This file is indexed.

/usr/include/capnp/capability.h is in libcapnp-dev 0.4.0-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
// Copyright (c) 2013, Kenton Varda <temporal@gmail.com>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef CAPNP_CAPABILITY_H_
#define CAPNP_CAPABILITY_H_

#include <kj/async.h>
#include "any.h"
#include "pointer-helpers.h"

namespace capnp {

template <typename Results>
class Response;

template <typename T>
class RemotePromise: public kj::Promise<Response<T>>, public T::Pipeline {
  // A Promise which supports pipelined calls.  T is typically a struct type.  T must declare
  // an inner "mix-in" type "Pipeline" which implements pipelining; RemotePromise simply
  // multiply-inherits that type along with Promise<Response<T>>.  T::Pipeline must be movable,
  // but does not need to be copyable (i.e. just like Promise<T>).
  //
  // The promise is for an owned pointer so that the RPC system can allocate the MessageReader
  // itself.

public:
  inline RemotePromise(kj::Promise<Response<T>>&& promise, typename T::Pipeline&& pipeline)
      : kj::Promise<Response<T>>(kj::mv(promise)),
        T::Pipeline(kj::mv(pipeline)) {}
  inline RemotePromise(decltype(nullptr))
      : kj::Promise<Response<T>>(nullptr),
        T::Pipeline(nullptr) {}
  KJ_DISALLOW_COPY(RemotePromise);
  RemotePromise(RemotePromise&& other) = default;
  RemotePromise& operator=(RemotePromise&& other) = default;
};

// =======================================================================================

class RequestHook;
class ResponseHook;
class PipelineHook;
class ClientHook;

template <typename Params, typename Results>
class Request: public Params::Builder {
  // A call that hasn't been sent yet.  This class extends a Builder for the call's "Params"
  // structure with a method send() that actually sends it.
  //
  // Given a Cap'n Proto method `foo(a :A, b :B): C`, the generated client interface will have
  // a method `Request<FooParams, C> startFoo()` (as well as a convenience method
  // `RemotePromise<C> foo(A::Reader a, B::Reader b)`).

public:
  inline Request(typename Params::Builder builder, kj::Own<RequestHook>&& hook)
      : Params::Builder(builder), hook(kj::mv(hook)) {}

  RemotePromise<Results> send();
  // Send the call and return a promise for the results.

private:
  kj::Own<RequestHook> hook;

  friend class Capability::Client;
  friend struct DynamicCapability;
  template <typename, typename>
  friend class CallContext;
  friend class RequestHook;
};

template <typename Results>
class Response: public Results::Reader {
  // A completed call.  This class extends a Reader for the call's answer structure.  The Response
  // is move-only -- once it goes out-of-scope, the underlying message will be freed.

public:
  inline Response(typename Results::Reader reader, kj::Own<ResponseHook>&& hook)
      : Results::Reader(reader), hook(kj::mv(hook)) {}

private:
  kj::Own<ResponseHook> hook;

  template <typename, typename>
  friend class Request;
};

class Capability::Client {
  // Base type for capability clients.

public:
  Client(decltype(nullptr));
  // If you need to declare a Client before you have anything to assign to it (perhaps because
  // the assignment is going to occur in an if/else scope), you can start by initializing it to
  // `nullptr`.  The resulting client is not meant to be called and throws exceptions from all
  // methods.

  template <typename T, typename = kj::EnableIf<kj::canConvert<T*, Capability::Server*>()>>
  Client(kj::Own<T>&& server);
  // Make a client capability that wraps the given server capability.  The server's methods will
  // only be executed in the given EventLoop, regardless of what thread calls the client's methods.

  template <typename T, typename = kj::EnableIf<kj::canConvert<T*, Client*>()>>
  Client(kj::Promise<T>&& promise);
  // Make a client from a promise for a future client.  The resulting client queues calls until the
  // promise resolves.

  Client(kj::Exception&& exception);
  // Make a broken client that throws the given exception from all calls.

  Client(Client& other);
  Client& operator=(Client& other);
  // Copies by reference counting.  Warning:  This refcounting is not thread-safe.  All copies of
  // the client must remain in one thread.

  Client(Client&&) = default;
  Client& operator=(Client&&) = default;
  // Move constructor avoids reference counting.

  explicit Client(kj::Own<ClientHook>&& hook);
  // For use by the RPC implementation:  Wrap a ClientHook.

  template <typename T>
  typename T::Client castAs();
  // Reinterpret the capability as implementing the given interface.  Note that no error will occur
  // here if the capability does not actually implement this interface, but later method calls will
  // fail.  It's up to the application to decide how indicate that additional interfaces are
  // supported.
  //
  // TODO(kenton):  GCC 4.8 / Clang 3.3:  rvalue-qualified version for better performance.

  template <typename T>
  typename T::Client castAs(InterfaceSchema schema);
  // Dynamic version.  `T` must be `DynamicCapability`, and you must `#include <capnp/dynamic.h>`.

  kj::Promise<void> whenResolved();
  // If the capability is actually only a promise, the returned promise resolves once the
  // capability itself has resolved to its final destination (or propagates the exception if
  // the capability promise is rejected).  This is mainly useful for error-checking in the case
  // where no calls are being made.  There is no reason to wait for this before making calls; if
  // the capability does not resolve, the call results will propagate the error.

  // TODO(someday):  method(s) for Join

protected:
  Client() = default;

  template <typename Params, typename Results>
  Request<Params, Results> newCall(uint64_t interfaceId, uint16_t methodId,
                                   kj::Maybe<MessageSize> sizeHint);

private:
  kj::Own<ClientHook> hook;

  static kj::Own<ClientHook> makeLocalClient(kj::Own<Capability::Server>&& server);

  template <typename, Kind>
  friend struct _::PointerHelpers;
  friend struct DynamicCapability;
  friend class Orphanage;
  friend struct DynamicStruct;
  friend struct DynamicList;
  template <typename, Kind>
  friend struct List;
};

// =======================================================================================
// Local capabilities

class CallContextHook;

template <typename Params, typename Results>
class CallContext: public kj::DisallowConstCopy {
  // Wrapper around CallContextHook with a specific return type.
  //
  // Methods of this class may only be called from within the server's event loop, not from other
  // threads.
  //
  // The CallContext becomes invalid as soon as the call reports completion.

public:
  explicit CallContext(CallContextHook& hook);

  typename Params::Reader getParams();
  // Get the params payload.

  void releaseParams();
  // Release the params payload.  getParams() will throw an exception after this is called.
  // Releasing the params may allow the RPC system to free up buffer space to handle other
  // requests.  Long-running asynchronous methods should try to call this as early as is
  // convenient.

  typename Results::Builder getResults(kj::Maybe<MessageSize> sizeHint = nullptr);
  typename Results::Builder initResults(kj::Maybe<MessageSize> sizeHint = nullptr);
  void setResults(typename Results::Reader value);
  void adoptResults(Orphan<Results>&& value);
  Orphanage getResultsOrphanage(kj::Maybe<MessageSize> sizeHint = nullptr);
  // Manipulate the results payload.  The "Return" message (part of the RPC protocol) will
  // typically be allocated the first time one of these is called.  Some RPC systems may
  // allocate these messages in a limited space (such as a shared memory segment), therefore the
  // application should delay calling these as long as is convenient to do so (but don't delay
  // if doing so would require extra copies later).
  //
  // `sizeHint` indicates a guess at the message size.  This will usually be used to decide how
  // much space to allocate for the first message segment (don't worry: only space that is actually
  // used will be sent on the wire).  If omitted, the system decides.  The message root pointer
  // should not be included in the size.  So, if you are simply going to copy some existing message
  // directly into the results, just call `.totalSize()` and pass that in.

  template <typename SubParams>
  kj::Promise<void> tailCall(Request<SubParams, Results>&& tailRequest);
  // Resolve the call by making a tail call.  `tailRequest` is a request that has been filled in
  // but not yet sent.  The context will send the call, then fill in the results with the result
  // of the call.  If tailCall() is used, {get,init,set,adopt}Results (above) *must not* be called.
  //
  // The RPC implementation may be able to optimize a tail call to another machine such that the
  // results never actually pass through this machine.  Even if no such optimization is possible,
  // `tailCall()` may allow pipelined calls to be forwarded optimistically to the new call site.
  //
  // In general, this should be the last thing a method implementation calls, and the promise
  // returned from `tailCall()` should then be returned by the method implementation.

  void allowCancellation();
  // Indicate that it is OK for the RPC system to discard its Promise for this call's result if
  // the caller cancels the call, thereby transitively canceling any asynchronous operations the
  // call implementation was performing.  This is not done by default because it could represent a
  // security risk:  applications must be carefully written to ensure that they do not end up in
  // a bad state if an operation is canceled at an arbitrary point.  However, for long-running
  // method calls that hold significant resources, prompt cancellation is often useful.
  //
  // Keep in mind that asynchronous cancellation cannot occur while the method is synchronously
  // executing on a local thread.  The method must perform an asynchronous operation or call
  // `EventLoop::current().runLater()` to yield control.
  //
  // Note:  You might think that we should offer `onCancel()` and/or `isCanceled()` methods that
  // provide notification when the caller cancels the request without forcefully killing off the
  // promise chain.  Unfortunately, this composes poorly with promise forking:  the canceled
  // path may be just one branch of a fork of the result promise.  The other branches still want
  // the call to continue.  Promise forking is used within the Cap'n Proto implementation -- in
  // particular each pipelined call forks the result promise.  So, if a caller made a pipelined
  // call and then dropped the original object, the call should not be canceled, but it would be
  // excessively complicated for the framework to avoid notififying of cancellation as long as
  // pipelined calls still exist.

private:
  CallContextHook* hook;

  friend class Capability::Server;
  friend struct DynamicCapability;
};

class Capability::Server {
  // Objects implementing a Cap'n Proto interface must subclass this.  Typically, such objects
  // will instead subclass a typed Server interface which will take care of implementing
  // dispatchCall().

public:
  virtual kj::Promise<void> dispatchCall(uint64_t interfaceId, uint16_t methodId,
                                         CallContext<AnyPointer, AnyPointer> context) = 0;
  // Call the given method.  `params` is the input struct, and should be released as soon as it
  // is no longer needed.  `context` may be used to allocate the output struct and deal with
  // cancellation.

  // TODO(someday):  Method which can optionally be overridden to implement Join when the object is
  //   a proxy.

protected:
  template <typename Params, typename Results>
  CallContext<Params, Results> internalGetTypedContext(
      CallContext<AnyPointer, AnyPointer> typeless);
  kj::Promise<void> internalUnimplemented(const char* actualInterfaceName,
                                          uint64_t requestedTypeId);
  kj::Promise<void> internalUnimplemented(const char* interfaceName,
                                          uint64_t typeId, uint16_t methodId);
  kj::Promise<void> internalUnimplemented(const char* interfaceName, const char* methodName,
                                          uint64_t typeId, uint16_t methodId);
};

// =======================================================================================
// Hook interfaces which must be implemented by the RPC system.  Applications never call these
// directly; the RPC system implements them and the types defined earlier in this file wrap them.

class RequestHook {
  // Hook interface implemented by RPC system representing a request being built.

public:
  virtual RemotePromise<AnyPointer> send() = 0;
  // Send the call and return a promise for the result.

  virtual const void* getBrand() = 0;
  // Returns a void* that identifies who made this request.  This can be used by an RPC adapter to
  // discover when tail call is going to be sent over its own connection and therefore can be
  // optimized into a remote tail call.

  template <typename T, typename U>
  inline static kj::Own<RequestHook> from(Request<T, U>&& request) {
    return kj::mv(request.hook);
  }
};

class ResponseHook {
  // Hook interface implemented by RPC system representing a response.
  //
  // At present this class has no methods.  It exists only for garbage collection -- when the
  // ResponseHook is destroyed, the results can be freed.

public:
  virtual ~ResponseHook() noexcept(false);
  // Just here to make sure the type is dynamic.
};

// class PipelineHook is declared in any.h because it is needed there.

class ClientHook {
public:
  ClientHook();

  virtual Request<AnyPointer, AnyPointer> newCall(
      uint64_t interfaceId, uint16_t methodId, kj::Maybe<MessageSize> sizeHint) = 0;
  // Start a new call, allowing the client to allocate request/response objects as it sees fit.
  // This version is used when calls are made from application code in the local process.

  struct VoidPromiseAndPipeline {
    kj::Promise<void> promise;
    kj::Own<PipelineHook> pipeline;
  };

  virtual VoidPromiseAndPipeline call(uint64_t interfaceId, uint16_t methodId,
                                      kj::Own<CallContextHook>&& context) = 0;
  // Call the object, but the caller controls allocation of the request/response objects.  If the
  // callee insists on allocating this objects itself, it must make a copy.  This version is used
  // when calls come in over the network via an RPC system.  During the call, the context object
  // may be used from any thread so long as it is only used from one thread at a time.  Note that
  // even if the returned `Promise<void>` is discarded, the call may continue executing if any
  // pipelined calls are waiting for it; the call is only truly done when the CallContextHook is
  // destroyed.
  //
  // Since the caller of this method chooses the CallContext implementation, it is the caller's
  // responsibility to ensure that the returned promise is not canceled unless allowed via
  // the context's `allowCancellation()`.
  //
  // The call must not begin synchronously, as the caller may hold arbitrary mutexes.

  virtual kj::Maybe<ClientHook&> getResolved() = 0;
  // If this ClientHook is a promise that has already resolved, returns the inner, resolved version
  // of the capability.  The caller may permanently replace this client with the resolved one if
  // desired.  Returns null if the client isn't a promise or hasn't resolved yet -- use
  // `whenMoreResolved()` to distinguish between them.

  virtual kj::Maybe<kj::Promise<kj::Own<ClientHook>>> whenMoreResolved() = 0;
  // If this client is a settled reference (not a promise), return nullptr.  Otherwise, return a
  // promise that eventually resolves to a new client that is closer to being the final, settled
  // client (i.e. the value eventually returned by `getResolved()`).  Calling this repeatedly
  // should eventually produce a settled client.

  kj::Promise<void> whenResolved();
  // Repeatedly calls whenMoreResolved() until it returns nullptr.

  virtual kj::Own<ClientHook> addRef() = 0;
  // Return a new reference to the same capability.

  virtual const void* getBrand() = 0;
  // Returns a void* that identifies who made this client.  This can be used by an RPC adapter to
  // discover when a capability it needs to marshal is one that it created in the first place, and
  // therefore it can transfer the capability without proxying.
};

class CallContextHook {
  // Hook interface implemented by RPC system to manage a call on the server side.  See
  // CallContext<T>.

public:
  virtual AnyPointer::Reader getParams() = 0;
  virtual void releaseParams() = 0;
  virtual AnyPointer::Builder getResults(kj::Maybe<MessageSize> sizeHint) = 0;
  virtual kj::Promise<void> tailCall(kj::Own<RequestHook>&& request) = 0;
  virtual void allowCancellation() = 0;

  virtual kj::Promise<AnyPointer::Pipeline> onTailCall() = 0;
  // If `tailCall()` is called, resolves to the PipelineHook from the tail call.  An
  // implementation of `ClientHook::call()` is allowed to call this at most once.

  virtual ClientHook::VoidPromiseAndPipeline directTailCall(kj::Own<RequestHook>&& request) = 0;
  // Call this when you would otherwise call onTailCall() immediately followed by tailCall().
  // Implementations of tailCall() should typically call directTailCall() and then fulfill the
  // promise fulfiller for onTailCall() with the returned pipeline.

  virtual kj::Own<CallContextHook> addRef() = 0;
};

kj::Own<ClientHook> newLocalPromiseClient(kj::Promise<kj::Own<ClientHook>>&& promise);
// Returns a ClientHook that queues up calls until `promise` resolves, then forwards them to
// the new client.  This hook's `getResolved()` and `whenMoreResolved()` methods will reflect the
// redirection to the eventual replacement client.

kj::Own<ClientHook> newBrokenCap(kj::StringPtr reason);
kj::Own<ClientHook> newBrokenCap(kj::Exception&& reason);
// Helper function that creates a capability which simply throws exceptions when called.

kj::Own<PipelineHook> newBrokenPipeline(kj::Exception&& reason);
// Helper function that creates a pipeline which simply throws exceptions when called.

// =======================================================================================
// Extend PointerHelpers for interfaces

namespace _ {  // private

template <typename T>
struct PointerHelpers<T, Kind::INTERFACE> {
  static inline typename T::Client get(PointerReader reader) {
    return typename T::Client(reader.getCapability());
  }
  static inline typename T::Client get(PointerBuilder builder) {
    return typename T::Client(builder.getCapability());
  }
  static inline void set(PointerBuilder builder, typename T::Client&& value) {
    builder.setCapability(kj::mv(value.Capability::Client::hook));
  }
  static inline void set(PointerBuilder builder, typename T::Client& value) {
    builder.setCapability(value.Capability::Client::hook->addRef());
  }
  static inline void adopt(PointerBuilder builder, Orphan<T>&& value) {
    builder.adopt(kj::mv(value.builder));
  }
  static inline Orphan<T> disown(PointerBuilder builder) {
    return Orphan<T>(builder.disown());
  }
};

}  // namespace _ (private)

// =======================================================================================
// Extend List for interfaces

template <typename T>
struct List<T, Kind::INTERFACE> {
  List() = delete;

  class Reader {
  public:
    typedef List<T> Reads;

    Reader() = default;
    inline explicit Reader(_::ListReader reader): reader(reader) {}

    inline uint size() const { return reader.size() / ELEMENTS; }
    inline typename T::Client operator[](uint index) const {
      KJ_IREQUIRE(index < size());
      return typename T::Client(reader.getPointerElement(index * ELEMENTS).getCapability());
    }

    typedef _::IndexingIterator<const Reader, typename T::Client> Iterator;
    inline Iterator begin() const { return Iterator(this, 0); }
    inline Iterator end() const { return Iterator(this, size()); }

  private:
    _::ListReader reader;
    template <typename U, Kind K>
    friend struct _::PointerHelpers;
    template <typename U, Kind K>
    friend struct List;
    friend class Orphanage;
    template <typename U, Kind K>
    friend struct ToDynamic_;
  };

  class Builder {
  public:
    typedef List<T> Builds;

    Builder() = delete;
    inline Builder(decltype(nullptr)) {}
    inline explicit Builder(_::ListBuilder builder): builder(builder) {}

    inline operator Reader() { return Reader(builder.asReader()); }
    inline Reader asReader() { return Reader(builder.asReader()); }

    inline uint size() const { return builder.size() / ELEMENTS; }
    inline typename T::Client operator[](uint index) {
      KJ_IREQUIRE(index < size());
      return typename T::Client(builder.getPointerElement(index * ELEMENTS).getCapability());
    }
    inline void set(uint index, typename T::Client value) {
      KJ_IREQUIRE(index < size());
      builder.getPointerElement(index * ELEMENTS).setCapability(kj::mv(value.hook));
    }
    inline void adopt(uint index, Orphan<T>&& value) {
      KJ_IREQUIRE(index < size());
      builder.getPointerElement(index * ELEMENTS).adopt(kj::mv(value));
    }
    inline Orphan<T> disown(uint index) {
      KJ_IREQUIRE(index < size());
      return Orphan<T>(builder.getPointerElement(index * ELEMENTS).disown());
    }

    typedef _::IndexingIterator<Builder, typename T::Client> Iterator;
    inline Iterator begin() { return Iterator(this, 0); }
    inline Iterator end() { return Iterator(this, size()); }

  private:
    _::ListBuilder builder;
    friend class Orphanage;
    template <typename U, Kind K>
    friend struct ToDynamic_;
  };

private:
  inline static _::ListBuilder initPointer(_::PointerBuilder builder, uint size) {
    return builder.initList(_::FieldSize::POINTER, size * ELEMENTS);
  }
  inline static _::ListBuilder getFromPointer(_::PointerBuilder builder, const word* defaultValue) {
    return builder.getList(_::FieldSize::POINTER, defaultValue);
  }
  inline static _::ListReader getFromPointer(
      const _::PointerReader& reader, const word* defaultValue) {
    return reader.getList(_::FieldSize::POINTER, defaultValue);
  }

  template <typename U, Kind k>
  friend struct List;
  template <typename U, Kind K>
  friend struct _::PointerHelpers;
};

// =======================================================================================
// Inline implementation details

template <typename Params, typename Results>
RemotePromise<Results> Request<Params, Results>::send() {
  auto typelessPromise = hook->send();

  // Convert the Promise to return the correct response type.
  // Explicitly upcast to kj::Promise to make clear that calling .then() doesn't invalidate the
  // Pipeline part of the RemotePromise.
  auto typedPromise = kj::implicitCast<kj::Promise<Response<AnyPointer>>&>(typelessPromise)
      .then([](Response<AnyPointer>&& response) -> Response<Results> {
        return Response<Results>(response.getAs<Results>(), kj::mv(response.hook));
      });

  // Wrap the typeless pipeline in a typed wrapper.
  typename Results::Pipeline typedPipeline(
      kj::mv(kj::implicitCast<AnyPointer::Pipeline&>(typelessPromise)));

  return RemotePromise<Results>(kj::mv(typedPromise), kj::mv(typedPipeline));
}

inline Capability::Client::Client(kj::Own<ClientHook>&& hook): hook(kj::mv(hook)) {}
template <typename T, typename>
inline Capability::Client::Client(kj::Own<T>&& server)
    : hook(makeLocalClient(kj::mv(server))) {}
template <typename T, typename>
inline Capability::Client::Client(kj::Promise<T>&& promise)
    : hook(newLocalPromiseClient(promise.then([](T&& t) { return kj::mv(t.hook); }))) {}
inline Capability::Client::Client(Client& other): hook(other.hook->addRef()) {}
inline Capability::Client& Capability::Client::operator=(Client& other) {
  hook = other.hook->addRef();
  return *this;
}
template <typename T>
inline typename T::Client Capability::Client::castAs() {
  return typename T::Client(hook->addRef());
}
inline kj::Promise<void> Capability::Client::whenResolved() {
  return hook->whenResolved();
}
template <typename Params, typename Results>
inline Request<Params, Results> Capability::Client::newCall(
    uint64_t interfaceId, uint16_t methodId, kj::Maybe<MessageSize> sizeHint) {
  auto typeless = hook->newCall(interfaceId, methodId, sizeHint);
  return Request<Params, Results>(typeless.template getAs<Params>(), kj::mv(typeless.hook));
}

template <typename Params, typename Results>
inline CallContext<Params, Results>::CallContext(CallContextHook& hook): hook(&hook) {}
template <typename Params, typename Results>
inline typename Params::Reader CallContext<Params, Results>::getParams() {
  return hook->getParams().template getAs<Params>();
}
template <typename Params, typename Results>
inline void CallContext<Params, Results>::releaseParams() {
  hook->releaseParams();
}
template <typename Params, typename Results>
inline typename Results::Builder CallContext<Params, Results>::getResults(
    kj::Maybe<MessageSize> sizeHint) {
  // `template` keyword needed due to: http://llvm.org/bugs/show_bug.cgi?id=17401
  return hook->getResults(sizeHint).template getAs<Results>();
}
template <typename Params, typename Results>
inline typename Results::Builder CallContext<Params, Results>::initResults(
    kj::Maybe<MessageSize> sizeHint) {
  // `template` keyword needed due to: http://llvm.org/bugs/show_bug.cgi?id=17401
  return hook->getResults(sizeHint).template initAs<Results>();
}
template <typename Params, typename Results>
inline void CallContext<Params, Results>::setResults(typename Results::Reader value) {
  hook->getResults(value.totalSize()).set(value);
}
template <typename Params, typename Results>
inline void CallContext<Params, Results>::adoptResults(Orphan<Results>&& value) {
  hook->getResults(nullptr).adopt(kj::mv(value));
}
template <typename Params, typename Results>
inline Orphanage CallContext<Params, Results>::getResultsOrphanage(
    kj::Maybe<MessageSize> sizeHint) {
  return Orphanage::getForMessageContaining(hook->getResults(sizeHint));
}
template <typename Params, typename Results>
template <typename SubParams>
inline kj::Promise<void> CallContext<Params, Results>::tailCall(
    Request<SubParams, Results>&& tailRequest) {
  return hook->tailCall(kj::mv(tailRequest.hook));
}
template <typename Params, typename Results>
inline void CallContext<Params, Results>::allowCancellation() {
  hook->allowCancellation();
}

template <typename Params, typename Results>
CallContext<Params, Results> Capability::Server::internalGetTypedContext(
    CallContext<AnyPointer, AnyPointer> typeless) {
  return CallContext<Params, Results>(*typeless.hook);
}

}  // namespace capnp

#endif  // CAPNP_CAPABILITY_H_