This file is indexed.

/usr/include/capnp/schema.h is in libcapnp-dev 0.4.0-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
// Copyright (c) 2013, Kenton Varda <temporal@gmail.com>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef CAPNP_SCHEMA_H_
#define CAPNP_SCHEMA_H_

#include <capnp/schema.capnp.h>

namespace capnp {

class Schema;
class StructSchema;
class EnumSchema;
class InterfaceSchema;
class ConstSchema;
class ListSchema;

template <typename T, Kind k = kind<T>()> struct SchemaType_ { typedef Schema Type; };
template <typename T> struct SchemaType_<T, Kind::PRIMITIVE> { typedef schema::Type::Which Type; };
template <typename T> struct SchemaType_<T, Kind::BLOB> { typedef schema::Type::Which Type; };
template <typename T> struct SchemaType_<T, Kind::ENUM> { typedef EnumSchema Type; };
template <typename T> struct SchemaType_<T, Kind::STRUCT> { typedef StructSchema Type; };
template <typename T> struct SchemaType_<T, Kind::INTERFACE> { typedef InterfaceSchema Type; };
template <typename T> struct SchemaType_<T, Kind::LIST> { typedef ListSchema Type; };

template <typename T>
using SchemaType = typename SchemaType_<T>::Type;
// SchemaType<T> is the type of T's schema, e.g. StructSchema if T is a struct.

namespace _ {  // private
extern const RawSchema NULL_SCHEMA;
extern const RawSchema NULL_STRUCT_SCHEMA;
extern const RawSchema NULL_ENUM_SCHEMA;
extern const RawSchema NULL_INTERFACE_SCHEMA;
extern const RawSchema NULL_CONST_SCHEMA;
// The schema types default to these null (empty) schemas in case of error, especially when
// exceptions are disabled.
}  // namespace _ (private)

class Schema {
  // Convenience wrapper around capnp::schema::Node.

public:
  inline Schema(): raw(&_::NULL_SCHEMA) {}

  template <typename T>
  static inline SchemaType<T> from() { return SchemaType<T>::template fromImpl<T>(); }
  // Get the Schema for a particular compiled-in type.

  schema::Node::Reader getProto() const;
  // Get the underlying Cap'n Proto representation of the schema node.  (Note that this accessor
  // has performance comparable to accessors of struct-typed fields on Reader classes.)

  kj::ArrayPtr<const word> asUncheckedMessage() const;
  // Get the encoded schema node content as a single message segment.  It is safe to read as an
  // unchecked message.

  Schema getDependency(uint64_t id) const;
  // Gets the Schema for one of this Schema's dependencies.  For example, if this Schema is for a
  // struct, you could look up the schema for one of its fields' types.  Throws an exception if this
  // schema doesn't actually depend on the given id.
  //
  // Note that not all type IDs found in the schema node are considered "dependencies" -- only the
  // ones that are needed to implement the dynamic API are.  That includes:
  // - Field types.
  // - Group types.
  // - scopeId for group nodes, but NOT otherwise.
  // - Method parameter and return types.
  //
  // The following are NOT considered dependencies:
  // - Nested nodes.
  // - scopeId for a non-group node.
  // - Annotations.
  //
  // To obtain schemas for those, you would need a SchemaLoader.

  StructSchema asStruct() const;
  EnumSchema asEnum() const;
  InterfaceSchema asInterface() const;
  ConstSchema asConst() const;
  // Cast the Schema to a specific type.  Throws an exception if the type doesn't match.  Use
  // getProto() to determine type, e.g. getProto().isStruct().

  inline bool operator==(const Schema& other) const { return raw == other.raw; }
  inline bool operator!=(const Schema& other) const { return raw != other.raw; }
  // Determine whether two Schemas are wrapping the exact same underlying data, by identity.  If
  // you want to check if two Schemas represent the same type (but possibly different versions of
  // it), compare their IDs instead.

  template <typename T>
  void requireUsableAs() const;
  // Throws an exception if a value with this Schema cannot safely be cast to a native value of
  // the given type.  This passes if either:
  // - *this == from<T>()
  // - This schema was loaded with SchemaLoader, the type ID matches typeId<T>(), and
  //   loadCompiledTypeAndDependencies<T>() was called on the SchemaLoader.

  kj::StringPtr getShortDisplayName() const;
  // Get the short version of the node's display name.

private:
  const _::RawSchema* raw;

  inline explicit Schema(const _::RawSchema* raw): raw(raw) {
    KJ_IREQUIRE(raw->lazyInitializer == nullptr,
        "Must call ensureInitialized() on RawSchema before constructing Schema.");
  }

  template <typename T> static inline Schema fromImpl() {
    return Schema(&_::rawSchema<T>());
  }

  void requireUsableAs(const _::RawSchema* expected) const;

  uint32_t getSchemaOffset(const schema::Value::Reader& value) const;

  friend class StructSchema;
  friend class EnumSchema;
  friend class InterfaceSchema;
  friend class ConstSchema;
  friend class ListSchema;
  friend class SchemaLoader;
};

// -------------------------------------------------------------------

class StructSchema: public Schema {
public:
  inline StructSchema(): Schema(&_::NULL_STRUCT_SCHEMA) {}

  class Field;
  class FieldList;
  class FieldSubset;

  FieldList getFields() const;
  // List top-level fields of this struct.  This list will contain top-level groups (including
  // named unions) but not the members of those groups.  The list does, however, contain the
  // members of the unnamed union, if there is one.

  FieldSubset getUnionFields() const;
  // If the field contains an unnamed union, get a list of fields in the union, ordered by
  // ordinal.  Since discriminant values are assigned sequentially by ordinal, you may index this
  // list by discriminant value.

  FieldSubset getNonUnionFields() const;
  // Get the fields of this struct which are not in an unnamed union, ordered by ordinal.

  kj::Maybe<Field> findFieldByName(kj::StringPtr name) const;
  // Find the field with the given name, or return null if there is no such field.  If the struct
  // contains an unnamed union, then this will find fields of that union in addition to fields
  // of the outer struct, since they exist in the same namespace.  It will not, however, find
  // members of groups (including named unions) -- you must first look up the group itself,
  // then dig into its type.

  Field getFieldByName(kj::StringPtr name) const;
  // Like findFieldByName() but throws an exception on failure.

  kj::Maybe<Field> getFieldByDiscriminant(uint16_t discriminant) const;
  // Finds the field whose `discriminantValue` is equal to the given value, or returns null if
  // there is no such field.  (If the schema does not represent a union or a struct containing
  // an unnamed union, then this always returns null.)

private:
  StructSchema(const _::RawSchema* raw): Schema(raw) {}
  template <typename T> static inline StructSchema fromImpl() {
    return StructSchema(&_::rawSchema<T>());
  }
  friend class Schema;
  friend kj::StringTree _::structString(
      _::StructReader reader, const _::RawSchema& schema);
};

class StructSchema::Field {
public:
  Field() = default;

  inline schema::Field::Reader getProto() const { return proto; }
  inline StructSchema getContainingStruct() const { return parent; }

  inline uint getIndex() const { return index; }
  // Get the index of this field within the containing struct or union.

  uint32_t getDefaultValueSchemaOffset() const;
  // For struct, list, and object fields, returns the offset, in words, within the first segment of
  // the struct's schema, where this field's default value pointer is located.  The schema is
  // always stored as a single-segment unchecked message, which in turn means that the default
  // value pointer itself can be treated as the root of an unchecked message -- if you know where
  // to find it, which is what this method helps you with.
  //
  // For blobs, returns the offset of the begging of the blob's content within the first segment of
  // the struct's schema.
  //
  // This is primarily useful for code generators.  The C++ code generator, for example, embeds
  // the entire schema as a raw word array within the generated code.  Of course, to implement
  // field accessors, it needs access to those fields' default values.  Embedding separate copies
  // of those default values would be redundant since they are already included in the schema, but
  // seeking through the schema at runtime to find the default values would be ugly.  Instead,
  // the code generator can use getDefaultValueSchemaOffset() to find the offset of the default
  // value within the schema, and can simply apply that offset at runtime.
  //
  // If the above does not make sense, you probably don't need this method.

  inline bool operator==(const Field& other) const;
  inline bool operator!=(const Field& other) const { return !(*this == other); }

private:
  StructSchema parent;
  uint index;
  schema::Field::Reader proto;

  inline Field(StructSchema parent, uint index, schema::Field::Reader proto)
      : parent(parent), index(index), proto(proto) {}

  friend class StructSchema;
};

class StructSchema::FieldList {
public:
  FieldList() = default;  // empty list

  inline uint size() const { return list.size(); }
  inline Field operator[](uint index) const { return Field(parent, index, list[index]); }

  typedef _::IndexingIterator<const FieldList, Field> Iterator;
  inline Iterator begin() const { return Iterator(this, 0); }
  inline Iterator end() const { return Iterator(this, size()); }

private:
  StructSchema parent;
  List<schema::Field>::Reader list;

  inline FieldList(StructSchema parent, List<schema::Field>::Reader list)
      : parent(parent), list(list) {}

  friend class StructSchema;
};

class StructSchema::FieldSubset {
public:
  FieldSubset() = default;  // empty list

  inline uint size() const { return size_; }
  inline Field operator[](uint index) const {
    return Field(parent, indices[index], list[indices[index]]);
  }

  typedef _::IndexingIterator<const FieldSubset, Field> Iterator;
  inline Iterator begin() const { return Iterator(this, 0); }
  inline Iterator end() const { return Iterator(this, size()); }

private:
  StructSchema parent;
  List<schema::Field>::Reader list;
  const uint16_t* indices;
  uint size_;

  inline FieldSubset(StructSchema parent, List<schema::Field>::Reader list,
                     const uint16_t* indices, uint size)
      : parent(parent), list(list), indices(indices), size_(size) {}

  friend class StructSchema;
};

// -------------------------------------------------------------------

class EnumSchema: public Schema {
public:
  inline EnumSchema(): Schema(&_::NULL_ENUM_SCHEMA) {}

  class Enumerant;
  class EnumerantList;

  EnumerantList getEnumerants() const;

  kj::Maybe<Enumerant> findEnumerantByName(kj::StringPtr name) const;

  Enumerant getEnumerantByName(kj::StringPtr name) const;
  // Like findEnumerantByName() but throws an exception on failure.

private:
  EnumSchema(const _::RawSchema* raw): Schema(raw) {}
  template <typename T> static inline EnumSchema fromImpl() {
    return EnumSchema(&_::rawSchema<T>());
  }
  friend class Schema;
};

class EnumSchema::Enumerant {
public:
  Enumerant() = default;

  inline schema::Enumerant::Reader getProto() const { return proto; }
  inline EnumSchema getContainingEnum() const { return parent; }

  inline uint16_t getOrdinal() const { return ordinal; }
  inline uint getIndex() const { return ordinal; }

  inline bool operator==(const Enumerant& other) const;
  inline bool operator!=(const Enumerant& other) const { return !(*this == other); }

private:
  EnumSchema parent;
  uint16_t ordinal;
  schema::Enumerant::Reader proto;

  inline Enumerant(EnumSchema parent, uint16_t ordinal, schema::Enumerant::Reader proto)
      : parent(parent), ordinal(ordinal), proto(proto) {}

  friend class EnumSchema;
};

class EnumSchema::EnumerantList {
public:
  EnumerantList() = default;  // empty list

  inline uint size() const { return list.size(); }
  inline Enumerant operator[](uint index) const { return Enumerant(parent, index, list[index]); }

  typedef _::IndexingIterator<const EnumerantList, Enumerant> Iterator;
  inline Iterator begin() const { return Iterator(this, 0); }
  inline Iterator end() const { return Iterator(this, size()); }

private:
  EnumSchema parent;
  List<schema::Enumerant>::Reader list;

  inline EnumerantList(EnumSchema parent, List<schema::Enumerant>::Reader list)
      : parent(parent), list(list) {}

  friend class EnumSchema;
};

// -------------------------------------------------------------------

class InterfaceSchema: public Schema {
public:
  inline InterfaceSchema(): Schema(&_::NULL_INTERFACE_SCHEMA) {}

  class Method;
  class MethodList;

  MethodList getMethods() const;

  kj::Maybe<Method> findMethodByName(kj::StringPtr name) const;

  Method getMethodByName(kj::StringPtr name) const;
  // Like findMethodByName() but throws an exception on failure.

  bool extends(InterfaceSchema other) const;
  // Returns true if `other` is a superclass of this interface (including if `other == *this`).

  kj::Maybe<InterfaceSchema> findSuperclass(uint64_t typeId) const;
  // Find the superclass of this interface with the given type ID.  Returns null if the interface
  // extends no such type.

private:
  InterfaceSchema(const _::RawSchema* raw): Schema(raw) {}
  template <typename T> static inline InterfaceSchema fromImpl() {
    return InterfaceSchema(&_::rawSchema<T>());
  }
  friend class Schema;

  kj::Maybe<Method> findMethodByName(kj::StringPtr name, uint& counter) const;
  bool extends(InterfaceSchema other, uint& counter) const;
  kj::Maybe<InterfaceSchema> findSuperclass(uint64_t typeId, uint& counter) const;
  // We protect against malicious schemas with large or cyclic hierarchies by cutting off the
  // search when the counter reaches a threshold.
};

class InterfaceSchema::Method {
public:
  Method() = default;

  inline schema::Method::Reader getProto() const { return proto; }
  inline InterfaceSchema getContainingInterface() const { return parent; }

  inline uint16_t getOrdinal() const { return ordinal; }
  inline uint getIndex() const { return ordinal; }

  inline bool operator==(const Method& other) const;
  inline bool operator!=(const Method& other) const { return !(*this == other); }

private:
  InterfaceSchema parent;
  uint16_t ordinal;
  schema::Method::Reader proto;

  inline Method(InterfaceSchema parent, uint16_t ordinal,
                schema::Method::Reader proto)
      : parent(parent), ordinal(ordinal), proto(proto) {}

  friend class InterfaceSchema;
};

class InterfaceSchema::MethodList {
public:
  MethodList() = default;  // empty list

  inline uint size() const { return list.size(); }
  inline Method operator[](uint index) const { return Method(parent, index, list[index]); }

  typedef _::IndexingIterator<const MethodList, Method> Iterator;
  inline Iterator begin() const { return Iterator(this, 0); }
  inline Iterator end() const { return Iterator(this, size()); }

private:
  InterfaceSchema parent;
  List<schema::Method>::Reader list;

  inline MethodList(InterfaceSchema parent, List<schema::Method>::Reader list)
      : parent(parent), list(list) {}

  friend class InterfaceSchema;
};

// -------------------------------------------------------------------

class ConstSchema: public Schema {
  // Represents a constant declaration.
  //
  // `ConstSchema` can be implicitly cast to DynamicValue to read its value.

public:
  inline ConstSchema(): Schema(&_::NULL_CONST_SCHEMA) {}

  template <typename T>
  ReaderFor<T> as() const;
  // Read the constant's value.  This is a convenience method equivalent to casting the ConstSchema
  // to a DynamicValue and then calling its `as<T>()` method.  For dependency reasons, this method
  // is defined in <capnp/dynamic.h>, which you must #include explicitly.

  uint32_t getValueSchemaOffset() const;
  // Much like StructSchema::Field::getDefaultValueSchemaOffset(), if the constant has pointer
  // type, this gets the offset from the beginning of the constant's schema node to a pointer
  // representing the constant value.

private:
  ConstSchema(const _::RawSchema* raw): Schema(raw) {}
  friend class Schema;
};

// -------------------------------------------------------------------

class ListSchema {
  // ListSchema is a little different because list types are not described by schema nodes.  So,
  // ListSchema doesn't subclass Schema.

public:
  ListSchema() = default;

  static ListSchema of(schema::Type::Which primitiveType);
  static ListSchema of(StructSchema elementType);
  static ListSchema of(EnumSchema elementType);
  static ListSchema of(InterfaceSchema elementType);
  static ListSchema of(ListSchema elementType);
  // Construct the schema for a list of the given type.

  static ListSchema of(schema::Type::Reader elementType, Schema context);
  // Construct from an element type schema.  Requires a context which can handle getDependency()
  // requests for any type ID found in the schema.

  inline schema::Type::Which whichElementType() const;
  // Get the element type's "which()".  ListSchema does not actually store a schema::Type::Reader
  // describing the element type, but if it did, this would be equivalent to calling
  // .getBody().which() on that type.

  StructSchema getStructElementType() const;
  EnumSchema getEnumElementType() const;
  InterfaceSchema getInterfaceElementType() const;
  ListSchema getListElementType() const;
  // Get the schema for complex element types.  Each of these throws an exception if the element
  // type is not of the requested kind.

  inline bool operator==(const ListSchema& other) const;
  inline bool operator!=(const ListSchema& other) const { return !(*this == other); }

  template <typename T>
  void requireUsableAs() const;

private:
  schema::Type::Which elementType;
  uint8_t nestingDepth;  // 0 for T, 1 for List(T), 2 for List(List(T)), ...
  Schema elementSchema;  // if elementType is struct, enum, interface...

  inline ListSchema(schema::Type::Which elementType)
      : elementType(elementType), nestingDepth(0) {}
  inline ListSchema(schema::Type::Which elementType, Schema elementSchema)
      : elementType(elementType), nestingDepth(0), elementSchema(elementSchema) {}
  inline ListSchema(schema::Type::Which elementType, uint8_t nestingDepth,
                    Schema elementSchema)
      : elementType(elementType), nestingDepth(nestingDepth), elementSchema(elementSchema) {}

  template <typename T>
  struct FromImpl;
  template <typename T> static inline ListSchema fromImpl() {
    return FromImpl<T>::get();
  }

  void requireUsableAs(ListSchema expected) const;

  friend class Schema;
};

// =======================================================================================
// inline implementation

template <> inline schema::Type::Which Schema::from<Void>() { return schema::Type::VOID; }
template <> inline schema::Type::Which Schema::from<bool>() { return schema::Type::BOOL; }
template <> inline schema::Type::Which Schema::from<int8_t>() { return schema::Type::INT8; }
template <> inline schema::Type::Which Schema::from<int16_t>() { return schema::Type::INT16; }
template <> inline schema::Type::Which Schema::from<int32_t>() { return schema::Type::INT32; }
template <> inline schema::Type::Which Schema::from<int64_t>() { return schema::Type::INT64; }
template <> inline schema::Type::Which Schema::from<uint8_t>() { return schema::Type::UINT8; }
template <> inline schema::Type::Which Schema::from<uint16_t>() { return schema::Type::UINT16; }
template <> inline schema::Type::Which Schema::from<uint32_t>() { return schema::Type::UINT32; }
template <> inline schema::Type::Which Schema::from<uint64_t>() { return schema::Type::UINT64; }
template <> inline schema::Type::Which Schema::from<float>() { return schema::Type::FLOAT32; }
template <> inline schema::Type::Which Schema::from<double>() { return schema::Type::FLOAT64; }
template <> inline schema::Type::Which Schema::from<Text>() { return schema::Type::TEXT; }
template <> inline schema::Type::Which Schema::from<Data>() { return schema::Type::DATA; }

template <typename T>
inline void Schema::requireUsableAs() const {
  requireUsableAs(&_::rawSchema<T>());
}

inline bool StructSchema::Field::operator==(const Field& other) const {
  return parent == other.parent && index == other.index;
}
inline bool EnumSchema::Enumerant::operator==(const Enumerant& other) const {
  return parent == other.parent && ordinal == other.ordinal;
}
inline bool InterfaceSchema::Method::operator==(const Method& other) const {
  return parent == other.parent && ordinal == other.ordinal;
}

inline ListSchema ListSchema::of(StructSchema elementType) {
  return ListSchema(schema::Type::STRUCT, 0, elementType);
}
inline ListSchema ListSchema::of(EnumSchema elementType) {
  return ListSchema(schema::Type::ENUM, 0, elementType);
}
inline ListSchema ListSchema::of(InterfaceSchema elementType) {
  return ListSchema(schema::Type::INTERFACE, 0, elementType);
}
inline ListSchema ListSchema::of(ListSchema elementType) {
  return ListSchema(elementType.elementType, elementType.nestingDepth + 1,
                    elementType.elementSchema);
}

inline schema::Type::Which ListSchema::whichElementType() const {
  return nestingDepth == 0 ? elementType : schema::Type::LIST;
}

inline bool ListSchema::operator==(const ListSchema& other) const {
  return elementType == other.elementType && nestingDepth == other.nestingDepth &&
      elementSchema == other.elementSchema;
}

template <typename T>
inline void ListSchema::requireUsableAs() const {
  static_assert(kind<T>() == Kind::LIST,
                "ListSchema::requireUsableAs<T>() requires T is a list type.");
  requireUsableAs(Schema::from<T>());
}

template <typename T>
struct ListSchema::FromImpl<List<T>> {
  static inline ListSchema get() { return of(Schema::from<T>()); }
};

}  // namespace capnp

#endif  // CAPNP_SCHEMA_H_