/usr/include/capnp/layout.h is in libcapnp-dev 0.4.0-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 | // Copyright (c) 2013, Kenton Varda <temporal@gmail.com>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This file is NOT intended for use by clients, except in generated code.
//
// This file defines low-level, non-type-safe classes for traversing the Cap'n Proto memory layout
// (which is also its wire format). Code generated by the Cap'n Proto compiler uses these classes,
// as does other parts of the Cap'n proto library which provide a higher-level interface for
// dynamic introspection.
#ifndef CAPNP_LAYOUT_H_
#define CAPNP_LAYOUT_H_
#include <kj/common.h>
#include <kj/memory.h>
#include "common.h"
#include "blob.h"
#include "endian.h"
namespace capnp {
class ClientHook;
namespace _ { // private
class PointerBuilder;
class PointerReader;
class StructBuilder;
class StructReader;
class ListBuilder;
class ListReader;
class OrphanBuilder;
struct WirePointer;
struct WireHelpers;
class SegmentReader;
class SegmentBuilder;
class Arena;
class BuilderArena;
// =============================================================================
enum class FieldSize: uint8_t {
// TODO(cleanup): Rename to FieldLayout or maybe ValueLayout.
// Notice that each member of this enum, when representing a list element size, represents a
// size that is greater than or equal to the previous members, since INLINE_COMPOSITE is used
// only for multi-word structs. This is important because it allows us to compare FieldSize
// values for the purpose of deciding when we need to upgrade a list.
VOID = 0,
BIT = 1,
BYTE = 2,
TWO_BYTES = 3,
FOUR_BYTES = 4,
EIGHT_BYTES = 5,
POINTER = 6, // Indicates that the field lives in the pointer section, not the data section.
INLINE_COMPOSITE = 7
// A composite type of fixed width. This serves two purposes:
// 1) For lists of composite types where all the elements would have the exact same width,
// allocating a list of pointers which in turn point at the elements would waste space. We
// can avoid a layer of indirection by placing all the elements in a flat sequence, and only
// indicating the element properties (e.g. field count for structs) once.
//
// Specifically, a list pointer indicating INLINE_COMPOSITE element size actually points to
// a "tag" describing one element. This tag is formatted like a wire pointer, but the
// "offset" instead stores the element count of the list. The flat list of elements appears
// immediately after the tag. In the list pointer itself, the element count is replaced with
// a word count for the whole list (excluding tag). This allows the tag and elements to be
// precached in a single step rather than two sequential steps.
//
// It is NOT intended to be possible to substitute an INLINE_COMPOSITE list for a POINTER
// list or vice-versa without breaking recipients. Recipients expect one or the other
// depending on the message definition.
//
// However, it IS allowed to substitute an INLINE_COMPOSITE list -- specifically, of structs --
// when a list was expected, or vice versa, with the assumption that the first field of the
// struct (field number zero) correspond to the element type. This allows a list of
// primitives to be upgraded to a list of structs, avoiding the need to use parallel arrays
// when you realize that you need to attach some extra information to each element of some
// primitive list.
//
// 2) At one point there was a notion of "inline" struct fields, but it was deemed too much of
// an implementation burden for too little gain, and so was deleted.
};
typedef decltype(BITS / ELEMENTS) BitsPerElement;
typedef decltype(POINTERS / ELEMENTS) PointersPerElement;
static constexpr BitsPerElement BITS_PER_ELEMENT_TABLE[8] = {
0 * BITS / ELEMENTS,
1 * BITS / ELEMENTS,
8 * BITS / ELEMENTS,
16 * BITS / ELEMENTS,
32 * BITS / ELEMENTS,
64 * BITS / ELEMENTS,
0 * BITS / ELEMENTS,
0 * BITS / ELEMENTS
};
inline constexpr BitsPerElement dataBitsPerElement(FieldSize size) {
return _::BITS_PER_ELEMENT_TABLE[static_cast<int>(size)];
}
inline constexpr PointersPerElement pointersPerElement(FieldSize size) {
return size == FieldSize::POINTER ? 1 * POINTERS / ELEMENTS : 0 * POINTERS / ELEMENTS;
}
template <size_t size> struct ElementSizeForByteSize;
template <> struct ElementSizeForByteSize<1> { static constexpr FieldSize value = FieldSize::BYTE; };
template <> struct ElementSizeForByteSize<2> { static constexpr FieldSize value = FieldSize::TWO_BYTES; };
template <> struct ElementSizeForByteSize<4> { static constexpr FieldSize value = FieldSize::FOUR_BYTES; };
template <> struct ElementSizeForByteSize<8> { static constexpr FieldSize value = FieldSize::EIGHT_BYTES; };
template <typename T> struct ElementSizeForType {
static constexpr FieldSize value =
// Primitive types that aren't special-cased below can be determined from sizeof().
kind<T>() == Kind::PRIMITIVE ? ElementSizeForByteSize<sizeof(T)>::value :
kind<T>() == Kind::ENUM ? FieldSize::TWO_BYTES :
kind<T>() == Kind::STRUCT ? FieldSize::INLINE_COMPOSITE :
// Everything else is a pointer.
FieldSize::POINTER;
};
// Void and bool are special.
template <> struct ElementSizeForType<Void> { static constexpr FieldSize value = FieldSize::VOID; };
template <> struct ElementSizeForType<bool> { static constexpr FieldSize value = FieldSize::BIT; };
// Lists and blobs are pointers, not structs.
template <typename T, bool b> struct ElementSizeForType<List<T, b>> {
static constexpr FieldSize value = FieldSize::POINTER;
};
template <> struct ElementSizeForType<Text> {
static constexpr FieldSize value = FieldSize::POINTER;
};
template <> struct ElementSizeForType<Data> {
static constexpr FieldSize value = FieldSize::POINTER;
};
template <typename T>
inline constexpr FieldSize elementSizeForType() {
return ElementSizeForType<T>::value;
}
struct MessageSizeCounts {
WordCount64 wordCount;
uint capCount;
MessageSizeCounts& operator+=(const MessageSizeCounts& other) {
wordCount += other.wordCount;
capCount += other.capCount;
return *this;
}
MessageSize asPublic() {
return MessageSize { wordCount / WORDS, capCount };
}
};
// =============================================================================
template <int wordCount>
union AlignedData {
// Useful for declaring static constant data blobs as an array of bytes, but forcing those
// bytes to be word-aligned.
uint8_t bytes[wordCount * sizeof(word)];
word words[wordCount];
};
struct StructSize {
WordCount16 data;
WirePointerCount16 pointers;
FieldSize preferredListEncoding;
// Preferred size to use when encoding a list of this struct. This is INLINE_COMPOSITE if and
// only if the struct is larger than one word; otherwise the struct list can be encoded more
// efficiently by encoding it as if it were some primitive type.
inline constexpr WordCount total() const { return data + pointers * WORDS_PER_POINTER; }
StructSize() = default;
inline constexpr StructSize(WordCount data, WirePointerCount pointers,
FieldSize preferredListEncoding)
: data(data), pointers(pointers), preferredListEncoding(preferredListEncoding) {}
};
template <typename T> struct StructSize_;
// Specialized for every struct type with member: static constexpr StructSize value"
template <typename T>
inline constexpr StructSize structSize() {
return StructSize_<T>::value;
}
// -------------------------------------------------------------------
// Masking of default values
template <typename T, Kind kind = kind<T>()> struct Mask_;
template <typename T> struct Mask_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct Mask_<T, Kind::ENUM> { typedef uint16_t Type; };
template <> struct Mask_<float, Kind::PRIMITIVE> { typedef uint32_t Type; };
template <> struct Mask_<double, Kind::PRIMITIVE> { typedef uint64_t Type; };
template <typename T> struct Mask_<T, Kind::UNKNOWN> {
// Union discriminants end up here.
static_assert(sizeof(T) == 2, "Don't know how to mask this type.");
typedef uint16_t Type;
};
template <typename T>
using Mask = typename Mask_<T>::Type;
template <typename T>
KJ_ALWAYS_INLINE(Mask<T> mask(T value, Mask<T> mask));
template <typename T>
KJ_ALWAYS_INLINE(T unmask(Mask<T> value, Mask<T> mask));
template <typename T>
inline Mask<T> mask(T value, Mask<T> mask) {
return static_cast<Mask<T> >(value) ^ mask;
}
template <>
inline uint32_t mask<float>(float value, uint32_t mask) {
uint32_t i;
static_assert(sizeof(i) == sizeof(value), "float is not 32 bits?");
memcpy(&i, &value, sizeof(value));
return i ^ mask;
}
template <>
inline uint64_t mask<double>(double value, uint64_t mask) {
uint64_t i;
static_assert(sizeof(i) == sizeof(value), "double is not 64 bits?");
memcpy(&i, &value, sizeof(value));
return i ^ mask;
}
template <typename T>
inline T unmask(Mask<T> value, Mask<T> mask) {
return static_cast<T>(value ^ mask);
}
template <>
inline float unmask<float>(uint32_t value, uint32_t mask) {
value ^= mask;
float result;
static_assert(sizeof(result) == sizeof(value), "float is not 32 bits?");
memcpy(&result, &value, sizeof(value));
return result;
}
template <>
inline double unmask<double>(uint64_t value, uint64_t mask) {
value ^= mask;
double result;
static_assert(sizeof(result) == sizeof(value), "double is not 64 bits?");
memcpy(&result, &value, sizeof(value));
return result;
}
// -------------------------------------------------------------------
class PointerBuilder: public kj::DisallowConstCopy {
// Represents a single pointer, usually embedded in a struct or a list.
public:
inline PointerBuilder(): segment(nullptr), pointer(nullptr) {}
static inline PointerBuilder getRoot(SegmentBuilder* segment, word* location);
// Get a PointerBuilder representing a message root located in the given segment at the given
// location.
bool isNull();
StructBuilder getStruct(StructSize size, const word* defaultValue);
ListBuilder getList(FieldSize elementSize, const word* defaultValzue);
ListBuilder getStructList(StructSize elementSize, const word* defaultValue);
template <typename T> typename T::Builder getBlob(const void* defaultValue,ByteCount defaultSize);
kj::Own<ClientHook> getCapability();
// Get methods: Get the value. If it is null, initialize it to a copy of the default value.
// The default value is encoded as an "unchecked message" for structs, lists, and objects, or a
// simple byte array for blobs.
StructBuilder initStruct(StructSize size);
ListBuilder initList(FieldSize elementSize, ElementCount elementCount);
ListBuilder initStructList(ElementCount elementCount, StructSize size);
template <typename T> typename T::Builder initBlob(ByteCount size);
// Init methods: Initialize the pointer to a newly-allocated object, discarding the existing
// object.
void setStruct(const StructReader& value);
void setList(const ListReader& value);
template <typename T> void setBlob(typename T::Reader value);
void setCapability(kj::Own<ClientHook>&& cap);
// Set methods: Initialize the pointer to a newly-allocated copy of the given value, discarding
// the existing object.
void adopt(OrphanBuilder&& orphan);
// Set the pointer to point at the given orphaned value.
OrphanBuilder disown();
// Set the pointer to null and return its previous value as an orphan.
void clear();
// Clear the pointer to null, discarding its previous value.
void transferFrom(PointerBuilder other);
// Equivalent to `adopt(other.disown())`.
void copyFrom(PointerReader other);
// Equivalent to `set(other.get())`.
PointerReader asReader() const;
BuilderArena* getArena() const;
// Get the arena containing this pointer.
private:
SegmentBuilder* segment; // Memory segment in which the pointer resides.
WirePointer* pointer; // Pointer to the pointer.
inline PointerBuilder(SegmentBuilder* segment, WirePointer* pointer)
: segment(segment), pointer(pointer) {}
friend class StructBuilder;
friend class ListBuilder;
};
class PointerReader {
public:
inline PointerReader(): segment(nullptr), pointer(nullptr), nestingLimit(0x7fffffff) {}
static PointerReader getRoot(SegmentReader* segment, const word* location, int nestingLimit);
// Get a PointerReader representing a message root located in the given segment at the given
// location.
static inline PointerReader getRootUnchecked(const word* location);
// Get a PointerReader for an unchecked message.
MessageSizeCounts targetSize() const;
// Return the total size of the target object and everything to which it points. Does not count
// far pointer overhead. This is useful for deciding how much space is needed to copy the object
// into a flat array. However, the caller is advised NOT to treat this value as secure. Instead,
// use the result as a hint for allocating the first segment, do the copy, and then throw an
// exception if it overruns.
bool isNull() const;
StructReader getStruct(const word* defaultValue) const;
ListReader getList(FieldSize expectedElementSize, const word* defaultValue) const;
template <typename T>
typename T::Reader getBlob(const void* defaultValue, ByteCount defaultSize) const;
kj::Own<ClientHook> getCapability() const;
// Get methods: Get the value. If it is null, return the default value instead.
// The default value is encoded as an "unchecked message" for structs, lists, and objects, or a
// simple byte array for blobs.
const word* getUnchecked() const;
// If this is an unchecked message, get a word* pointing at the location of the pointer. This
// word* can actually be passed to readUnchecked() to read the designated sub-object later. If
// this isn't an unchecked message, throws an exception.
kj::Maybe<Arena&> getArena() const;
// Get the arena containing this pointer.
private:
SegmentReader* segment; // Memory segment in which the pointer resides.
const WirePointer* pointer; // Pointer to the pointer. null = treat as null pointer.
int nestingLimit;
// Limits the depth of message structures to guard against stack-overflow-based DoS attacks.
// Once this reaches zero, further pointers will be pruned.
inline PointerReader(SegmentReader* segment, const WirePointer* pointer, int nestingLimit)
: segment(segment), pointer(pointer), nestingLimit(nestingLimit) {}
friend class StructReader;
friend class ListReader;
friend class PointerBuilder;
friend class OrphanBuilder;
};
// -------------------------------------------------------------------
class StructBuilder: public kj::DisallowConstCopy {
public:
inline StructBuilder(): segment(nullptr), data(nullptr), pointers(nullptr), bit0Offset(0) {}
inline word* getLocation() { return reinterpret_cast<word*>(data); }
// Get the object's location. Only valid for independently-allocated objects (i.e. not list
// elements).
inline BitCount getDataSectionSize() const { return dataSize; }
inline WirePointerCount getPointerSectionSize() const { return pointerCount; }
inline Data::Builder getDataSectionAsBlob();
template <typename T>
KJ_ALWAYS_INLINE(bool hasDataField(ElementCount offset));
// Return true if the field is set to something other than its default value.
template <typename T>
KJ_ALWAYS_INLINE(T getDataField(ElementCount offset));
// Gets the data field value of the given type at the given offset. The offset is measured in
// multiples of the field size, determined by the type.
template <typename T>
KJ_ALWAYS_INLINE(T getDataField(ElementCount offset, Mask<T> mask));
// Like getDataField() but applies the given XOR mask to the data on load. Used for reading
// fields with non-zero default values.
template <typename T>
KJ_ALWAYS_INLINE(void setDataField(
ElementCount offset, kj::NoInfer<T> value));
// Sets the data field value at the given offset.
template <typename T>
KJ_ALWAYS_INLINE(void setDataField(
ElementCount offset, kj::NoInfer<T> value, Mask<T> mask));
// Like setDataField() but applies the given XOR mask before storing. Used for writing fields
// with non-zero default values.
KJ_ALWAYS_INLINE(PointerBuilder getPointerField(WirePointerCount ptrIndex));
// Get a builder for a pointer field given the index within the pointer section.
void clearAll();
// Clear all pointers and data.
void transferContentFrom(StructBuilder other);
// Adopt all pointers from `other`, and also copy all data. If `other`'s sections are larger
// than this, the extra data is not transferred, meaning there is a risk of data loss when
// transferring from messages built with future versions of the protocol.
void copyContentFrom(StructReader other);
// Copy content from `other`. If `other`'s sections are larger than this, the extra data is not
// copied, meaning there is a risk of data loss when copying from messages built with future
// versions of the protocol.
StructReader asReader() const;
// Gets a StructReader pointing at the same memory.
BuilderArena* getArena();
// Gets the arena in which this object is allocated.
private:
SegmentBuilder* segment; // Memory segment in which the struct resides.
void* data; // Pointer to the encoded data.
WirePointer* pointers; // Pointer to the encoded pointers.
BitCount32 dataSize;
// Size of data section. We use a bit count rather than a word count to more easily handle the
// case of struct lists encoded with less than a word per element.
WirePointerCount16 pointerCount; // Size of the pointer section.
BitCount8 bit0Offset;
// A special hack: If dataSize == 1 bit, then bit0Offset is the offset of that bit within the
// byte pointed to by `data`. In all other cases, this is zero. This is needed to implement
// struct lists where each struct is one bit.
inline StructBuilder(SegmentBuilder* segment, void* data, WirePointer* pointers,
BitCount dataSize, WirePointerCount pointerCount, BitCount8 bit0Offset)
: segment(segment), data(data), pointers(pointers),
dataSize(dataSize), pointerCount(pointerCount), bit0Offset(bit0Offset) {}
friend class ListBuilder;
friend struct WireHelpers;
friend class OrphanBuilder;
};
class StructReader {
public:
inline StructReader()
: segment(nullptr), data(nullptr), pointers(nullptr), dataSize(0),
pointerCount(0), bit0Offset(0), nestingLimit(0x7fffffff) {}
const void* getLocation() const { return data; }
inline BitCount getDataSectionSize() const { return dataSize; }
inline WirePointerCount getPointerSectionSize() const { return pointerCount; }
inline Data::Reader getDataSectionAsBlob();
template <typename T>
KJ_ALWAYS_INLINE(bool hasDataField(ElementCount offset) const);
// Return true if the field is set to something other than its default value.
template <typename T>
KJ_ALWAYS_INLINE(T getDataField(ElementCount offset) const);
// Get the data field value of the given type at the given offset. The offset is measured in
// multiples of the field size, determined by the type. Returns zero if the offset is past the
// end of the struct's data section.
template <typename T>
KJ_ALWAYS_INLINE(
T getDataField(ElementCount offset, Mask<T> mask) const);
// Like getDataField(offset), but applies the given XOR mask to the result. Used for reading
// fields with non-zero default values.
KJ_ALWAYS_INLINE(PointerReader getPointerField(WirePointerCount ptrIndex) const);
// Get a reader for a pointer field given the index within the pointer section. If the index
// is out-of-bounds, returns a null pointer.
MessageSizeCounts totalSize() const;
// Return the total size of the struct and everything to which it points. Does not count far
// pointer overhead. This is useful for deciding how much space is needed to copy the struct
// into a flat array. However, the caller is advised NOT to treat this value as secure. Instead,
// use the result as a hint for allocating the first segment, do the copy, and then throw an
// exception if it overruns.
private:
SegmentReader* segment; // Memory segment in which the struct resides.
const void* data;
const WirePointer* pointers;
BitCount32 dataSize;
// Size of data section. We use a bit count rather than a word count to more easily handle the
// case of struct lists encoded with less than a word per element.
WirePointerCount16 pointerCount; // Size of the pointer section.
BitCount8 bit0Offset;
// A special hack: If dataSize == 1 bit, then bit0Offset is the offset of that bit within the
// byte pointed to by `data`. In all other cases, this is zero. This is needed to implement
// struct lists where each struct is one bit.
//
// TODO(someday): Consider packing this together with dataSize, since we have 10 extra bits
// there doing nothing -- or arguably 12 bits, if you consider that 2-bit and 4-bit sizes
// aren't allowed. Consider that we could have a method like getDataSizeIn<T>() which is
// specialized to perform the correct shifts for each size.
int nestingLimit;
// Limits the depth of message structures to guard against stack-overflow-based DoS attacks.
// Once this reaches zero, further pointers will be pruned.
// TODO(perf): Limit to 8 bits for better alignment?
inline StructReader(SegmentReader* segment, const void* data, const WirePointer* pointers,
BitCount dataSize, WirePointerCount pointerCount, BitCount8 bit0Offset,
int nestingLimit)
: segment(segment), data(data), pointers(pointers),
dataSize(dataSize), pointerCount(pointerCount), bit0Offset(bit0Offset),
nestingLimit(nestingLimit) {}
friend class ListReader;
friend class StructBuilder;
friend struct WireHelpers;
};
// -------------------------------------------------------------------
class ListBuilder: public kj::DisallowConstCopy {
public:
inline ListBuilder()
: segment(nullptr), ptr(nullptr), elementCount(0 * ELEMENTS),
step(0 * BITS / ELEMENTS) {}
inline word* getLocation() {
// Get the object's location. Only valid for independently-allocated objects (i.e. not list
// elements).
if (step * ELEMENTS <= BITS_PER_WORD * WORDS) {
return reinterpret_cast<word*>(ptr);
} else {
return reinterpret_cast<word*>(ptr) - POINTER_SIZE_IN_WORDS;
}
}
inline ElementCount size() const;
// The number of elements in the list.
Text::Builder asText();
Data::Builder asData();
// Reinterpret the list as a blob. Throws an exception if the elements are not byte-sized.
template <typename T>
KJ_ALWAYS_INLINE(T getDataElement(ElementCount index));
// Get the element of the given type at the given index.
template <typename T>
KJ_ALWAYS_INLINE(void setDataElement(
ElementCount index, kj::NoInfer<T> value));
// Set the element at the given index.
KJ_ALWAYS_INLINE(PointerBuilder getPointerElement(ElementCount index));
StructBuilder getStructElement(ElementCount index);
ListReader asReader() const;
// Get a ListReader pointing at the same memory.
BuilderArena* getArena();
// Gets the arena in which this object is allocated.
private:
SegmentBuilder* segment; // Memory segment in which the list resides.
byte* ptr; // Pointer to list content.
ElementCount elementCount; // Number of elements in the list.
decltype(BITS / ELEMENTS) step;
// The distance between elements.
BitCount32 structDataSize;
WirePointerCount16 structPointerCount;
// The struct properties to use when interpreting the elements as structs. All lists can be
// interpreted as struct lists, so these are always filled in.
inline ListBuilder(SegmentBuilder* segment, void* ptr,
decltype(BITS / ELEMENTS) step, ElementCount size,
BitCount structDataSize, WirePointerCount structPointerCount)
: segment(segment), ptr(reinterpret_cast<byte*>(ptr)),
elementCount(size), step(step), structDataSize(structDataSize),
structPointerCount(structPointerCount) {}
friend class StructBuilder;
friend struct WireHelpers;
friend class OrphanBuilder;
};
class ListReader {
public:
inline ListReader()
: segment(nullptr), ptr(nullptr), elementCount(0), step(0 * BITS / ELEMENTS),
structDataSize(0), structPointerCount(0), nestingLimit(0x7fffffff) {}
inline ElementCount size() const;
// The number of elements in the list.
Text::Reader asText();
Data::Reader asData();
// Reinterpret the list as a blob. Throws an exception if the elements are not byte-sized.
template <typename T>
KJ_ALWAYS_INLINE(T getDataElement(ElementCount index) const);
// Get the element of the given type at the given index.
KJ_ALWAYS_INLINE(PointerReader getPointerElement(ElementCount index) const);
StructReader getStructElement(ElementCount index) const;
private:
SegmentReader* segment; // Memory segment in which the list resides.
const byte* ptr; // Pointer to list content.
ElementCount elementCount; // Number of elements in the list.
decltype(BITS / ELEMENTS) step;
// The distance between elements.
BitCount32 structDataSize;
WirePointerCount16 structPointerCount;
// The struct properties to use when interpreting the elements as structs. All lists can be
// interpreted as struct lists, so these are always filled in.
int nestingLimit;
// Limits the depth of message structures to guard against stack-overflow-based DoS attacks.
// Once this reaches zero, further pointers will be pruned.
inline ListReader(SegmentReader* segment, const void* ptr,
ElementCount elementCount, decltype(BITS / ELEMENTS) step,
BitCount structDataSize, WirePointerCount structPointerCount,
int nestingLimit)
: segment(segment), ptr(reinterpret_cast<const byte*>(ptr)), elementCount(elementCount),
step(step), structDataSize(structDataSize),
structPointerCount(structPointerCount), nestingLimit(nestingLimit) {}
friend class StructReader;
friend class ListBuilder;
friend struct WireHelpers;
friend class OrphanBuilder;
};
// -------------------------------------------------------------------
class OrphanBuilder {
public:
inline OrphanBuilder(): segment(nullptr), location(nullptr) { memset(&tag, 0, sizeof(tag)); }
OrphanBuilder(const OrphanBuilder& other) = delete;
inline OrphanBuilder(OrphanBuilder&& other) noexcept;
inline ~OrphanBuilder() noexcept(false);
static OrphanBuilder initStruct(BuilderArena* arena, StructSize size);
static OrphanBuilder initList(BuilderArena* arena, ElementCount elementCount,
FieldSize elementSize);
static OrphanBuilder initStructList(BuilderArena* arena, ElementCount elementCount,
StructSize elementSize);
static OrphanBuilder initText(BuilderArena* arena, ByteCount size);
static OrphanBuilder initData(BuilderArena* arena, ByteCount size);
static OrphanBuilder copy(BuilderArena* arena, StructReader copyFrom);
static OrphanBuilder copy(BuilderArena* arena, ListReader copyFrom);
static OrphanBuilder copy(BuilderArena* arena, PointerReader copyFrom);
static OrphanBuilder copy(BuilderArena* arena, Text::Reader copyFrom);
static OrphanBuilder copy(BuilderArena* arena, Data::Reader copyFrom);
static OrphanBuilder copy(BuilderArena* arena, kj::Own<ClientHook> copyFrom);
OrphanBuilder& operator=(const OrphanBuilder& other) = delete;
inline OrphanBuilder& operator=(OrphanBuilder&& other);
inline bool operator==(decltype(nullptr)) const { return location == nullptr; }
inline bool operator!=(decltype(nullptr)) const { return location != nullptr; }
StructBuilder asStruct(StructSize size);
// Interpret as a struct, or throw an exception if not a struct.
ListBuilder asList(FieldSize elementSize);
// Interpret as a list, or throw an exception if not a list. elementSize cannot be
// INLINE_COMPOSITE -- use asStructList() instead.
ListBuilder asStructList(StructSize elementSize);
// Interpret as a struct list, or throw an exception if not a list.
Text::Builder asText();
Data::Builder asData();
// Interpret as a blob, or throw an exception if not a blob.
StructReader asStructReader(StructSize size) const;
ListReader asListReader(FieldSize elementSize) const;
kj::Own<ClientHook> asCapability() const;
Text::Reader asTextReader() const;
Data::Reader asDataReader() const;
private:
static_assert(1 * POINTERS * WORDS_PER_POINTER == 1 * WORDS,
"This struct assumes a pointer is one word.");
word tag;
// Contains an encoded WirePointer representing this object. WirePointer is defined in
// layout.c++, but fits in a word.
//
// If the pointer is a FAR pointer, then the tag is a complete pointer, `location` is null, and
// `segment` is any arbitrary segment in the message. Otherwise, the tag's offset is garbage,
// `location` points at the actual object, and `segment` points at the segment where `location`
// resides.
SegmentBuilder* segment;
// Segment in which the object resides, or an arbitrary segment in the message if the tag is a
// FAR pointer.
word* location;
// Pointer to the object, or nullptr if the pointer is null. For capabilities, we make this
// point at `tag` just so that it is non-null for operator==, but it is never used.
inline OrphanBuilder(const void* tagPtr, SegmentBuilder* segment, word* location)
: segment(segment), location(location) {
memcpy(&tag, tagPtr, sizeof(tag));
}
inline WirePointer* tagAsPtr() { return reinterpret_cast<WirePointer*>(&tag); }
inline const WirePointer* tagAsPtr() const { return reinterpret_cast<const WirePointer*>(&tag); }
void euthanize();
// Erase the target object, zeroing it out and possibly reclaiming the memory. Called when
// the OrphanBuilder is being destroyed or overwritten and it is non-null.
friend struct WireHelpers;
};
// =======================================================================================
// Internal implementation details...
// These are defined in the source file.
template <> typename Text::Builder PointerBuilder::initBlob<Text>(ByteCount size);
template <> void PointerBuilder::setBlob<Text>(typename Text::Reader value);
template <> typename Text::Builder PointerBuilder::getBlob<Text>(const void* defaultValue, ByteCount defaultSize);
template <> typename Text::Reader PointerReader::getBlob<Text>(const void* defaultValue, ByteCount defaultSize) const;
template <> typename Data::Builder PointerBuilder::initBlob<Data>(ByteCount size);
template <> void PointerBuilder::setBlob<Data>(typename Data::Reader value);
template <> typename Data::Builder PointerBuilder::getBlob<Data>(const void* defaultValue, ByteCount defaultSize);
template <> typename Data::Reader PointerReader::getBlob<Data>(const void* defaultValue, ByteCount defaultSize) const;
inline PointerBuilder PointerBuilder::getRoot(SegmentBuilder* segment, word* location) {
return PointerBuilder(segment, reinterpret_cast<WirePointer*>(location));
}
inline PointerReader PointerReader::getRootUnchecked(const word* location) {
return PointerReader(nullptr, reinterpret_cast<const WirePointer*>(location), 0x7fffffff);
}
// -------------------------------------------------------------------
inline Data::Builder StructBuilder::getDataSectionAsBlob() {
return Data::Builder(reinterpret_cast<byte*>(data), dataSize / BITS_PER_BYTE / BYTES);
}
template <typename T>
inline bool StructBuilder::hasDataField(ElementCount offset) {
return getDataField<Mask<T>>(offset) != 0;
}
template <>
inline bool StructBuilder::hasDataField<Void>(ElementCount offset) {
return false;
}
template <typename T>
inline T StructBuilder::getDataField(ElementCount offset) {
return reinterpret_cast<WireValue<T>*>(data)[offset / ELEMENTS].get();
}
template <>
inline bool StructBuilder::getDataField<bool>(ElementCount offset) {
// This branch should be compiled out whenever this is inlined with a constant offset.
BitCount boffset = (offset == 0 * ELEMENTS) ?
BitCount(bit0Offset) : offset * (1 * BITS / ELEMENTS);
byte* b = reinterpret_cast<byte*>(data) + boffset / BITS_PER_BYTE;
return (*reinterpret_cast<uint8_t*>(b) & (1 << (boffset % BITS_PER_BYTE / BITS))) != 0;
}
template <>
inline Void StructBuilder::getDataField<Void>(ElementCount offset) {
return VOID;
}
template <typename T>
inline T StructBuilder::getDataField(ElementCount offset, Mask<T> mask) {
return unmask<T>(getDataField<Mask<T> >(offset), mask);
}
template <typename T>
inline void StructBuilder::setDataField(ElementCount offset, kj::NoInfer<T> value) {
reinterpret_cast<WireValue<T>*>(data)[offset / ELEMENTS].set(value);
}
template <>
inline void StructBuilder::setDataField<bool>(ElementCount offset, bool value) {
// This branch should be compiled out whenever this is inlined with a constant offset.
BitCount boffset = (offset == 0 * ELEMENTS) ?
BitCount(bit0Offset) : offset * (1 * BITS / ELEMENTS);
byte* b = reinterpret_cast<byte*>(data) + boffset / BITS_PER_BYTE;
uint bitnum = boffset % BITS_PER_BYTE / BITS;
*reinterpret_cast<uint8_t*>(b) = (*reinterpret_cast<uint8_t*>(b) & ~(1 << bitnum))
| (static_cast<uint8_t>(value) << bitnum);
}
template <>
inline void StructBuilder::setDataField<Void>(ElementCount offset, Void value) {}
template <typename T>
inline void StructBuilder::setDataField(ElementCount offset, kj::NoInfer<T> value, Mask<T> m) {
setDataField<Mask<T> >(offset, mask<T>(value, m));
}
inline PointerBuilder StructBuilder::getPointerField(WirePointerCount ptrIndex) {
// Hacky because WirePointer is defined in the .c++ file (so is incomplete here).
return PointerBuilder(segment, reinterpret_cast<WirePointer*>(
reinterpret_cast<word*>(pointers) + ptrIndex * WORDS_PER_POINTER));
}
// -------------------------------------------------------------------
inline Data::Reader StructReader::getDataSectionAsBlob() {
return Data::Reader(reinterpret_cast<const byte*>(data), dataSize / BITS_PER_BYTE / BYTES);
}
template <typename T>
inline bool StructReader::hasDataField(ElementCount offset) const {
return getDataField<Mask<T>>(offset) != 0;
}
template <>
inline bool StructReader::hasDataField<Void>(ElementCount offset) const {
return false;
}
template <typename T>
inline T StructReader::getDataField(ElementCount offset) const {
if ((offset + 1 * ELEMENTS) * capnp::bitsPerElement<T>() <= dataSize) {
return reinterpret_cast<const WireValue<T>*>(data)[offset / ELEMENTS].get();
} else {
return static_cast<T>(0);
}
}
template <>
inline bool StructReader::getDataField<bool>(ElementCount offset) const {
BitCount boffset = offset * (1 * BITS / ELEMENTS);
if (boffset < dataSize) {
// This branch should be compiled out whenever this is inlined with a constant offset.
if (offset == 0 * ELEMENTS) {
boffset = bit0Offset;
}
const byte* b = reinterpret_cast<const byte*>(data) + boffset / BITS_PER_BYTE;
return (*reinterpret_cast<const uint8_t*>(b) & (1 << (boffset % BITS_PER_BYTE / BITS))) != 0;
} else {
return false;
}
}
template <>
inline Void StructReader::getDataField<Void>(ElementCount offset) const {
return VOID;
}
template <typename T>
T StructReader::getDataField(ElementCount offset, Mask<T> mask) const {
return unmask<T>(getDataField<Mask<T> >(offset), mask);
}
inline PointerReader StructReader::getPointerField(WirePointerCount ptrIndex) const {
if (ptrIndex < pointerCount) {
// Hacky because WirePointer is defined in the .c++ file (so is incomplete here).
return PointerReader(segment, reinterpret_cast<const WirePointer*>(
reinterpret_cast<const word*>(pointers) + ptrIndex * WORDS_PER_POINTER), nestingLimit);
} else{
return PointerReader();
}
}
// -------------------------------------------------------------------
inline ElementCount ListBuilder::size() const { return elementCount; }
template <typename T>
inline T ListBuilder::getDataElement(ElementCount index) {
return reinterpret_cast<WireValue<T>*>(ptr + index * step / BITS_PER_BYTE)->get();
// TODO(perf): Benchmark this alternate implementation, which I suspect may make better use of
// the x86 SIB byte. Also use it for all the other getData/setData implementations below, and
// the various non-inline methods that look up pointers.
// Also if using this, consider changing ptr back to void* instead of byte*.
// return reinterpret_cast<WireValue<T>*>(ptr)[
// index / ELEMENTS * (step / capnp::bitsPerElement<T>())].get();
}
template <>
inline bool ListBuilder::getDataElement<bool>(ElementCount index) {
// Ignore stepBytes for bit lists because bit lists cannot be upgraded to struct lists.
BitCount bindex = index * step;
byte* b = ptr + bindex / BITS_PER_BYTE;
return (*reinterpret_cast<uint8_t*>(b) & (1 << (bindex % BITS_PER_BYTE / BITS))) != 0;
}
template <>
inline Void ListBuilder::getDataElement<Void>(ElementCount index) {
return VOID;
}
template <typename T>
inline void ListBuilder::setDataElement(ElementCount index, kj::NoInfer<T> value) {
reinterpret_cast<WireValue<T>*>(ptr + index * step / BITS_PER_BYTE)->set(value);
}
template <>
inline void ListBuilder::setDataElement<bool>(ElementCount index, bool value) {
// Ignore stepBytes for bit lists because bit lists cannot be upgraded to struct lists.
BitCount bindex = index * (1 * BITS / ELEMENTS);
byte* b = ptr + bindex / BITS_PER_BYTE;
uint bitnum = bindex % BITS_PER_BYTE / BITS;
*reinterpret_cast<uint8_t*>(b) = (*reinterpret_cast<uint8_t*>(b) & ~(1 << bitnum))
| (static_cast<uint8_t>(value) << bitnum);
}
template <>
inline void ListBuilder::setDataElement<Void>(ElementCount index, Void value) {}
inline PointerBuilder ListBuilder::getPointerElement(ElementCount index) {
return PointerBuilder(segment,
reinterpret_cast<WirePointer*>(ptr + index * step / BITS_PER_BYTE));
}
// -------------------------------------------------------------------
inline ElementCount ListReader::size() const { return elementCount; }
template <typename T>
inline T ListReader::getDataElement(ElementCount index) const {
return reinterpret_cast<const WireValue<T>*>(ptr + index * step / BITS_PER_BYTE)->get();
}
template <>
inline bool ListReader::getDataElement<bool>(ElementCount index) const {
// Ignore stepBytes for bit lists because bit lists cannot be upgraded to struct lists.
BitCount bindex = index * step;
const byte* b = ptr + bindex / BITS_PER_BYTE;
return (*reinterpret_cast<const uint8_t*>(b) & (1 << (bindex % BITS_PER_BYTE / BITS))) != 0;
}
template <>
inline Void ListReader::getDataElement<Void>(ElementCount index) const {
return VOID;
}
inline PointerReader ListReader::getPointerElement(ElementCount index) const {
return PointerReader(segment,
reinterpret_cast<const WirePointer*>(ptr + index * step / BITS_PER_BYTE), nestingLimit);
}
// -------------------------------------------------------------------
inline OrphanBuilder::OrphanBuilder(OrphanBuilder&& other) noexcept
: segment(other.segment), location(other.location) {
memcpy(&tag, &other.tag, sizeof(tag)); // Needs memcpy to comply with aliasing rules.
other.segment = nullptr;
other.location = nullptr;
}
inline OrphanBuilder::~OrphanBuilder() noexcept(false) {
if (segment != nullptr) euthanize();
}
inline OrphanBuilder& OrphanBuilder::operator=(OrphanBuilder&& other) {
// With normal smart pointers, it's important to handle the case where the incoming pointer
// is actually transitively owned by this one. In this case, euthanize() would destroy `other`
// before we copied it. This isn't possible in the case of `OrphanBuilder` because it only
// owns message objects, and `other` is not itself a message object, therefore cannot possibly
// be transitively owned by `this`.
if (segment != nullptr) euthanize();
segment = other.segment;
location = other.location;
memcpy(&tag, &other.tag, sizeof(tag)); // Needs memcpy to comply with aliasing rules.
other.segment = nullptr;
other.location = nullptr;
return *this;
}
} // namespace _ (private)
} // namespace capnp
#endif // CAPNP_LAYOUT_H_
|