/usr/include/capnp/common.h is in libcapnp-dev 0.4.0-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 | // Copyright (c) 2013, Kenton Varda <temporal@gmail.com>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This file contains types which are intended to help detect incorrect usage at compile
// time, but should then be optimized down to basic primitives (usually, integers) by the
// compiler.
#ifndef CAPNP_COMMON_H_
#define CAPNP_COMMON_H_
#include <kj/units.h>
#include <inttypes.h>
namespace capnp {
#define CAPNP_VERSION_MAJOR 0
#define CAPNP_VERSION_MINOR 4
#define CAPNP_VERSION_MICRO 0
#define CAPNP_VERSION \
(CAPNP_VERSION_MAJOR * 1000000 + CAPNP_VERSION_MINOR * 1000 + CAPNP_VERSION_MICRO)
typedef unsigned int uint;
struct Void {
// Type used for Void fields. Using C++'s "void" type creates a bunch of issues since it behaves
// differently from other types.
inline constexpr bool operator==(Void other) const { return true; }
inline constexpr bool operator!=(Void other) const { return false; }
};
static constexpr Void VOID = Void();
// Constant value for `Void`, which is an empty struct.
template <typename T>
inline T& operator<<(T& os, Void) { return os << "void"; }
struct Text;
struct Data;
enum class Kind: uint8_t {
PRIMITIVE,
BLOB,
ENUM,
STRUCT,
UNION,
INTERFACE,
LIST,
UNKNOWN
};
namespace _ { // private
template <typename T> struct Kind_ { static constexpr Kind kind = Kind::UNKNOWN; };
template <> struct Kind_<Void> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<bool> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<int64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint8_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint16_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint32_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<uint64_t> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<float> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<double> { static constexpr Kind kind = Kind::PRIMITIVE; };
template <> struct Kind_<Text> { static constexpr Kind kind = Kind::BLOB; };
template <> struct Kind_<Data> { static constexpr Kind kind = Kind::BLOB; };
} // namespace _ (private)
template <typename T>
inline constexpr Kind kind() {
return _::Kind_<T>::kind;
}
template <typename T, Kind k = kind<T>()>
struct List;
template <typename T> struct ListElementType_;
template <typename T> struct ListElementType_<List<T>> { typedef T Type; };
template <typename T> using ListElementType = typename ListElementType_<T>::Type;
namespace _ { // private
template <typename T, Kind k> struct Kind_<List<T, k>> { static constexpr Kind kind = Kind::LIST; };
} // namespace _ (private)
struct Capability {
// A capability without type-safe methods. Typed capability clients wrap `Client` and typed
// capability servers subclass `Server` to dispatch to the regular, typed methods.
//
// Contents defined in capability.h. Declared here just so we can specialize Kind_.
class Client;
class Server;
};
namespace _ { // private
template <> struct Kind_<Capability> { static constexpr Kind kind = Kind::INTERFACE; };
} // namespace _ (private)
template <typename T, Kind k = kind<T>()> struct ReaderFor_ { typedef typename T::Reader Type; };
template <typename T> struct ReaderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct ReaderFor_<T, Kind::ENUM> { typedef T Type; };
template <typename T> struct ReaderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using ReaderFor = typename ReaderFor_<T>::Type;
// The type returned by List<T>::Reader::operator[].
template <typename T, Kind k = kind<T>()> struct BuilderFor_ { typedef typename T::Builder Type; };
template <typename T> struct BuilderFor_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct BuilderFor_<T, Kind::ENUM> { typedef T Type; };
template <typename T> struct BuilderFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using BuilderFor = typename BuilderFor_<T>::Type;
// The type returned by List<T>::Builder::operator[].
template <typename T, Kind k = kind<T>()> struct PipelineFor_ { typedef typename T::Pipeline Type;};
template <typename T> struct PipelineFor_<T, Kind::INTERFACE> { typedef typename T::Client Type; };
template <typename T> using PipelineFor = typename PipelineFor_<T>::Type;
template <typename T, Kind k = kind<T>()> struct TypeIfEnum_;
template <typename T> struct TypeIfEnum_<T, Kind::ENUM> { typedef T Type; };
template <typename T>
using TypeIfEnum = typename TypeIfEnum_<kj::Decay<T>>::Type;
template <typename T>
using FromReader = typename kj::Decay<T>::Reads;
// FromReader<MyType::Reader> = MyType (for any Cap'n Proto type).
template <typename T>
using FromBuilder = typename kj::Decay<T>::Builds;
// FromBuilder<MyType::Builder> = MyType (for any Cap'n Proto type).
template <typename T>
using FromClient = typename kj::Decay<T>::Calls;
// FromReader<MyType::Client> = MyType (for any Cap'n Proto interface type).
template <typename T>
using FromServer = typename kj::Decay<T>::Serves;
// FromBuilder<MyType::Server> = MyType (for any Cap'n Proto interface type).
namespace _ { // private
template <typename T, Kind k = kind<T>()>
struct PointerHelpers;
} // namespace _ (private)
struct MessageSize {
// Size of a message. Every struct type has a method `.totalSize()` that returns this.
uint64_t wordCount;
uint capCount;
};
// =======================================================================================
// Raw memory types and measures
using kj::byte;
class word { uint64_t content KJ_UNUSED_MEMBER; KJ_DISALLOW_COPY(word); public: word() = default; };
// word is an opaque type with size of 64 bits. This type is useful only to make pointer
// arithmetic clearer. Since the contents are private, the only way to access them is to first
// reinterpret_cast to some other pointer type.
//
// Copying is disallowed because you should always use memcpy(). Otherwise, you may run afoul of
// aliasing rules.
//
// A pointer of type word* should always be word-aligned even if won't actually be dereferenced as
// that type.
static_assert(sizeof(byte) == 1, "uint8_t is not one byte?");
static_assert(sizeof(word) == 8, "uint64_t is not 8 bytes?");
#if CAPNP_DEBUG_TYPES
// Set CAPNP_DEBUG_TYPES to 1 to use kj::Quantity for "count" types. Otherwise, plain integers are
// used. All the code should still operate exactly the same, we just lose compile-time checking.
// Note that this will also change symbol names, so it's important that the library and any clients
// be compiled with the same setting here.
//
// We disable this by default to reduce symbol name size and avoid any possibility of the compiler
// failing to fully-optimize the types, but anyone modifying Cap'n Proto itself should enable this
// during development and testing.
namespace _ { class BitLabel; class ElementLabel; struct WirePointer; }
typedef kj::Quantity<uint, _::BitLabel> BitCount;
typedef kj::Quantity<uint8_t, _::BitLabel> BitCount8;
typedef kj::Quantity<uint16_t, _::BitLabel> BitCount16;
typedef kj::Quantity<uint32_t, _::BitLabel> BitCount32;
typedef kj::Quantity<uint64_t, _::BitLabel> BitCount64;
typedef kj::Quantity<uint, byte> ByteCount;
typedef kj::Quantity<uint8_t, byte> ByteCount8;
typedef kj::Quantity<uint16_t, byte> ByteCount16;
typedef kj::Quantity<uint32_t, byte> ByteCount32;
typedef kj::Quantity<uint64_t, byte> ByteCount64;
typedef kj::Quantity<uint, word> WordCount;
typedef kj::Quantity<uint8_t, word> WordCount8;
typedef kj::Quantity<uint16_t, word> WordCount16;
typedef kj::Quantity<uint32_t, word> WordCount32;
typedef kj::Quantity<uint64_t, word> WordCount64;
typedef kj::Quantity<uint, _::ElementLabel> ElementCount;
typedef kj::Quantity<uint8_t, _::ElementLabel> ElementCount8;
typedef kj::Quantity<uint16_t, _::ElementLabel> ElementCount16;
typedef kj::Quantity<uint32_t, _::ElementLabel> ElementCount32;
typedef kj::Quantity<uint64_t, _::ElementLabel> ElementCount64;
typedef kj::Quantity<uint, _::WirePointer> WirePointerCount;
typedef kj::Quantity<uint8_t, _::WirePointer> WirePointerCount8;
typedef kj::Quantity<uint16_t, _::WirePointer> WirePointerCount16;
typedef kj::Quantity<uint32_t, _::WirePointer> WirePointerCount32;
typedef kj::Quantity<uint64_t, _::WirePointer> WirePointerCount64;
template <typename T, typename U>
inline constexpr U* operator+(U* ptr, kj::Quantity<T, U> offset) {
return ptr + offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator+(const U* ptr, kj::Quantity<T, U> offset) {
return ptr + offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr U* operator+=(U*& ptr, kj::Quantity<T, U> offset) {
return ptr = ptr + offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator+=(const U*& ptr, kj::Quantity<T, U> offset) {
return ptr = ptr + offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr U* operator-(U* ptr, kj::Quantity<T, U> offset) {
return ptr - offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator-(const U* ptr, kj::Quantity<T, U> offset) {
return ptr - offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr U* operator-=(U*& ptr, kj::Quantity<T, U> offset) {
return ptr = ptr - offset / kj::unit<kj::Quantity<T, U>>();
}
template <typename T, typename U>
inline constexpr const U* operator-=(const U*& ptr, kj::Quantity<T, U> offset) {
return ptr = ptr - offset / kj::unit<kj::Quantity<T, U>>();
}
#else
typedef uint BitCount;
typedef uint8_t BitCount8;
typedef uint16_t BitCount16;
typedef uint32_t BitCount32;
typedef uint64_t BitCount64;
typedef uint ByteCount;
typedef uint8_t ByteCount8;
typedef uint16_t ByteCount16;
typedef uint32_t ByteCount32;
typedef uint64_t ByteCount64;
typedef uint WordCount;
typedef uint8_t WordCount8;
typedef uint16_t WordCount16;
typedef uint32_t WordCount32;
typedef uint64_t WordCount64;
typedef uint ElementCount;
typedef uint8_t ElementCount8;
typedef uint16_t ElementCount16;
typedef uint32_t ElementCount32;
typedef uint64_t ElementCount64;
typedef uint WirePointerCount;
typedef uint8_t WirePointerCount8;
typedef uint16_t WirePointerCount16;
typedef uint32_t WirePointerCount32;
typedef uint64_t WirePointerCount64;
#endif
constexpr BitCount BITS = kj::unit<BitCount>();
constexpr ByteCount BYTES = kj::unit<ByteCount>();
constexpr WordCount WORDS = kj::unit<WordCount>();
constexpr ElementCount ELEMENTS = kj::unit<ElementCount>();
constexpr WirePointerCount POINTERS = kj::unit<WirePointerCount>();
// GCC 4.7 actually gives unused warnings on these constants in opt mode...
constexpr auto BITS_PER_BYTE KJ_UNUSED = 8 * BITS / BYTES;
constexpr auto BITS_PER_WORD KJ_UNUSED = 64 * BITS / WORDS;
constexpr auto BYTES_PER_WORD KJ_UNUSED = 8 * BYTES / WORDS;
constexpr auto BITS_PER_POINTER KJ_UNUSED = 64 * BITS / POINTERS;
constexpr auto BYTES_PER_POINTER KJ_UNUSED = 8 * BYTES / POINTERS;
constexpr auto WORDS_PER_POINTER KJ_UNUSED = 1 * WORDS / POINTERS;
constexpr WordCount POINTER_SIZE_IN_WORDS = 1 * POINTERS * WORDS_PER_POINTER;
template <typename T>
inline constexpr decltype(BYTES / ELEMENTS) bytesPerElement() {
return sizeof(T) * BYTES / ELEMENTS;
}
template <typename T>
inline constexpr decltype(BITS / ELEMENTS) bitsPerElement() {
return sizeof(T) * 8 * BITS / ELEMENTS;
}
inline constexpr ByteCount intervalLength(const byte* a, const byte* b) {
return uint(b - a) * BYTES;
}
inline constexpr WordCount intervalLength(const word* a, const word* b) {
return uint(b - a) * WORDS;
}
} // namespace capnp
#endif // CAPNP_COMMON_H_
|