	SIMD_FORCE_INLINE btVector3(const btVector3& rhs)
	{
		mVec128 = rhs.mVec128;
	}

	// Assignment Operator
	SIMD_FORCE_INLINE btVector3& 
	operator=(const btVector3& v) 
	{
		mVec128 = v.mVec128;
		
		return *this;
	}
#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) 
    
/**@brief Add a vector to this one 
 * @param The vector to add to this one */
	SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v)
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		mVec128 = _mm_add_ps(mVec128, v.mVec128);
#elif defined(BT_USE_NEON)
		mVec128 = vaddq_f32(mVec128, v.mVec128);
#else
		m_floats[0] += v.m_floats[0]; 
		m_floats[1] += v.m_floats[1];
		m_floats[2] += v.m_floats[2];
#endif
		return *this;
	}


  /**@brief Subtract a vector from this one
   * @param The vector to subtract */
	SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v) 
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		mVec128 = _mm_sub_ps(mVec128, v.mVec128);
#elif defined(BT_USE_NEON)
		mVec128 = vsubq_f32(mVec128, v.mVec128);
#else
		m_floats[0] -= v.m_floats[0]; 
		m_floats[1] -= v.m_floats[1];
		m_floats[2] -= v.m_floats[2];
#endif
		return *this;
	}
	
  /**@brief Scale the vector
   * @param s Scale factor */
	SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s)
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		__m128	vs = _mm_load_ss(&s);	//	(S 0 0 0)
		vs = bt_pshufd_ps(vs, 0x80);	//	(S S S 0.0)
		mVec128 = _mm_mul_ps(mVec128, vs);
#elif defined(BT_USE_NEON)
		mVec128 = vmulq_n_f32(mVec128, s);
#else
		m_floats[0] *= s; 
		m_floats[1] *= s;
		m_floats[2] *= s;
#endif
		return *this;
	}

  /**@brief Inversely scale the vector 
   * @param s Scale factor to divide by */
	SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s) 
	{
		btFullAssert(s != btScalar(0.0));

#if 0 //defined(BT_USE_SSE_IN_API)
// this code is not faster !
		__m128 vs = _mm_load_ss(&s);
		vs = _mm_div_ss(v1110, vs);
		vs = bt_pshufd_ps(vs, 0x00);	//	(S S S S)

		mVec128 = _mm_mul_ps(mVec128, vs);
		
		return *this;
#else
		return *this *= btScalar(1.0) / s;
#endif
	}

  /**@brief Return the dot product
   * @param v The other vector in the dot product */
	SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)		
		__m128 vd = _mm_mul_ps(mVec128, v.mVec128);
		__m128 z = _mm_movehl_ps(vd, vd);
		__m128 y = _mm_shuffle_ps(vd, vd, 0x55);
		vd = _mm_add_ss(vd, y);
		vd = _mm_add_ss(vd, z);
		return _mm_cvtss_f32(vd);
#elif defined(BT_USE_NEON)
		float32x4_t vd = vmulq_f32(mVec128, v.mVec128);
		float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_low_f32(vd));  
		x = vadd_f32(x, vget_high_f32(vd));
		return vget_lane_f32(x, 0);
#else	
		return	m_floats[0] * v.m_floats[0] + 
				m_floats[1] * v.m_floats[1] + 
				m_floats[2] * v.m_floats[2];
#endif
	}

  /**@brief Return the length of the vector squared */
	SIMD_FORCE_INLINE btScalar length2() const
	{
		return dot(*this);
	}

  /**@brief Return the length of the vector */
	SIMD_FORCE_INLINE btScalar length() const
	{
		return btSqrt(length2());
	}

  /**@brief Return the distance squared between the ends of this and another vector
   * This is symantically treating the vector like a point */
	SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const;

  /**@brief Return the distance between the ends of this and another vector
   * This is symantically treating the vector like a point */
	SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const;

	SIMD_FORCE_INLINE btVector3& safeNormalize() 
	{
		btVector3 absVec = this->absolute();
		int maxIndex = absVec.maxAxis();
		if (absVec[maxIndex]>0)
		{
			*this /= absVec[maxIndex];
			return *this /= length();
		}
		setValue(1,0,0);
		return *this;
	}

  /**@brief Normalize this vector 
   * x^2 + y^2 + z^2 = 1 */
	SIMD_FORCE_INLINE btVector3& normalize() 
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)		
        // dot product first
		__m128 vd = _mm_mul_ps(mVec128, mVec128);
		__m128 z = _mm_movehl_ps(vd, vd);
		__m128 y = _mm_shuffle_ps(vd, vd, 0x55);
		vd = _mm_add_ss(vd, y);
		vd = _mm_add_ss(vd, z);
		
        #if 0
        vd = _mm_sqrt_ss(vd);
		vd = _mm_div_ss(v1110, vd);
		vd = bt_splat_ps(vd, 0x80);
		mVec128 = _mm_mul_ps(mVec128, vd);
        #else
        
        // NR step 1/sqrt(x) - vd is x, y is output 
        y = _mm_rsqrt_ss(vd); // estimate 
        
        //  one step NR 
        z = v1_5;
        vd = _mm_mul_ss(vd, vHalf); // vd * 0.5	
        //x2 = vd;
        vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0
        vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0 * y0
        z = _mm_sub_ss(z, vd);  // 1.5 - vd * 0.5 * y0 * y0 

        y = _mm_mul_ss(y, z);   // y0 * (1.5 - vd * 0.5 * y0 * y0)

		y = bt_splat_ps(y, 0x80);
		mVec128 = _mm_mul_ps(mVec128, y);

        #endif

		
		return *this;
#else	
		return *this /= length();
#endif
	}

  /**@brief Return a normalized version of this vector */
	SIMD_FORCE_INLINE btVector3 normalized() const;

  /**@brief Return a rotated version of this vector
   * @param wAxis The axis to rotate about 
   * @param angle The angle to rotate by */
	SIMD_FORCE_INLINE btVector3 rotate( const btVector3& wAxis, const btScalar angle ) const;

  /**@brief Return the angle between this and another vector
   * @param v The other vector */
	SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const 
	{
		btScalar s = btSqrt(length2() * v.length2());
		btFullAssert(s != btScalar(0.0));
		return btAcos(dot(v) / s);
	}
	
  /**@brief Return a vector will the absolute values of each element */
	SIMD_FORCE_INLINE btVector3 absolute() const 
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 
		return btVector3(_mm_and_ps(mVec128, btv3AbsfMask));
#elif defined(BT_USE_NEON)
		return btVector3(vabsq_f32(mVec128));
#else	
		return btVector3(
			btFabs(m_floats[0]), 
			btFabs(m_floats[1]), 
			btFabs(m_floats[2]));
#endif
	}
	
  /**@brief Return the cross product between this and another vector 
   * @param v The other vector */
	SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		__m128	T, V;
		
		T = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 3));	//	(Y Z X 0)
		V = bt_pshufd_ps(v.mVec128, BT_SHUFFLE(1, 2, 0, 3));	//	(Y Z X 0)
		
		V = _mm_mul_ps(V, mVec128);
		T = _mm_mul_ps(T, v.mVec128);
		V = _mm_sub_ps(V, T);
		
		V = bt_pshufd_ps(V, BT_SHUFFLE(1, 2, 0, 3));
		return btVector3(V);
#elif defined(BT_USE_NEON)
		float32x4_t T, V;
		// form (Y, Z, X, _) of mVec128 and v.mVec128
		float32x2_t Tlow = vget_low_f32(mVec128);
		float32x2_t Vlow = vget_low_f32(v.mVec128);
		T = vcombine_f32(vext_f32(Tlow, vget_high_f32(mVec128), 1), Tlow);
		V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v.mVec128), 1), Vlow);
		
		V = vmulq_f32(V, mVec128);
		T = vmulq_f32(T, v.mVec128);
		V = vsubq_f32(V, T);
		Vlow = vget_low_f32(V);
		// form (Y, Z, X, _);
		V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);
		V = (float32x4_t)vandq_s32((int32x4_t)V, btvFFF0Mask);
		
		return btVector3(V);
#else
		return btVector3(
			m_floats[1] * v.m_floats[2] - m_floats[2] * v.m_floats[1],
			m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2],
			m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]);
#endif
	}

	SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		// cross:
		__m128 T = _mm_shuffle_ps(v1.mVec128, v1.mVec128, BT_SHUFFLE(1, 2, 0, 3));	//	(Y Z X 0)
		__m128 V = _mm_shuffle_ps(v2.mVec128, v2.mVec128, BT_SHUFFLE(1, 2, 0, 3));	//	(Y Z X 0)
		
		V = _mm_mul_ps(V, v1.mVec128);
		T = _mm_mul_ps(T, v2.mVec128);
		V = _mm_sub_ps(V, T);
		
		V = _mm_shuffle_ps(V, V, BT_SHUFFLE(1, 2, 0, 3));

		// dot: 
		V = _mm_mul_ps(V, mVec128);
		__m128 z = _mm_movehl_ps(V, V);
		__m128 y = _mm_shuffle_ps(V, V, 0x55);
		V = _mm_add_ss(V, y);
		V = _mm_add_ss(V, z);
		return _mm_cvtss_f32(V);

#elif defined(BT_USE_NEON)
		// cross:
		float32x4_t T, V;
		// form (Y, Z, X, _) of mVec128 and v.mVec128
		float32x2_t Tlow = vget_low_f32(v1.mVec128);
		float32x2_t Vlow = vget_low_f32(v2.mVec128);
		T = vcombine_f32(vext_f32(Tlow, vget_high_f32(v1.mVec128), 1), Tlow);
		V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v2.mVec128), 1), Vlow);
		
		V = vmulq_f32(V, v1.mVec128);
		T = vmulq_f32(T, v2.mVec128);
		V = vsubq_f32(V, T);
		Vlow = vget_low_f32(V);
		// form (Y, Z, X, _);
		V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);

		// dot: 
		V = vmulq_f32(mVec128, V);
		float32x2_t x = vpadd_f32(vget_low_f32(V), vget_low_f32(V));  
		x = vadd_f32(x, vget_high_f32(V));
		return vget_lane_f32(x, 0);
#else
		return 
			m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + 
			m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + 
			m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]);
#endif
	}

  /**@brief Return the axis with the smallest value 
   * Note return values are 0,1,2 for x, y, or z */
	SIMD_FORCE_INLINE int minAxis() const
	{
		return m_floats[0] < m_floats[1] ? (m_floats[0] <m_floats[2] ? 0 : 2) : (m_floats[1] <m_floats[2] ? 1 : 2);
	}

  /**@brief Return the axis with the largest value 
   * Note return values are 0,1,2 for x, y, or z */
	SIMD_FORCE_INLINE int maxAxis() const 
	{
		return m_floats[0] < m_floats[1] ? (m_floats[1] <m_floats[2] ? 2 : 1) : (m_floats[0] <m_floats[2] ? 2 : 0);
	}

	SIMD_FORCE_INLINE int furthestAxis() const
	{
		return absolute().minAxis();
	}

	SIMD_FORCE_INLINE int closestAxis() const 
	{
		return absolute().maxAxis();
	}

	
	SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt)
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		__m128	vrt = _mm_load_ss(&rt);	//	(rt 0 0 0)
		btScalar s = btScalar(1.0) - rt;
		__m128	vs = _mm_load_ss(&s);	//	(S 0 0 0)
		vs = bt_pshufd_ps(vs, 0x80);	//	(S S S 0.0)
		__m128 r0 = _mm_mul_ps(v0.mVec128, vs);
		vrt = bt_pshufd_ps(vrt, 0x80);	//	(rt rt rt 0.0)
		__m128 r1 = _mm_mul_ps(v1.mVec128, vrt);
		__m128 tmp3 = _mm_add_ps(r0,r1);
		mVec128 = tmp3;
#elif defined(BT_USE_NEON)
		mVec128 = vsubq_f32(v1.mVec128, v0.mVec128);
		mVec128 = vmulq_n_f32(mVec128, rt);
		mVec128 = vaddq_f32(mVec128, v0.mVec128);
#else	
		btScalar s = btScalar(1.0) - rt;
		m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0];
		m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1];
		m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2];
		//don't do the unused w component
		//		m_co[3] = s * v0[3] + rt * v1[3];
#endif
	}

  /**@brief Return the linear interpolation between this and another vector 
   * @param v The other vector 
   * @param t The ration of this to v (t = 0 => return this, t=1 => return other) */
	SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const 
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		__m128	vt = _mm_load_ss(&t);	//	(t 0 0 0)
		vt = bt_pshufd_ps(vt, 0x80);	//	(rt rt rt 0.0)
		__m128 vl = _mm_sub_ps(v.mVec128, mVec128);
		vl = _mm_mul_ps(vl, vt);
		vl = _mm_add_ps(vl, mVec128);
		
		return btVector3(vl);
#elif defined(BT_USE_NEON)
		float32x4_t vl = vsubq_f32(v.mVec128, mVec128);
		vl = vmulq_n_f32(vl, t);
		vl = vaddq_f32(vl, mVec128);
		
		return btVector3(vl);
#else	
		return 
			btVector3(	m_floats[0] + (v.m_floats[0] - m_floats[0]) * t,
						m_floats[1] + (v.m_floats[1] - m_floats[1]) * t,
						m_floats[2] + (v.m_floats[2] - m_floats[2]) * t);
#endif
	}

  /**@brief Elementwise multiply this vector by the other 
   * @param v The other vector */
	SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v)
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		mVec128 = _mm_mul_ps(mVec128, v.mVec128);
#elif defined(BT_USE_NEON)
		mVec128 = vmulq_f32(mVec128, v.mVec128);
#else	
		m_floats[0] *= v.m_floats[0]; 
		m_floats[1] *= v.m_floats[1];
		m_floats[2] *= v.m_floats[2];
#endif
		return *this;
	}

	 /**@brief Return the x value */
		SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; }
  /**@brief Return the y value */
		SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; }
  /**@brief Return the z value */
		SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; }
  /**@brief Set the x value */
		SIMD_FORCE_INLINE void	setX(btScalar _x) { m_floats[0] = _x;};
  /**@brief Set the y value */
		SIMD_FORCE_INLINE void	setY(btScalar _y) { m_floats[1] = _y;};
  /**@brief Set the z value */
		SIMD_FORCE_INLINE void	setZ(btScalar _z) { m_floats[2] = _z;};
  /**@brief Set the w value */
		SIMD_FORCE_INLINE void	setW(btScalar _w) { m_floats[3] = _w;};
  /**@brief Return the x value */
		SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; }
  /**@brief Return the y value */
		SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; }
  /**@brief Return the z value */
		SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; }
  /**@brief Return the w value */
		SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; }

	//SIMD_FORCE_INLINE btScalar&       operator[](int i)       { return (&m_floats[0])[i];	}      
	//SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_floats[0])[i]; }
	///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons.
	SIMD_FORCE_INLINE	operator       btScalar *()       { return &m_floats[0]; }
	SIMD_FORCE_INLINE	operator const btScalar *() const { return &m_floats[0]; }

	SIMD_FORCE_INLINE	bool	operator==(const btVector3& other) const
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
        return (0xf == _mm_movemask_ps((__m128)_mm_cmpeq_ps(mVec128, other.mVec128)));
#else 
		return ((m_floats[3]==other.m_floats[3]) && 
                (m_floats[2]==other.m_floats[2]) && 
                (m_floats[1]==other.m_floats[1]) && 
                (m_floats[0]==other.m_floats[0]));
#endif
	}

	SIMD_FORCE_INLINE	bool	operator!=(const btVector3& other) const
	{
		return !(*this == other);
	}

  /**@brief Set each element to the max of the current values and the values of another btVector3
   * @param other The other btVector3 to compare with 
   */
	SIMD_FORCE_INLINE void	setMax(const btVector3& other)
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		mVec128 = _mm_max_ps(mVec128, other.mVec128);
#elif defined(BT_USE_NEON)
		mVec128 = vmaxq_f32(mVec128, other.mVec128);
#else
		btSetMax(m_floats[0], other.m_floats[0]);
		btSetMax(m_floats[1], other.m_floats[1]);
		btSetMax(m_floats[2], other.m_floats[2]);
		btSetMax(m_floats[3], other.w());
#endif
	}

  /**@brief Set each element to the min of the current values and the values of another btVector3
   * @param other The other btVector3 to compare with 
   */
	SIMD_FORCE_INLINE void	setMin(const btVector3& other)
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		mVec128 = _mm_min_ps(mVec128, other.mVec128);
#elif defined(BT_USE_NEON)
		mVec128 = vminq_f32(mVec128, other.mVec128);
#else
		btSetMin(m_floats[0], other.m_floats[0]);
		btSetMin(m_floats[1], other.m_floats[1]);
		btSetMin(m_floats[2], other.m_floats[2]);
		btSetMin(m_floats[3], other.w());
#endif
	}

	SIMD_FORCE_INLINE void 	setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z)
	{
		m_floats[0]=_x;
		m_floats[1]=_y;
		m_floats[2]=_z;
		m_floats[3] = btScalar(0.f);
	}

	void	getSkewSymmetricMatrix(btVector3* v0,btVector3* v1,btVector3* v2) const
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
 
		__m128 V  = _mm_and_ps(mVec128, btvFFF0fMask);
		__m128 V0 = _mm_xor_ps(btvMzeroMask, V);
		__m128 V2 = _mm_movelh_ps(V0, V);
		
		__m128 V1 = _mm_shuffle_ps(V, V0, 0xCE);
		
        V0 = _mm_shuffle_ps(V0, V, 0xDB);
		V2 = _mm_shuffle_ps(V2, V, 0xF9);
		
		v0->mVec128 = V0;
		v1->mVec128 = V1;
		v2->mVec128 = V2;
#else
		v0->setValue(0.		,-z()		,y());
		v1->setValue(z()	,0.			,-x());
		v2->setValue(-y()	,x()	,0.);
#endif
	}

	void setZero()
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
		mVec128 = (__m128)_mm_xor_ps(mVec128, mVec128);
#elif defined(BT_USE_NEON)
		int32x4_t vi = vdupq_n_s32(0); 
		mVec128 = vreinterpretq_f32_s32(vi);
#else	
		setValue(btScalar(0.),btScalar(0.),btScalar(0.));
#endif
	}

	SIMD_FORCE_INLINE bool isZero() const 
	{
		return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0);
	}

	SIMD_FORCE_INLINE bool fuzzyZero() const 
	{
		return length2() < SIMD_EPSILON;
	}

	SIMD_FORCE_INLINE	void	serialize(struct	btVector3Data& dataOut) const;

	SIMD_FORCE_INLINE	void	deSerialize(const struct	btVector3Data& dataIn);

	SIMD_FORCE_INLINE	void	serializeFloat(struct	btVector3FloatData& dataOut) const;

	SIMD_FORCE_INLINE	void	deSerializeFloat(const struct	btVector3FloatData& dataIn);

	SIMD_FORCE_INLINE	void	serializeDouble(struct	btVector3DoubleData& dataOut) const;

	SIMD_FORCE_INLINE	void	deSerializeDouble(const struct	btVector3DoubleData& dataIn);
    
        /**@brief returns index of maximum dot product between this and vectors in array[]
         * @param array The other vectors 
         * @param array_count The number of other vectors 
         * @param dotOut The maximum dot product */
        SIMD_FORCE_INLINE   long    maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const; 

        /**@brief returns index of minimum dot product between this and vectors in array[]
         * @param array The other vectors 
         * @param array_count The number of other vectors 
         * @param dotOut The minimum dot product */    
        SIMD_FORCE_INLINE   long    minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const; 

    /* create a vector as  btVector3( this->dot( btVector3 v0 ), this->dot( btVector3 v1), this->dot( btVector3 v2 ))  */
    SIMD_FORCE_INLINE btVector3  dot3( const btVector3 &v0, const btVector3 &v1, const btVector3 &v2 ) const
    {
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)

        __m128 a0 = _mm_mul_ps( v0.mVec128, this->mVec128 );
        __m128 a1 = _mm_mul_ps( v1.mVec128, this->mVec128 );
        __m128 a2 = _mm_mul_ps( v2.mVec128, this->mVec128 );
        __m128 b0 = _mm_unpacklo_ps( a0, a1 );
        __m128 b1 = _mm_unpackhi_ps( a0, a1 );
        __m128 b2 = _mm_unpacklo_ps( a2, _mm_setzero_ps() );
        __m128 r = _mm_movelh_ps( b0, b2 );
        r = _mm_add_ps( r, _mm_movehl_ps( b2, b0 ));
        a2 = _mm_and_ps( a2, btvxyzMaskf);
        r = _mm_add_ps( r, btCastdTo128f (_mm_move_sd( btCastfTo128d(a2), btCastfTo128d(b1) )));
        return btVector3(r);
        
#elif defined(BT_USE_NEON)
        static const uint32x4_t xyzMask = (const uint32x4_t){ -1, -1, -1, 0 };
        float32x4_t a0 = vmulq_f32( v0.mVec128, this->mVec128);
        float32x4_t a1 = vmulq_f32( v1.mVec128, this->mVec128);
        float32x4_t a2 = vmulq_f32( v2.mVec128, this->mVec128);
        float32x2x2_t zLo = vtrn_f32( vget_high_f32(a0), vget_high_f32(a1));
        a2 = (float32x4_t) vandq_u32((uint32x4_t) a2, xyzMask );
        float32x2_t b0 = vadd_f32( vpadd_f32( vget_low_f32(a0), vget_low_f32(a1)), zLo.val[0] );
        float32x2_t b1 = vpadd_f32( vpadd_f32( vget_low_f32(a2), vget_high_f32(a2)), vdup_n_f32(0.0f));
        return btVector3( vcombine_f32(b0, b1) );
#else	
		return btVector3( dot(v0), dot(v1), dot(v2));
#endif
    }
};

/**@brief Return the sum of two vectors (Point symantics)*/
SIMD_FORCE_INLINE btVector3 
operator+(const btVector3& v1, const btVector3& v2) 
{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
	return btVector3(_mm_add_ps(v1.mVec128, v2.mVec128));
#elif defined(BT_USE_NEON)
	return btVector3(vaddq_f32(v1.mVec128, v2.mVec128));
#else
	return btVector3(
			v1.m_floats[0] + v2.m_floats[0], 
			v1.m_floats[1] + v2.m_floats[1], 
			v1.m_floats[2] + v2.m_floats[2]);
#endif
}

/**@brief Return the elementwise product of two vectors */
SIMD_FORCE_INLINE btVector3 
operator*(const btVector3& v1, const btVector3& v2) 
{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
	return btVector3(_mm_mul_ps(v1.mVec128, v2.mVec128));
#elif defined(BT_USE_NEON)
	return btVector3(vmulq_f32(v1.mVec128, v2.mVec128));
#else
	return btVector3(
			v1.m_floats[0] * v2.m_floats[0], 
			v1.m_floats[1] * v2.m_floats[1], 
			v1.m_floats[2] * v2.m_floats[2]);
#endif
}

/**@brief Return the difference between two vectors */
SIMD_FORCE_INLINE btVector3 
operator-(const btVector3& v1, const btVector3& v2)
{
#if (defined(BT_USE_SSE_IN_API)  && defined(BT_USE_SSE))

	//	without _mm_and_ps this code causes slowdown in Concave moving
	__m128 r = _mm_sub_ps(v1.mVec128, v2.mVec128);
	return btVector3(_mm_and_ps(r, btvFFF0fMask));
#elif defined(BT_USE_NEON)
	float32x4_t r = vsubq_f32(v1.mVec128, v2.mVec128);
	return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask));
#else
	return btVector3(
			v1.m_floats[0] - v2.m_floats[0], 
			v1.m_floats[1] - v2.m_floats[1], 
			v1.m_floats[2] - v2.m_floats[2]);
#endif
}

/**@brief Return the negative of the vector */
SIMD_FORCE_INLINE btVector3 
operator-(const btVector3& v)
{
#if (defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
	__m128 r = _mm_xor_ps(v.mVec128, btvMzeroMask);
	return btVector3(_mm_and_ps(r, btvFFF0fMask)); 
#elif defined(BT_USE_NEON)
	return btVector3((btSimdFloat4)veorq_s32((int32x4_t)v.mVec128, (int32x4_t)btvMzeroMask));
#else	
	return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]);
#endif
}

/**@brief Return the vector scaled by s */
SIMD_FORCE_INLINE btVector3 
operator*(const btVector3& v, const btScalar& s)
{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
	__m128	vs = _mm_load_ss(&s);	//	(S 0 0 0)
	vs = bt_pshufd_ps(vs, 0x80);	//	(S S S 0.0)
	return btVector3(_mm_mul_ps(v.mVec128, vs));
#elif defined(BT_USE_NEON)
	float32x4_t r = vmulq_n_f32(v.mVec128, s);
	return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask));
#else
	return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s);
#endif
}

/**@brief Return the vector scaled by s */
SIMD_FORCE_INLINE btVector3 
operator*(const btScalar& s, const btVector3& v)
{ 
	return v * s; 
}

/**@brief Return the vector inversely scaled by s */
SIMD_FORCE_INLINE btVector3
operator/(const btVector3& v, const btScalar& s)
{
	btFullAssert(s != btScalar(0.0));
#if 0 //defined(BT_USE_SSE_IN_API)
// this code is not faster !
	__m128 vs = _mm_load_ss(&s);
    vs = _mm_div_ss(v1110, vs);
	vs = bt_pshufd_ps(vs, 0x00);	//	(S S S S)

	return btVector3(_mm_mul_ps(v.mVec128, vs));
#else
	return v * (btScalar(1.0) / s);
#endif
}

/**@brief Return the vector inversely scaled by s */
SIMD_FORCE_INLINE btVector3
operator/(const btVector3& v1, const btVector3& v2)
{
#if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE))
	__m128 vec = _mm_div_ps(v1.mVec128, v2.mVec128);
	vec = _mm_and_ps(vec, btvFFF0fMask);
	return btVector3(vec); 
#elif defined(BT_USE_NEON)
	float32x4_t x, y, v, m;

	x = v1.mVec128;
	y = v2.mVec128;
	
	v = vrecpeq_f32(y);			// v ~ 1/y
	m = vrecpsq_f32(y, v);		// m = (2-v*y)
	v = vmulq_f32(v, m);		// vv = v*m ~~ 1/y
	m = vrecpsq_f32(y, v);		// mm = (2-vv*y)
	v = vmulq_f32(v, x);		// x*vv
	v = vmulq_f32(v, m);		// (x*vv)*(2-vv*y) = x*(vv(2-vv*y)) ~~~ x/y

	return btVector3(v);
#else
	return btVector3(
			v1.m_floats[0] / v2.m_floats[0], 
			v1.m_floats[1] / v2.m_floats[1],
			v1.m_floats[2] / v2.m_floats[2]);
#endif
}

/**@brief Return the dot product between two vectors */
SIMD_FORCE_INLINE btScalar 
btDot(const btVector3& v1, const btVector3& v2) 
{ 
	return v1.dot(v2); 
}


/**@brief Return the distance squared between two vectors */
SIMD_FORCE_INLINE btScalar
btDistance2(const btVector3& v1, const btVector3& v2) 
{ 
	return v1.distance2(v2); 
}


/**@brief Return the distance between two vectors */
SIMD_FORCE_INLINE btScalar
btDistance(const btVector3& v1, const btVector3& v2) 
{ 
	return v1.distance(v2); 
}

/**@brief Return the angle between two vectors */
SIMD_FORCE_INLINE btScalar
btAngle(const btVector3& v1, const btVector3& v2) 
{ 
	return v1.angle(v2); 
}

/**@brief Return the cross product of two vectors */
SIMD_FORCE_INLINE btVector3 
btCross(const btVector3& v1, const btVector3& v2) 
{ 
	return v1.cross(v2); 
}

SIMD_FORCE_INLINE btScalar
btTriple(const btVector3& v1, const btVector3& v2, const btVector3& v3)
{
	return v1.triple(v2, v3);
}

/**@brief Return the linear interpolation between two vectors
 * @param v1 One vector 
 * @param v2 The other vector 
 * @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */
SIMD_FORCE_INLINE btVector3 
lerp(const btVector3& v1, const btVector3& v2, const btScalar& t)
{
	return v1.lerp(v2, t);
}



SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const
{
	return (v - *this).length2();
}

SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3& v) const
{
	return (v - *this).length();
}

SIMD_FORCE_INLINE btVector3 btVector3::normalized() const
{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
	btVector3 norm = *this;

	return norm.normalize();
#else
	return *this / length();
#endif
} 

SIMD_FORCE_INLINE btVector3 btVector3::rotate( const btVector3& wAxis, const btScalar _angle ) const
{
	// wAxis must be a unit lenght vector

#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)

    __m128 O = _mm_mul_ps(wAxis.mVec128, mVec128);
	btScalar ssin = btSin( _angle );
    __m128 C = wAxis.cross( mVec128 ).mVec128;
	O = _mm_and_ps(O, btvFFF0fMask);
    btScalar scos = btCos( _angle );
	
	__m128 vsin = _mm_load_ss(&ssin);	//	(S 0 0 0)
    __m128 vcos = _mm_load_ss(&scos);	//	(S 0 0 0)
	
	__m128 Y = bt_pshufd_ps(O, 0xC9);	//	(Y Z X 0)
	__m128 Z = bt_pshufd_ps(O, 0xD2);	//	(Z X Y 0)
	O = _mm_add_ps(O, Y);
	vsin = bt_pshufd_ps(vsin, 0x80);	//	(S S S 0)
	O = _mm_add_ps(O, Z);
    vcos = bt_pshufd_ps(vcos, 0x80);	//	(S S S 0)
	
    vsin = vsin * C; 
	O = O * wAxis.mVec128; 
	__m128 X = mVec128 - O; 
	
    O = O + vsin;
	vcos = vcos * X;
	O = O + vcos;	
	
	return btVector3(O);
#else
	btVector3 o = wAxis * wAxis.dot( *this );
	btVector3 _x = *this - o;
	btVector3 _y;

	_y = wAxis.cross( *this );

	return ( o + _x * btCos( _angle ) + _y * btSin( _angle ) );
#endif
}

SIMD_FORCE_INLINE   long    btVector3::maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const
{
#if defined (BT_USE_SSE) || defined (BT_USE_NEON)
    #if defined _WIN32 || defined (BT_USE_SSE)
        const long scalar_cutoff = 10;
        long _maxdot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut );
    #elif defined BT_USE_NEON
        const long scalar_cutoff = 4;
        extern long (*_maxdot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut );
    #endif
    if( array_count < scalar_cutoff )
#else
	
#endif//BT_USE_SSE || BT_USE_NEON
    {
        btScalar maxDot = -SIMD_INFINITY;
        int i = 0;
        int ptIndex = -1;
        for( i = 0; i < array_count; i++ )
        {
            btScalar dot = array[i].dot(*this);
            
            if( dot > maxDot )
            {
                maxDot = dot;
                ptIndex = i;
            }
        }
        
        dotOut = maxDot;
        return ptIndex;
    }
#if defined (BT_USE_SSE) || defined (BT_USE_NEON)
    return _maxdot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut );
#endif
}

SIMD_FORCE_INLINE   long    btVector3::minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const
{
#if defined (BT_USE_SSE) || defined (BT_USE_NEON)
    #if defined BT_USE_SSE
        const long scalar_cutoff = 10;
        long _mindot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut );
    #elif defined BT_USE_NEON
        const long scalar_cutoff = 4;
        extern long (*_mindot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut );
    #else
        #error unhandled arch!
    #endif
    
    if( array_count < scalar_cutoff )
#endif//BT_USE_SSE || BT_USE_NEON
    {
        btScalar  minDot = SIMD_INFINITY;
        int i = 0;
        int ptIndex = -1;
        
        for( i = 0; i < array_count; i++ )
        {
            btScalar dot = array[i].dot(*this);
            
            if( dot < minDot )
            {
                minDot = dot;
                ptIndex = i;
            }
        }
        
        dotOut = minDot;
        
        return ptIndex;
    }
#if defined (BT_USE_SSE) || defined (BT_USE_NEON)
    return _mindot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut );
#endif
}


class btVector4 : public btVector3
{
public:

	SIMD_FORCE_INLINE btVector4() {}


	SIMD_FORCE_INLINE btVector4(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w) 
		: btVector3(_x,_y,_z)
	{
		m_floats[3] = _w;
	}

#if (defined (BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined (BT_USE_NEON) 
	SIMD_FORCE_INLINE btVector4(const btSimdFloat4 vec)
	{
		mVec128 = vec;
	}

	SIMD_FORCE_INLINE btVector4(const btVector3& rhs)
	{
		mVec128 = rhs.mVec128;
	}

	SIMD_FORCE_INLINE btVector4& 
	operator=(const btVector4& v) 
	{
		mVec128 = v.mVec128;
		return *this;
	}
#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) 

	SIMD_FORCE_INLINE btVector4 absolute4() const 
	{
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) 
		return btVector4(_mm_and_ps(mVec128, btvAbsfMask));
#elif defined(BT_USE_NEON)
		return btVector4(vabsq_f32(mVec128));
#else	
		return btVector4(
			btFabs(m_floats[0]), 
			btFabs(m_floats[1]), 
			btFabs(m_floats[2]),
			btFabs(m_floats[3]));
#endif
	}


	btScalar	getW() const { return m_floats[3];}


		SIMD_FORCE_INLINE int maxAxis4() const
	{
		int maxIndex = -1;
		btScalar maxVal = btScalar(-BT_LARGE_FLOAT);
		if (m_floats[0] > maxVal)
		{
			maxIndex = 0;
			maxVal = m_floats[0];
		}
		if (m_floats[1] > maxVal)
		{
			maxIndex = 1;
			maxVal = m_floats[1];
		}
		if (m_floats[2] > maxVal)
		{
			maxIndex = 2;
			maxVal =m_floats[2];
		}
		if (m_floats[3] > maxVal)
		{
			maxIndex = 3;
			maxVal = m_floats[3];
		}

		return maxIndex;
	}


	SIMD_FORCE_INLINE int minAxis4() const
	{
		int minIndex = -1;
		btScalar minVal = btScalar(BT_LARGE_FLOAT);
		if (m_floats[0] < minVal)
		{
			minIndex = 0;
			minVal = m_floats[0];
		}
		if (m_floats[1] < minVal)
		{
			minIndex = 1;
			minVal = m_floats[1];
		}
		if (m_floats[2] < minVal)
		{
			minIndex = 2;
			minVal =m_floats[2];
		}
		if (m_floats[3] < minVal)
		{
			minIndex = 3;
			minVal = m_floats[3];
		}
		
		return minIndex;
	}


	SIMD_FORCE_INLINE int closestAxis4() const 
	{
		return absolute4().maxAxis4();
	}

	
 

  /**@brief Set x,y,z and zero w 
   * @param x Value of x
   * @param y Value of y
   * @param z Value of z
   */
		

/*		void getValue(btScalar *m) const 
		{
			m[0] = m_floats[0];
			m[1] = m_floats[1];
			m[2] =m_floats[2];
		}
*/
/**@brief Set the values 
   * @param x Value of x
   * @param y Value of y
   * @param z Value of z
   * @param w Value of w
   */
		SIMD_FORCE_INLINE void	setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w)
		{
			m_floats[0]=_x;
			m_floats[1]=_y;
			m_floats[2]=_z;
			m_floats[3]=_w;
		}


};


///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
SIMD_FORCE_INLINE void	btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal)
{
	#ifdef BT_USE_DOUBLE_PRECISION
	unsigned char* dest = (unsigned char*) &destVal;
	unsigned char* src  = (unsigned char*) &sourceVal;
	dest[0] = src[7];
    dest[1] = src[6];
    dest[2] = src[5];
    dest[3] = src[4];
    dest[4] = src[3];
    dest[5] = src[2];
    dest[6] = src[1];
    dest[7] = src[0];
#else
	unsigned char* dest = (unsigned char*) &destVal;
	unsigned char* src  = (unsigned char*) &sourceVal;
	dest[0] = src[3];
    dest[1] = src[2];
    dest[2] = src[1];
    dest[3] = src[0];
#endif //BT_USE_DOUBLE_PRECISION
}
///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
SIMD_FORCE_INLINE void	btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec)
{
	for (int i=0;i<4;i++)
	{
		btSwapScalarEndian(sourceVec[i],destVec[i]);
	}

}

///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
SIMD_FORCE_INLINE void	btUnSwapVector3Endian(btVector3& vector)
{

	btVector3	swappedVec;
	for (int i=0;i<4;i++)
	{
		btSwapScalarEndian(vector[i],swappedVec[i]);
	}
	vector = swappedVec;
}

template <class T>
SIMD_FORCE_INLINE void btPlaneSpace1 (const T& n, T& p, T& q)
{
  if (btFabs(n[2]) > SIMDSQRT12) {
    // choose p in y-z plane
    btScalar a = n[1]*n[1] + n[2]*n[2];
    btScalar k = btRecipSqrt (a);
    p[0] = 0;
	p[1] = -n[2]*k;
	p[2] = n[1]*k;
    // set q = n x p
    q[0] = a*k;
	q[1] = -n[0]*p[2];
	q[2] = n[0]*p[1];
  }
  else {
    // choose p in x-y plane
    btScalar a = n[0]*n[0] + n[1]*n[1];
    btScalar k = btRecipSqrt (a);
    p[0] = -n[1]*k;
	p[1] = n[0]*k;
	p[2] = 0;
    // set q = n x p
    q[0] = -n[2]*p[1];
	q[1] = n[2]*p[0];
	q[2] = a*k;
  }
}


struct	btVector3FloatData
{
	float	m_floats[4];
};

struct	btVector3DoubleData
{
	double	m_floats[4];

};

SIMD_FORCE_INLINE	void	btVector3::serializeFloat(struct	btVector3FloatData& dataOut) const
{
	///could also do a memcpy, check if it is worth it
	for (int i=0;i<4;i++)
		dataOut.m_floats[i] = float(m_floats[i]);
}

SIMD_FORCE_INLINE void	btVector3::deSerializeFloat(const struct	btVector3FloatData& dataIn)
{
	for (int i=0;i<4;i++)
		m_floats[i] = btScalar(dataIn.m_floats[i]);
}


SIMD_FORCE_INLINE	void	btVector3::serializeDouble(struct	btVector3DoubleData& dataOut) const
{
	///could also do a memcpy, check if it is worth it
	for (int i=0;i<4;i++)
		dataOut.m_floats[i] = double(m_floats[i]);
}

SIMD_FORCE_INLINE void	btVector3::deSerializeDouble(const struct	btVector3DoubleData& dataIn)
{
	for (int i=0;i<4;i++)
		m_floats[i] = btScalar(dataIn.m_floats[i]);
}


SIMD_FORCE_INLINE	void	btVector3::serialize(struct	btVector3Data& dataOut) const
{
	///could also do a memcpy, check if it is worth it
	for (int i=0;i<4;i++)
		dataOut.m_floats[i] = m_floats[i];
}

SIMD_FORCE_INLINE void	btVector3::deSerialize(const struct	btVector3Data& dataIn)
{
	for (int i=0;i<4;i++)
		m_floats[i] = dataIn.m_floats[i];
}

#endif //BT_VECTOR3_H