This file is indexed.

/usr/include/capnp/layout.h is in libcapnp-dev 0.4.0-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
// Copyright (c) 2013, Kenton Varda <temporal@gmail.com>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// This file is NOT intended for use by clients, except in generated code.
//
// This file defines low-level, non-type-safe classes for traversing the Cap'n Proto memory layout
// (which is also its wire format).  Code generated by the Cap'n Proto compiler uses these classes,
// as does other parts of the Cap'n proto library which provide a higher-level interface for
// dynamic introspection.

#ifndef CAPNP_LAYOUT_H_
#define CAPNP_LAYOUT_H_

#include <kj/common.h>
#include <kj/memory.h>
#include "common.h"
#include "blob.h"
#include "endian.h"

namespace capnp {

class ClientHook;

namespace _ {  // private

class PointerBuilder;
class PointerReader;
class StructBuilder;
class StructReader;
class ListBuilder;
class ListReader;
class OrphanBuilder;
struct WirePointer;
struct WireHelpers;
class SegmentReader;
class SegmentBuilder;
class Arena;
class BuilderArena;

// =============================================================================

enum class FieldSize: uint8_t {
  // TODO(cleanup):  Rename to FieldLayout or maybe ValueLayout.

  // Notice that each member of this enum, when representing a list element size, represents a
  // size that is greater than or equal to the previous members, since INLINE_COMPOSITE is used
  // only for multi-word structs.  This is important because it allows us to compare FieldSize
  // values for the purpose of deciding when we need to upgrade a list.

  VOID = 0,
  BIT = 1,
  BYTE = 2,
  TWO_BYTES = 3,
  FOUR_BYTES = 4,
  EIGHT_BYTES = 5,

  POINTER = 6,  // Indicates that the field lives in the pointer section, not the data section.

  INLINE_COMPOSITE = 7
  // A composite type of fixed width.  This serves two purposes:
  // 1) For lists of composite types where all the elements would have the exact same width,
  //    allocating a list of pointers which in turn point at the elements would waste space.  We
  //    can avoid a layer of indirection by placing all the elements in a flat sequence, and only
  //    indicating the element properties (e.g. field count for structs) once.
  //
  //    Specifically, a list pointer indicating INLINE_COMPOSITE element size actually points to
  //    a "tag" describing one element.  This tag is formatted like a wire pointer, but the
  //    "offset" instead stores the element count of the list.  The flat list of elements appears
  //    immediately after the tag.  In the list pointer itself, the element count is replaced with
  //    a word count for the whole list (excluding tag).  This allows the tag and elements to be
  //    precached in a single step rather than two sequential steps.
  //
  //    It is NOT intended to be possible to substitute an INLINE_COMPOSITE list for a POINTER
  //    list or vice-versa without breaking recipients.  Recipients expect one or the other
  //    depending on the message definition.
  //
  //    However, it IS allowed to substitute an INLINE_COMPOSITE list -- specifically, of structs --
  //    when a list was expected, or vice versa, with the assumption that the first field of the
  //    struct (field number zero) correspond to the element type.  This allows a list of
  //    primitives to be upgraded to a list of structs, avoiding the need to use parallel arrays
  //    when you realize that you need to attach some extra information to each element of some
  //    primitive list.
  //
  // 2) At one point there was a notion of "inline" struct fields, but it was deemed too much of
  //    an implementation burden for too little gain, and so was deleted.
};

typedef decltype(BITS / ELEMENTS) BitsPerElement;
typedef decltype(POINTERS / ELEMENTS) PointersPerElement;

static constexpr BitsPerElement BITS_PER_ELEMENT_TABLE[8] = {
    0 * BITS / ELEMENTS,
    1 * BITS / ELEMENTS,
    8 * BITS / ELEMENTS,
    16 * BITS / ELEMENTS,
    32 * BITS / ELEMENTS,
    64 * BITS / ELEMENTS,
    0 * BITS / ELEMENTS,
    0 * BITS / ELEMENTS
};

inline constexpr BitsPerElement dataBitsPerElement(FieldSize size) {
  return _::BITS_PER_ELEMENT_TABLE[static_cast<int>(size)];
}

inline constexpr PointersPerElement pointersPerElement(FieldSize size) {
  return size == FieldSize::POINTER ? 1 * POINTERS / ELEMENTS : 0 * POINTERS / ELEMENTS;
}

template <size_t size> struct ElementSizeForByteSize;
template <> struct ElementSizeForByteSize<1> { static constexpr FieldSize value = FieldSize::BYTE; };
template <> struct ElementSizeForByteSize<2> { static constexpr FieldSize value = FieldSize::TWO_BYTES; };
template <> struct ElementSizeForByteSize<4> { static constexpr FieldSize value = FieldSize::FOUR_BYTES; };
template <> struct ElementSizeForByteSize<8> { static constexpr FieldSize value = FieldSize::EIGHT_BYTES; };

template <typename T> struct ElementSizeForType {
  static constexpr FieldSize value =
      // Primitive types that aren't special-cased below can be determined from sizeof().
      kind<T>() == Kind::PRIMITIVE ? ElementSizeForByteSize<sizeof(T)>::value :
      kind<T>() == Kind::ENUM ? FieldSize::TWO_BYTES :
      kind<T>() == Kind::STRUCT ? FieldSize::INLINE_COMPOSITE :

      // Everything else is a pointer.
      FieldSize::POINTER;
};

// Void and bool are special.
template <> struct ElementSizeForType<Void> { static constexpr FieldSize value = FieldSize::VOID; };
template <> struct ElementSizeForType<bool> { static constexpr FieldSize value = FieldSize::BIT; };

// Lists and blobs are pointers, not structs.
template <typename T, bool b> struct ElementSizeForType<List<T, b>> {
  static constexpr FieldSize value = FieldSize::POINTER;
};
template <> struct ElementSizeForType<Text> {
  static constexpr FieldSize value = FieldSize::POINTER;
};
template <> struct ElementSizeForType<Data> {
  static constexpr FieldSize value = FieldSize::POINTER;
};

template <typename T>
inline constexpr FieldSize elementSizeForType() {
  return ElementSizeForType<T>::value;
}

struct MessageSizeCounts {
  WordCount64 wordCount;
  uint capCount;

  MessageSizeCounts& operator+=(const MessageSizeCounts& other) {
    wordCount += other.wordCount;
    capCount += other.capCount;
    return *this;
  }

  MessageSize asPublic() {
    return MessageSize { wordCount / WORDS, capCount };
  }
};

// =============================================================================

template <int wordCount>
union AlignedData {
  // Useful for declaring static constant data blobs as an array of bytes, but forcing those
  // bytes to be word-aligned.

  uint8_t bytes[wordCount * sizeof(word)];
  word words[wordCount];
};

struct StructSize {
  WordCount16 data;
  WirePointerCount16 pointers;

  FieldSize preferredListEncoding;
  // Preferred size to use when encoding a list of this struct.  This is INLINE_COMPOSITE if and
  // only if the struct is larger than one word; otherwise the struct list can be encoded more
  // efficiently by encoding it as if it were some primitive type.

  inline constexpr WordCount total() const { return data + pointers * WORDS_PER_POINTER; }

  StructSize() = default;
  inline constexpr StructSize(WordCount data, WirePointerCount pointers,
                              FieldSize preferredListEncoding)
      : data(data), pointers(pointers), preferredListEncoding(preferredListEncoding) {}
};

template <typename T> struct StructSize_;
// Specialized for every struct type with member:  static constexpr StructSize value"

template <typename T>
inline constexpr StructSize structSize() {
  return StructSize_<T>::value;
}

// -------------------------------------------------------------------
// Masking of default values

template <typename T, Kind kind = kind<T>()> struct Mask_;
template <typename T> struct Mask_<T, Kind::PRIMITIVE> { typedef T Type; };
template <typename T> struct Mask_<T, Kind::ENUM> { typedef uint16_t Type; };
template <> struct Mask_<float, Kind::PRIMITIVE> { typedef uint32_t Type; };
template <> struct Mask_<double, Kind::PRIMITIVE> { typedef uint64_t Type; };

template <typename T> struct Mask_<T, Kind::UNKNOWN> {
  // Union discriminants end up here.
  static_assert(sizeof(T) == 2, "Don't know how to mask this type.");
  typedef uint16_t Type;
};

template <typename T>
using Mask = typename Mask_<T>::Type;

template <typename T>
KJ_ALWAYS_INLINE(Mask<T> mask(T value, Mask<T> mask));
template <typename T>
KJ_ALWAYS_INLINE(T unmask(Mask<T> value, Mask<T> mask));

template <typename T>
inline Mask<T> mask(T value, Mask<T> mask) {
  return static_cast<Mask<T> >(value) ^ mask;
}

template <>
inline uint32_t mask<float>(float value, uint32_t mask) {
  uint32_t i;
  static_assert(sizeof(i) == sizeof(value), "float is not 32 bits?");
  memcpy(&i, &value, sizeof(value));
  return i ^ mask;
}

template <>
inline uint64_t mask<double>(double value, uint64_t mask) {
  uint64_t i;
  static_assert(sizeof(i) == sizeof(value), "double is not 64 bits?");
  memcpy(&i, &value, sizeof(value));
  return i ^ mask;
}

template <typename T>
inline T unmask(Mask<T> value, Mask<T> mask) {
  return static_cast<T>(value ^ mask);
}

template <>
inline float unmask<float>(uint32_t value, uint32_t mask) {
  value ^= mask;
  float result;
  static_assert(sizeof(result) == sizeof(value), "float is not 32 bits?");
  memcpy(&result, &value, sizeof(value));
  return result;
}

template <>
inline double unmask<double>(uint64_t value, uint64_t mask) {
  value ^= mask;
  double result;
  static_assert(sizeof(result) == sizeof(value), "double is not 64 bits?");
  memcpy(&result, &value, sizeof(value));
  return result;
}

// -------------------------------------------------------------------

class PointerBuilder: public kj::DisallowConstCopy {
  // Represents a single pointer, usually embedded in a struct or a list.

public:
  inline PointerBuilder(): segment(nullptr), pointer(nullptr) {}

  static inline PointerBuilder getRoot(SegmentBuilder* segment, word* location);
  // Get a PointerBuilder representing a message root located in the given segment at the given
  // location.

  bool isNull();

  StructBuilder getStruct(StructSize size, const word* defaultValue);
  ListBuilder getList(FieldSize elementSize, const word* defaultValzue);
  ListBuilder getStructList(StructSize elementSize, const word* defaultValue);
  template <typename T> typename T::Builder getBlob(const void* defaultValue,ByteCount defaultSize);
  kj::Own<ClientHook> getCapability();
  // Get methods:  Get the value.  If it is null, initialize it to a copy of the default value.
  // The default value is encoded as an "unchecked message" for structs, lists, and objects, or a
  // simple byte array for blobs.

  StructBuilder initStruct(StructSize size);
  ListBuilder initList(FieldSize elementSize, ElementCount elementCount);
  ListBuilder initStructList(ElementCount elementCount, StructSize size);
  template <typename T> typename T::Builder initBlob(ByteCount size);
  // Init methods:  Initialize the pointer to a newly-allocated object, discarding the existing
  // object.

  void setStruct(const StructReader& value);
  void setList(const ListReader& value);
  template <typename T> void setBlob(typename T::Reader value);
  void setCapability(kj::Own<ClientHook>&& cap);
  // Set methods:  Initialize the pointer to a newly-allocated copy of the given value, discarding
  // the existing object.

  void adopt(OrphanBuilder&& orphan);
  // Set the pointer to point at the given orphaned value.

  OrphanBuilder disown();
  // Set the pointer to null and return its previous value as an orphan.

  void clear();
  // Clear the pointer to null, discarding its previous value.

  void transferFrom(PointerBuilder other);
  // Equivalent to `adopt(other.disown())`.

  void copyFrom(PointerReader other);
  // Equivalent to `set(other.get())`.

  PointerReader asReader() const;

  BuilderArena* getArena() const;
  // Get the arena containing this pointer.

private:
  SegmentBuilder* segment;     // Memory segment in which the pointer resides.
  WirePointer* pointer;        // Pointer to the pointer.

  inline PointerBuilder(SegmentBuilder* segment, WirePointer* pointer)
      : segment(segment), pointer(pointer) {}

  friend class StructBuilder;
  friend class ListBuilder;
};

class PointerReader {
public:
  inline PointerReader(): segment(nullptr), pointer(nullptr), nestingLimit(0x7fffffff) {}

  static PointerReader getRoot(SegmentReader* segment, const word* location, int nestingLimit);
  // Get a PointerReader representing a message root located in the given segment at the given
  // location.

  static inline PointerReader getRootUnchecked(const word* location);
  // Get a PointerReader for an unchecked message.

  MessageSizeCounts targetSize() const;
  // Return the total size of the target object and everything to which it points.  Does not count
  // far pointer overhead.  This is useful for deciding how much space is needed to copy the object
  // into a flat array.  However, the caller is advised NOT to treat this value as secure.  Instead,
  // use the result as a hint for allocating the first segment, do the copy, and then throw an
  // exception if it overruns.

  bool isNull() const;

  StructReader getStruct(const word* defaultValue) const;
  ListReader getList(FieldSize expectedElementSize, const word* defaultValue) const;
  template <typename T>
  typename T::Reader getBlob(const void* defaultValue, ByteCount defaultSize) const;
  kj::Own<ClientHook> getCapability() const;
  // Get methods:  Get the value.  If it is null, return the default value instead.
  // The default value is encoded as an "unchecked message" for structs, lists, and objects, or a
  // simple byte array for blobs.

  const word* getUnchecked() const;
  // If this is an unchecked message, get a word* pointing at the location of the pointer.  This
  // word* can actually be passed to readUnchecked() to read the designated sub-object later.  If
  // this isn't an unchecked message, throws an exception.

  kj::Maybe<Arena&> getArena() const;
  // Get the arena containing this pointer.

private:
  SegmentReader* segment;      // Memory segment in which the pointer resides.
  const WirePointer* pointer;  // Pointer to the pointer.  null = treat as null pointer.

  int nestingLimit;
  // Limits the depth of message structures to guard against stack-overflow-based DoS attacks.
  // Once this reaches zero, further pointers will be pruned.

  inline PointerReader(SegmentReader* segment, const WirePointer* pointer, int nestingLimit)
      : segment(segment), pointer(pointer), nestingLimit(nestingLimit) {}

  friend class StructReader;
  friend class ListReader;
  friend class PointerBuilder;
  friend class OrphanBuilder;
};

// -------------------------------------------------------------------

class StructBuilder: public kj::DisallowConstCopy {
public:
  inline StructBuilder(): segment(nullptr), data(nullptr), pointers(nullptr), bit0Offset(0) {}

  inline word* getLocation() { return reinterpret_cast<word*>(data); }
  // Get the object's location.  Only valid for independently-allocated objects (i.e. not list
  // elements).

  inline BitCount getDataSectionSize() const { return dataSize; }
  inline WirePointerCount getPointerSectionSize() const { return pointerCount; }
  inline Data::Builder getDataSectionAsBlob();

  template <typename T>
  KJ_ALWAYS_INLINE(bool hasDataField(ElementCount offset));
  // Return true if the field is set to something other than its default value.

  template <typename T>
  KJ_ALWAYS_INLINE(T getDataField(ElementCount offset));
  // Gets the data field value of the given type at the given offset.  The offset is measured in
  // multiples of the field size, determined by the type.

  template <typename T>
  KJ_ALWAYS_INLINE(T getDataField(ElementCount offset, Mask<T> mask));
  // Like getDataField() but applies the given XOR mask to the data on load.  Used for reading
  // fields with non-zero default values.

  template <typename T>
  KJ_ALWAYS_INLINE(void setDataField(
      ElementCount offset, kj::NoInfer<T> value));
  // Sets the data field value at the given offset.

  template <typename T>
  KJ_ALWAYS_INLINE(void setDataField(
      ElementCount offset, kj::NoInfer<T> value, Mask<T> mask));
  // Like setDataField() but applies the given XOR mask before storing.  Used for writing fields
  // with non-zero default values.

  KJ_ALWAYS_INLINE(PointerBuilder getPointerField(WirePointerCount ptrIndex));
  // Get a builder for a pointer field given the index within the pointer section.

  void clearAll();
  // Clear all pointers and data.

  void transferContentFrom(StructBuilder other);
  // Adopt all pointers from `other`, and also copy all data.  If `other`'s sections are larger
  // than this, the extra data is not transferred, meaning there is a risk of data loss when
  // transferring from messages built with future versions of the protocol.

  void copyContentFrom(StructReader other);
  // Copy content from `other`.  If `other`'s sections are larger than this, the extra data is not
  // copied, meaning there is a risk of data loss when copying from messages built with future
  // versions of the protocol.

  StructReader asReader() const;
  // Gets a StructReader pointing at the same memory.

  BuilderArena* getArena();
  // Gets the arena in which this object is allocated.

private:
  SegmentBuilder* segment;     // Memory segment in which the struct resides.
  void* data;                  // Pointer to the encoded data.
  WirePointer* pointers;   // Pointer to the encoded pointers.

  BitCount32 dataSize;
  // Size of data section.  We use a bit count rather than a word count to more easily handle the
  // case of struct lists encoded with less than a word per element.

  WirePointerCount16 pointerCount;  // Size of the pointer section.

  BitCount8 bit0Offset;
  // A special hack:  If dataSize == 1 bit, then bit0Offset is the offset of that bit within the
  // byte pointed to by `data`.  In all other cases, this is zero.  This is needed to implement
  // struct lists where each struct is one bit.

  inline StructBuilder(SegmentBuilder* segment, void* data, WirePointer* pointers,
                       BitCount dataSize, WirePointerCount pointerCount, BitCount8 bit0Offset)
      : segment(segment), data(data), pointers(pointers),
        dataSize(dataSize), pointerCount(pointerCount), bit0Offset(bit0Offset) {}

  friend class ListBuilder;
  friend struct WireHelpers;
  friend class OrphanBuilder;
};

class StructReader {
public:
  inline StructReader()
      : segment(nullptr), data(nullptr), pointers(nullptr), dataSize(0),
        pointerCount(0), bit0Offset(0), nestingLimit(0x7fffffff) {}

  const void* getLocation() const { return data; }

  inline BitCount getDataSectionSize() const { return dataSize; }
  inline WirePointerCount getPointerSectionSize() const { return pointerCount; }
  inline Data::Reader getDataSectionAsBlob();

  template <typename T>
  KJ_ALWAYS_INLINE(bool hasDataField(ElementCount offset) const);
  // Return true if the field is set to something other than its default value.

  template <typename T>
  KJ_ALWAYS_INLINE(T getDataField(ElementCount offset) const);
  // Get the data field value of the given type at the given offset.  The offset is measured in
  // multiples of the field size, determined by the type.  Returns zero if the offset is past the
  // end of the struct's data section.

  template <typename T>
  KJ_ALWAYS_INLINE(
      T getDataField(ElementCount offset, Mask<T> mask) const);
  // Like getDataField(offset), but applies the given XOR mask to the result.  Used for reading
  // fields with non-zero default values.

  KJ_ALWAYS_INLINE(PointerReader getPointerField(WirePointerCount ptrIndex) const);
  // Get a reader for a pointer field given the index within the pointer section.  If the index
  // is out-of-bounds, returns a null pointer.

  MessageSizeCounts totalSize() const;
  // Return the total size of the struct and everything to which it points.  Does not count far
  // pointer overhead.  This is useful for deciding how much space is needed to copy the struct
  // into a flat array.  However, the caller is advised NOT to treat this value as secure.  Instead,
  // use the result as a hint for allocating the first segment, do the copy, and then throw an
  // exception if it overruns.

private:
  SegmentReader* segment;  // Memory segment in which the struct resides.

  const void* data;
  const WirePointer* pointers;

  BitCount32 dataSize;
  // Size of data section.  We use a bit count rather than a word count to more easily handle the
  // case of struct lists encoded with less than a word per element.

  WirePointerCount16 pointerCount;  // Size of the pointer section.

  BitCount8 bit0Offset;
  // A special hack:  If dataSize == 1 bit, then bit0Offset is the offset of that bit within the
  // byte pointed to by `data`.  In all other cases, this is zero.  This is needed to implement
  // struct lists where each struct is one bit.
  //
  // TODO(someday):  Consider packing this together with dataSize, since we have 10 extra bits
  //   there doing nothing -- or arguably 12 bits, if you consider that 2-bit and 4-bit sizes
  //   aren't allowed.  Consider that we could have a method like getDataSizeIn<T>() which is
  //   specialized to perform the correct shifts for each size.

  int nestingLimit;
  // Limits the depth of message structures to guard against stack-overflow-based DoS attacks.
  // Once this reaches zero, further pointers will be pruned.
  // TODO(perf):  Limit to 8 bits for better alignment?

  inline StructReader(SegmentReader* segment, const void* data, const WirePointer* pointers,
                      BitCount dataSize, WirePointerCount pointerCount, BitCount8 bit0Offset,
                      int nestingLimit)
      : segment(segment), data(data), pointers(pointers),
        dataSize(dataSize), pointerCount(pointerCount), bit0Offset(bit0Offset),
        nestingLimit(nestingLimit) {}

  friend class ListReader;
  friend class StructBuilder;
  friend struct WireHelpers;
};

// -------------------------------------------------------------------

class ListBuilder: public kj::DisallowConstCopy {
public:
  inline ListBuilder()
      : segment(nullptr), ptr(nullptr), elementCount(0 * ELEMENTS),
        step(0 * BITS / ELEMENTS) {}

  inline word* getLocation() {
    // Get the object's location.  Only valid for independently-allocated objects (i.e. not list
    // elements).

    if (step * ELEMENTS <= BITS_PER_WORD * WORDS) {
      return reinterpret_cast<word*>(ptr);
    } else {
      return reinterpret_cast<word*>(ptr) - POINTER_SIZE_IN_WORDS;
    }
  }

  inline ElementCount size() const;
  // The number of elements in the list.

  Text::Builder asText();
  Data::Builder asData();
  // Reinterpret the list as a blob.  Throws an exception if the elements are not byte-sized.

  template <typename T>
  KJ_ALWAYS_INLINE(T getDataElement(ElementCount index));
  // Get the element of the given type at the given index.

  template <typename T>
  KJ_ALWAYS_INLINE(void setDataElement(
      ElementCount index, kj::NoInfer<T> value));
  // Set the element at the given index.

  KJ_ALWAYS_INLINE(PointerBuilder getPointerElement(ElementCount index));

  StructBuilder getStructElement(ElementCount index);

  ListReader asReader() const;
  // Get a ListReader pointing at the same memory.

  BuilderArena* getArena();
  // Gets the arena in which this object is allocated.

private:
  SegmentBuilder* segment;  // Memory segment in which the list resides.

  byte* ptr;  // Pointer to list content.

  ElementCount elementCount;  // Number of elements in the list.

  decltype(BITS / ELEMENTS) step;
  // The distance between elements.

  BitCount32 structDataSize;
  WirePointerCount16 structPointerCount;
  // The struct properties to use when interpreting the elements as structs.  All lists can be
  // interpreted as struct lists, so these are always filled in.

  inline ListBuilder(SegmentBuilder* segment, void* ptr,
                     decltype(BITS / ELEMENTS) step, ElementCount size,
                     BitCount structDataSize, WirePointerCount structPointerCount)
      : segment(segment), ptr(reinterpret_cast<byte*>(ptr)),
        elementCount(size), step(step), structDataSize(structDataSize),
        structPointerCount(structPointerCount) {}

  friend class StructBuilder;
  friend struct WireHelpers;
  friend class OrphanBuilder;
};

class ListReader {
public:
  inline ListReader()
      : segment(nullptr), ptr(nullptr), elementCount(0), step(0 * BITS / ELEMENTS),
        structDataSize(0), structPointerCount(0), nestingLimit(0x7fffffff) {}

  inline ElementCount size() const;
  // The number of elements in the list.

  Text::Reader asText();
  Data::Reader asData();
  // Reinterpret the list as a blob.  Throws an exception if the elements are not byte-sized.

  template <typename T>
  KJ_ALWAYS_INLINE(T getDataElement(ElementCount index) const);
  // Get the element of the given type at the given index.

  KJ_ALWAYS_INLINE(PointerReader getPointerElement(ElementCount index) const);

  StructReader getStructElement(ElementCount index) const;

private:
  SegmentReader* segment;  // Memory segment in which the list resides.

  const byte* ptr;  // Pointer to list content.

  ElementCount elementCount;  // Number of elements in the list.

  decltype(BITS / ELEMENTS) step;
  // The distance between elements.

  BitCount32 structDataSize;
  WirePointerCount16 structPointerCount;
  // The struct properties to use when interpreting the elements as structs.  All lists can be
  // interpreted as struct lists, so these are always filled in.

  int nestingLimit;
  // Limits the depth of message structures to guard against stack-overflow-based DoS attacks.
  // Once this reaches zero, further pointers will be pruned.

  inline ListReader(SegmentReader* segment, const void* ptr,
                    ElementCount elementCount, decltype(BITS / ELEMENTS) step,
                    BitCount structDataSize, WirePointerCount structPointerCount,
                    int nestingLimit)
      : segment(segment), ptr(reinterpret_cast<const byte*>(ptr)), elementCount(elementCount),
        step(step), structDataSize(structDataSize),
        structPointerCount(structPointerCount), nestingLimit(nestingLimit) {}

  friend class StructReader;
  friend class ListBuilder;
  friend struct WireHelpers;
  friend class OrphanBuilder;
};

// -------------------------------------------------------------------

class OrphanBuilder {
public:
  inline OrphanBuilder(): segment(nullptr), location(nullptr) { memset(&tag, 0, sizeof(tag)); }
  OrphanBuilder(const OrphanBuilder& other) = delete;
  inline OrphanBuilder(OrphanBuilder&& other) noexcept;
  inline ~OrphanBuilder() noexcept(false);

  static OrphanBuilder initStruct(BuilderArena* arena, StructSize size);
  static OrphanBuilder initList(BuilderArena* arena, ElementCount elementCount,
                                FieldSize elementSize);
  static OrphanBuilder initStructList(BuilderArena* arena, ElementCount elementCount,
                                      StructSize elementSize);
  static OrphanBuilder initText(BuilderArena* arena, ByteCount size);
  static OrphanBuilder initData(BuilderArena* arena, ByteCount size);

  static OrphanBuilder copy(BuilderArena* arena, StructReader copyFrom);
  static OrphanBuilder copy(BuilderArena* arena, ListReader copyFrom);
  static OrphanBuilder copy(BuilderArena* arena, PointerReader copyFrom);
  static OrphanBuilder copy(BuilderArena* arena, Text::Reader copyFrom);
  static OrphanBuilder copy(BuilderArena* arena, Data::Reader copyFrom);
  static OrphanBuilder copy(BuilderArena* arena, kj::Own<ClientHook> copyFrom);

  OrphanBuilder& operator=(const OrphanBuilder& other) = delete;
  inline OrphanBuilder& operator=(OrphanBuilder&& other);

  inline bool operator==(decltype(nullptr)) const { return location == nullptr; }
  inline bool operator!=(decltype(nullptr)) const { return location != nullptr; }

  StructBuilder asStruct(StructSize size);
  // Interpret as a struct, or throw an exception if not a struct.

  ListBuilder asList(FieldSize elementSize);
  // Interpret as a list, or throw an exception if not a list.  elementSize cannot be
  // INLINE_COMPOSITE -- use asStructList() instead.

  ListBuilder asStructList(StructSize elementSize);
  // Interpret as a struct list, or throw an exception if not a list.

  Text::Builder asText();
  Data::Builder asData();
  // Interpret as a blob, or throw an exception if not a blob.

  StructReader asStructReader(StructSize size) const;
  ListReader asListReader(FieldSize elementSize) const;
  kj::Own<ClientHook> asCapability() const;
  Text::Reader asTextReader() const;
  Data::Reader asDataReader() const;

private:
  static_assert(1 * POINTERS * WORDS_PER_POINTER == 1 * WORDS,
                "This struct assumes a pointer is one word.");
  word tag;
  // Contains an encoded WirePointer representing this object.  WirePointer is defined in
  // layout.c++, but fits in a word.
  //
  // If the pointer is a FAR pointer, then the tag is a complete pointer, `location` is null, and
  // `segment` is any arbitrary segment in the message.  Otherwise, the tag's offset is garbage,
  // `location` points at the actual object, and `segment` points at the segment where `location`
  // resides.

  SegmentBuilder* segment;
  // Segment in which the object resides, or an arbitrary segment in the message if the tag is a
  // FAR pointer.

  word* location;
  // Pointer to the object, or nullptr if the pointer is null.  For capabilities, we make this
  // point at `tag` just so that it is non-null for operator==, but it is never used.

  inline OrphanBuilder(const void* tagPtr, SegmentBuilder* segment, word* location)
      : segment(segment), location(location) {
    memcpy(&tag, tagPtr, sizeof(tag));
  }

  inline WirePointer* tagAsPtr() { return reinterpret_cast<WirePointer*>(&tag); }
  inline const WirePointer* tagAsPtr() const { return reinterpret_cast<const WirePointer*>(&tag); }

  void euthanize();
  // Erase the target object, zeroing it out and possibly reclaiming the memory.  Called when
  // the OrphanBuilder is being destroyed or overwritten and it is non-null.

  friend struct WireHelpers;
};

// =======================================================================================
// Internal implementation details...

// These are defined in the source file.
template <> typename Text::Builder PointerBuilder::initBlob<Text>(ByteCount size);
template <> void PointerBuilder::setBlob<Text>(typename Text::Reader value);
template <> typename Text::Builder PointerBuilder::getBlob<Text>(const void* defaultValue, ByteCount defaultSize);
template <> typename Text::Reader PointerReader::getBlob<Text>(const void* defaultValue, ByteCount defaultSize) const;

template <> typename Data::Builder PointerBuilder::initBlob<Data>(ByteCount size);
template <> void PointerBuilder::setBlob<Data>(typename Data::Reader value);
template <> typename Data::Builder PointerBuilder::getBlob<Data>(const void* defaultValue, ByteCount defaultSize);
template <> typename Data::Reader PointerReader::getBlob<Data>(const void* defaultValue, ByteCount defaultSize) const;

inline PointerBuilder PointerBuilder::getRoot(SegmentBuilder* segment, word* location) {
  return PointerBuilder(segment, reinterpret_cast<WirePointer*>(location));
}

inline PointerReader PointerReader::getRootUnchecked(const word* location) {
  return PointerReader(nullptr, reinterpret_cast<const WirePointer*>(location), 0x7fffffff);
}

// -------------------------------------------------------------------

inline Data::Builder StructBuilder::getDataSectionAsBlob() {
  return Data::Builder(reinterpret_cast<byte*>(data), dataSize / BITS_PER_BYTE / BYTES);
}

template <typename T>
inline bool StructBuilder::hasDataField(ElementCount offset) {
  return getDataField<Mask<T>>(offset) != 0;
}

template <>
inline bool StructBuilder::hasDataField<Void>(ElementCount offset) {
  return false;
}

template <typename T>
inline T StructBuilder::getDataField(ElementCount offset) {
  return reinterpret_cast<WireValue<T>*>(data)[offset / ELEMENTS].get();
}

template <>
inline bool StructBuilder::getDataField<bool>(ElementCount offset) {
  // This branch should be compiled out whenever this is inlined with a constant offset.
  BitCount boffset = (offset == 0 * ELEMENTS) ?
      BitCount(bit0Offset) : offset * (1 * BITS / ELEMENTS);
  byte* b = reinterpret_cast<byte*>(data) + boffset / BITS_PER_BYTE;
  return (*reinterpret_cast<uint8_t*>(b) & (1 << (boffset % BITS_PER_BYTE / BITS))) != 0;
}

template <>
inline Void StructBuilder::getDataField<Void>(ElementCount offset) {
  return VOID;
}

template <typename T>
inline T StructBuilder::getDataField(ElementCount offset, Mask<T> mask) {
  return unmask<T>(getDataField<Mask<T> >(offset), mask);
}

template <typename T>
inline void StructBuilder::setDataField(ElementCount offset, kj::NoInfer<T> value) {
  reinterpret_cast<WireValue<T>*>(data)[offset / ELEMENTS].set(value);
}

template <>
inline void StructBuilder::setDataField<bool>(ElementCount offset, bool value) {
  // This branch should be compiled out whenever this is inlined with a constant offset.
  BitCount boffset = (offset == 0 * ELEMENTS) ?
      BitCount(bit0Offset) : offset * (1 * BITS / ELEMENTS);
  byte* b = reinterpret_cast<byte*>(data) + boffset / BITS_PER_BYTE;
  uint bitnum = boffset % BITS_PER_BYTE / BITS;
  *reinterpret_cast<uint8_t*>(b) = (*reinterpret_cast<uint8_t*>(b) & ~(1 << bitnum))
                                 | (static_cast<uint8_t>(value) << bitnum);
}

template <>
inline void StructBuilder::setDataField<Void>(ElementCount offset, Void value) {}

template <typename T>
inline void StructBuilder::setDataField(ElementCount offset, kj::NoInfer<T> value, Mask<T> m) {
  setDataField<Mask<T> >(offset, mask<T>(value, m));
}

inline PointerBuilder StructBuilder::getPointerField(WirePointerCount ptrIndex) {
  // Hacky because WirePointer is defined in the .c++ file (so is incomplete here).
  return PointerBuilder(segment, reinterpret_cast<WirePointer*>(
      reinterpret_cast<word*>(pointers) + ptrIndex * WORDS_PER_POINTER));
}

// -------------------------------------------------------------------

inline Data::Reader StructReader::getDataSectionAsBlob() {
  return Data::Reader(reinterpret_cast<const byte*>(data), dataSize / BITS_PER_BYTE / BYTES);
}

template <typename T>
inline bool StructReader::hasDataField(ElementCount offset) const {
  return getDataField<Mask<T>>(offset) != 0;
}

template <>
inline bool StructReader::hasDataField<Void>(ElementCount offset) const {
  return false;
}

template <typename T>
inline T StructReader::getDataField(ElementCount offset) const {
  if ((offset + 1 * ELEMENTS) * capnp::bitsPerElement<T>() <= dataSize) {
    return reinterpret_cast<const WireValue<T>*>(data)[offset / ELEMENTS].get();
  } else {
    return static_cast<T>(0);
  }
}

template <>
inline bool StructReader::getDataField<bool>(ElementCount offset) const {
  BitCount boffset = offset * (1 * BITS / ELEMENTS);
  if (boffset < dataSize) {
    // This branch should be compiled out whenever this is inlined with a constant offset.
    if (offset == 0 * ELEMENTS) {
      boffset = bit0Offset;
    }
    const byte* b = reinterpret_cast<const byte*>(data) + boffset / BITS_PER_BYTE;
    return (*reinterpret_cast<const uint8_t*>(b) & (1 << (boffset % BITS_PER_BYTE / BITS))) != 0;
  } else {
    return false;
  }
}

template <>
inline Void StructReader::getDataField<Void>(ElementCount offset) const {
  return VOID;
}

template <typename T>
T StructReader::getDataField(ElementCount offset, Mask<T> mask) const {
  return unmask<T>(getDataField<Mask<T> >(offset), mask);
}

inline PointerReader StructReader::getPointerField(WirePointerCount ptrIndex) const {
  if (ptrIndex < pointerCount) {
    // Hacky because WirePointer is defined in the .c++ file (so is incomplete here).
    return PointerReader(segment, reinterpret_cast<const WirePointer*>(
        reinterpret_cast<const word*>(pointers) + ptrIndex * WORDS_PER_POINTER), nestingLimit);
  } else{
    return PointerReader();
  }
}

// -------------------------------------------------------------------

inline ElementCount ListBuilder::size() const { return elementCount; }

template <typename T>
inline T ListBuilder::getDataElement(ElementCount index) {
  return reinterpret_cast<WireValue<T>*>(ptr + index * step / BITS_PER_BYTE)->get();

  // TODO(perf):  Benchmark this alternate implementation, which I suspect may make better use of
  //   the x86 SIB byte.  Also use it for all the other getData/setData implementations below, and
  //   the various non-inline methods that look up pointers.
  //   Also if using this, consider changing ptr back to void* instead of byte*.
//  return reinterpret_cast<WireValue<T>*>(ptr)[
//      index / ELEMENTS * (step / capnp::bitsPerElement<T>())].get();
}

template <>
inline bool ListBuilder::getDataElement<bool>(ElementCount index) {
  // Ignore stepBytes for bit lists because bit lists cannot be upgraded to struct lists.
  BitCount bindex = index * step;
  byte* b = ptr + bindex / BITS_PER_BYTE;
  return (*reinterpret_cast<uint8_t*>(b) & (1 << (bindex % BITS_PER_BYTE / BITS))) != 0;
}

template <>
inline Void ListBuilder::getDataElement<Void>(ElementCount index) {
  return VOID;
}

template <typename T>
inline void ListBuilder::setDataElement(ElementCount index, kj::NoInfer<T> value) {
  reinterpret_cast<WireValue<T>*>(ptr + index * step / BITS_PER_BYTE)->set(value);
}

template <>
inline void ListBuilder::setDataElement<bool>(ElementCount index, bool value) {
  // Ignore stepBytes for bit lists because bit lists cannot be upgraded to struct lists.
  BitCount bindex = index * (1 * BITS / ELEMENTS);
  byte* b = ptr + bindex / BITS_PER_BYTE;
  uint bitnum = bindex % BITS_PER_BYTE / BITS;
  *reinterpret_cast<uint8_t*>(b) = (*reinterpret_cast<uint8_t*>(b) & ~(1 << bitnum))
                                 | (static_cast<uint8_t>(value) << bitnum);
}

template <>
inline void ListBuilder::setDataElement<Void>(ElementCount index, Void value) {}

inline PointerBuilder ListBuilder::getPointerElement(ElementCount index) {
  return PointerBuilder(segment,
      reinterpret_cast<WirePointer*>(ptr + index * step / BITS_PER_BYTE));
}

// -------------------------------------------------------------------

inline ElementCount ListReader::size() const { return elementCount; }

template <typename T>
inline T ListReader::getDataElement(ElementCount index) const {
  return reinterpret_cast<const WireValue<T>*>(ptr + index * step / BITS_PER_BYTE)->get();
}

template <>
inline bool ListReader::getDataElement<bool>(ElementCount index) const {
  // Ignore stepBytes for bit lists because bit lists cannot be upgraded to struct lists.
  BitCount bindex = index * step;
  const byte* b = ptr + bindex / BITS_PER_BYTE;
  return (*reinterpret_cast<const uint8_t*>(b) & (1 << (bindex % BITS_PER_BYTE / BITS))) != 0;
}

template <>
inline Void ListReader::getDataElement<Void>(ElementCount index) const {
  return VOID;
}

inline PointerReader ListReader::getPointerElement(ElementCount index) const {
  return PointerReader(segment,
      reinterpret_cast<const WirePointer*>(ptr + index * step / BITS_PER_BYTE), nestingLimit);
}

// -------------------------------------------------------------------

inline OrphanBuilder::OrphanBuilder(OrphanBuilder&& other) noexcept
    : segment(other.segment), location(other.location) {
  memcpy(&tag, &other.tag, sizeof(tag));  // Needs memcpy to comply with aliasing rules.
  other.segment = nullptr;
  other.location = nullptr;
}

inline OrphanBuilder::~OrphanBuilder() noexcept(false) {
  if (segment != nullptr) euthanize();
}

inline OrphanBuilder& OrphanBuilder::operator=(OrphanBuilder&& other) {
  // With normal smart pointers, it's important to handle the case where the incoming pointer
  // is actually transitively owned by this one.  In this case, euthanize() would destroy `other`
  // before we copied it.  This isn't possible in the case of `OrphanBuilder` because it only
  // owns message objects, and `other` is not itself a message object, therefore cannot possibly
  // be transitively owned by `this`.

  if (segment != nullptr) euthanize();
  segment = other.segment;
  location = other.location;
  memcpy(&tag, &other.tag, sizeof(tag));  // Needs memcpy to comply with aliasing rules.
  other.segment = nullptr;
  other.location = nullptr;
  return *this;
}

}  // namespace _ (private)
}  // namespace capnp

#endif  // CAPNP_LAYOUT_H_