/usr/include/kj/common.h is in libcapnp-dev 0.4.0-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 | // Copyright (c) 2013, Kenton Varda <temporal@gmail.com>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Header that should be #included by everyone.
//
// This defines very simple utilities that are widely applicable.
#ifndef KJ_COMMON_H_
#define KJ_COMMON_H_
#ifndef KJ_NO_COMPILER_CHECK
#if __cplusplus < 201103L && !__CDT_PARSER__
#error "This code requires C++11. Either your compiler does not support it or it is not enabled."
#ifdef __GNUC__
// Compiler claims compatibility with GCC, so presumably supports -std.
#error "Pass -std=c++11 on the compiler command line to enable C++11."
#endif
#endif
#ifdef __GNUC__
#if __clang__
#if __clang_major__ < 3 || (__clang_major__ == 3 && __clang_minor__ < 2)
#warning "This library requires at least Clang 3.2."
#elif defined(__apple_build_version__) && __apple_build_version__ <= 4250028
#warning "This library requires at least Clang 3.2. XCode 4.6's Clang, which claims to be "\
"version 4.2 (wat?), is actually built from some random SVN revision between 3.1 "\
"and 3.2. Unfortunately, it is insufficient for compiling this library. You can "\
"download the real Clang 3.2 (or newer) from the Clang web site. Step-by-step "\
"instructions can be found in Cap'n Proto's documentation: "\
"http://kentonv.github.io/capnproto/install.html#clang_32_on_mac_osx"
#elif __cplusplus >= 201103L && !__has_include(<initializer_list>)
#warning "Your compiler supports C++11 but your C++ standard library does not. If your "\
"system has libc++ installed (as should be the case on e.g. Mac OSX), try adding "\
"-stdlib=libc++ to your CXXFLAGS."
#endif
#else
#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 7)
#warning "This library requires at least GCC 4.7."
#endif
#endif
#elif defined(_MSC_VER)
#warning "As of June 2013, Visual Studio's C++11 support was hopelessly behind what is needed to compile this code."
#else
#warning "I don't recognize your compiler. As of this writing, Clang and GCC are the only "\
"known compilers with enough C++11 support for this library. "\
"#define KJ_NO_COMPILER_CHECK to make this warning go away."
#endif
#endif
#include <stddef.h>
#include <initializer_list>
// =======================================================================================
namespace kj {
typedef unsigned int uint;
typedef unsigned char byte;
// =======================================================================================
// Common macros, especially for common yet compiler-specific features.
// Detect whether RTTI and exceptions are enabled, assuming they are unless we have specific
// evidence to the contrary. Clients can always define KJ_NO_RTTI or KJ_NO_EXCEPTIONS explicitly
// to override these checks.
#ifdef __GNUC__
#if !defined(KJ_NO_RTTI) && !__GXX_RTTI
#define KJ_NO_RTTI 1
#endif
#if !defined(KJ_NO_EXCEPTIONS) && !__EXCEPTIONS
#define KJ_NO_EXCEPTIONS 1
#endif
#elif defined(_MSC_VER)
#if !defined(KJ_NO_RTTI) && !defined(_CPPRTTI)
#define KJ_NO_RTTI 1
#endif
#if !defined(KJ_NO_EXCEPTIONS) && !defined(_CPPUNWIND)
#define KJ_NO_EXCEPTIONS 1
#endif
#endif
#if !defined(KJ_DEBUG) && !defined(KJ_NDEBUG)
// Heuristically decide whether to enable debug mode. If DEBUG or NDEBUG is defined, use that.
// Otherwise, fall back to checking whether optimization is enabled.
#if defined(DEBUG)
#define KJ_DEBUG
#elif defined(NDEBUG)
#define KJ_NDEBUG
#elif __OPTIMIZE__
#define KJ_NDEBUG
#else
#define KJ_DEBUG
#endif
#endif
#define KJ_DISALLOW_COPY(classname) \
classname(const classname&) = delete; \
classname& operator=(const classname&) = delete
// Deletes the implicit copy constructor and assignment operator.
#define KJ_LIKELY(condition) __builtin_expect(condition, true)
#define KJ_UNLIKELY(condition) __builtin_expect(condition, false)
// Branch prediction macros. Evaluates to the condition given, but also tells the compiler that we
// expect the condition to be true/false enough of the time that it's worth hard-coding branch
// prediction.
#if defined(KJ_DEBUG) || __NO_INLINE__
#define KJ_ALWAYS_INLINE(prototype) inline prototype
// Don't force inline in debug mode.
#else
#define KJ_ALWAYS_INLINE(prototype) inline prototype __attribute__((always_inline))
// Force a function to always be inlined. Apply only to the prototype, not to the definition.
#endif
#define KJ_NORETURN __attribute__((noreturn))
#define KJ_UNUSED __attribute__((unused))
#define KJ_WARN_UNUSED_RESULT __attribute__((warn_unused_result))
#if __clang__
#define KJ_UNUSED_MEMBER __attribute__((unused))
// Inhibits "unused" warning for member variables. Only Clang produces such a warning, while GCC
// complains if the attribute is set on members.
#else
#define KJ_UNUSED_MEMBER
#endif
namespace _ { // private
void inlineRequireFailure(
const char* file, int line, const char* expectation, const char* macroArgs,
const char* message = nullptr) KJ_NORETURN;
void inlineAssertFailure(
const char* file, int line, const char* expectation, const char* macroArgs,
const char* message = nullptr) KJ_NORETURN;
void unreachable() KJ_NORETURN;
} // namespace _ (private)
#ifdef KJ_DEBUG
#define KJ_IREQUIRE(condition, ...) \
if (KJ_LIKELY(condition)); else ::kj::_::inlineRequireFailure( \
__FILE__, __LINE__, #condition, #__VA_ARGS__, ##__VA_ARGS__)
// Version of KJ_DREQUIRE() which is safe to use in headers that are #included by users. Used to
// check preconditions inside inline methods. KJ_IREQUIRE is particularly useful in that
// it will be enabled depending on whether the application is compiled in debug mode rather than
// whether libkj is.
#define KJ_IASSERT(condition, ...) \
if (KJ_LIKELY(condition)); else ::kj::_::inlineAssertFailure( \
__FILE__, __LINE__, #condition, #__VA_ARGS__, ##__VA_ARGS__)
// Version of KJ_DASSERT() which is safe to use in headers that are #included by users. Used to
// check state inside inline and templated methods.
#else
#define KJ_IREQUIRE(condition, ...)
#define KJ_IASSERT(condition, ...)
#endif
#define KJ_UNREACHABLE ::kj::_::unreachable();
// Put this on code paths that cannot be reached to suppress compiler warnings about missing
// returns.
#if __clang__
#define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT
#else
#define KJ_CLANG_KNOWS_THIS_IS_UNREACHABLE_BUT_GCC_DOESNT KJ_UNREACHABLE
#endif
// #define KJ_STACK_ARRAY(type, name, size, minStack, maxStack)
//
// Allocate an array, preferably on the stack, unless it is too big. On GCC this will use
// variable-sized arrays. For other compilers we could just use a fixed-size array. `minStack`
// is the stack array size to use if variable-width arrays are not supported. `maxStack` is the
// maximum stack array size if variable-width arrays *are* supported.
#if __clang__
#define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
size_t name##_size = (size); \
bool name##_isOnStack = name##_size <= (minStack); \
type name##_stack[minStack]; \
::kj::Array<type> name##_heap = name##_isOnStack ? \
nullptr : kj::heapArray<type>(name##_size); \
::kj::ArrayPtr<type> name = name##_isOnStack ? \
kj::arrayPtr(name##_stack, name##_size) : name##_heap
#else
#define KJ_STACK_ARRAY(type, name, size, minStack, maxStack) \
size_t name##_size = (size); \
bool name##_isOnStack = name##_size <= (maxStack); \
type name##_stack[name##_isOnStack ? size : 0]; \
::kj::Array<type> name##_heap = name##_isOnStack ? \
nullptr : kj::heapArray<type>(name##_size); \
::kj::ArrayPtr<type> name = name##_isOnStack ? \
kj::arrayPtr(name##_stack, name##_size) : name##_heap
#endif
#define KJ_CONCAT_(x, y) x##y
#define KJ_CONCAT(x, y) KJ_CONCAT_(x, y)
#define KJ_UNIQUE_NAME(prefix) KJ_CONCAT(prefix, __LINE__)
// Create a unique identifier name. We use concatenate __LINE__ rather than __COUNTER__ so that
// the name can be used multiple times in the same macro.
// =======================================================================================
// Template metaprogramming helpers.
template <typename T> struct NoInfer_ { typedef T Type; };
template <typename T> using NoInfer = typename NoInfer_<T>::Type;
// Use NoInfer<T>::Type in place of T for a template function parameter to prevent inference of
// the type based on the parameter value.
template <typename T> struct RemoveConst_ { typedef T Type; };
template <typename T> struct RemoveConst_<const T> { typedef T Type; };
template <typename T> using RemoveConst = typename RemoveConst_<T>::Type;
template <typename> struct IsLvalueReference_ { static constexpr bool value = false; };
template <typename T> struct IsLvalueReference_<T&> { static constexpr bool value = true; };
template <typename T>
inline constexpr bool isLvalueReference() { return IsLvalueReference_<T>::value; }
template <typename T> struct Decay_ { typedef T Type; };
template <typename T> struct Decay_<T&> { typedef typename Decay_<T>::Type Type; };
template <typename T> struct Decay_<T&&> { typedef typename Decay_<T>::Type Type; };
template <typename T> struct Decay_<T[]> { typedef typename Decay_<T*>::Type Type; };
template <typename T> struct Decay_<const T[]> { typedef typename Decay_<const T*>::Type Type; };
template <typename T, size_t s> struct Decay_<T[s]> { typedef typename Decay_<T*>::Type Type; };
template <typename T, size_t s> struct Decay_<const T[s]> { typedef typename Decay_<const T*>::Type Type; };
template <typename T> struct Decay_<const T> { typedef typename Decay_<T>::Type Type; };
template <typename T> struct Decay_<volatile T> { typedef typename Decay_<T>::Type Type; };
template <typename T> using Decay = typename Decay_<T>::Type;
template <bool b> struct EnableIf_;
template <> struct EnableIf_<true> { typedef void Type; };
template <bool b> using EnableIf = typename EnableIf_<b>::Type;
// Use like:
//
// template <typename T, typename = EnableIf<isValid<T>()>
// void func(T&& t);
template <typename T>
T instance() noexcept;
// Like std::declval, but doesn't transform T into an rvalue reference. If you want that, specify
// instance<T&&>().
struct DisallowConstCopy {
// Inherit from this, or declare a member variable of this type, to prevent the class from being
// copyable from a const reference -- instead, it will only be copyable from non-const references.
// This is useful for enforcing transitive constness of contained pointers.
//
// For example, say you have a type T which contains a pointer. T has non-const methods which
// modify the value at that pointer, but T's const methods are designed to allow reading only.
// Unfortunately, if T has a regular copy constructor, someone can simply make a copy of T and
// then use it to modify the pointed-to value. However, if T inherits DisallowConstCopy, then
// callers will only be able to copy non-const instances of T. Ideally, there is some
// parallel type ImmutableT which is like a version of T that only has const methods, and can
// be copied from a const T.
//
// Note that due to C++ rules about implicit copy constructors and assignment operators, any
// type that contains or inherits from a type that disallows const copies will also automatically
// disallow const copies. Hey, cool, that's exactly what we want.
DisallowConstCopy() = default;
DisallowConstCopy(DisallowConstCopy&);
DisallowConstCopy(DisallowConstCopy&&) = default;
DisallowConstCopy& operator=(DisallowConstCopy&);
DisallowConstCopy& operator=(DisallowConstCopy&&) = default;
};
// Apparently these cannot be defaulted inside the class due to some obscure C++ rule.
inline DisallowConstCopy::DisallowConstCopy(DisallowConstCopy&) = default;
inline DisallowConstCopy& DisallowConstCopy::operator=(DisallowConstCopy&) = default;
template <typename T>
struct DisallowConstCopyIfNotConst: public DisallowConstCopy {
// Inherit from this when implementing a template that contains a pointer to T and which should
// enforce transitive constness. If T is a const type, this has no effect. Otherwise, it is
// an alias for DisallowConstCopy.
};
template <typename T>
struct DisallowConstCopyIfNotConst<const T> {};
template <typename T> struct IsConst_ { static constexpr bool value = false; };
template <typename T> struct IsConst_<const T> { static constexpr bool value = true; };
template <typename T> constexpr bool isConst() { return IsConst_<T>::value; }
template <typename T> struct EnableIfNotConst_ { typedef T Type; };
template <typename T> struct EnableIfNotConst_<const T>;
template <typename T> using EnableIfNotConst = typename EnableIfNotConst_<T>::Type;
template <typename T> struct EnableIfConst_;
template <typename T> struct EnableIfConst_<const T> { typedef T Type; };
template <typename T> using EnableIfConst = typename EnableIfConst_<T>::Type;
template <typename T> struct RemoveConstOrDisable_ { struct Type; };
template <typename T> struct RemoveConstOrDisable_<const T> { typedef T Type; };
template <typename T> using RemoveConstOrDisable = typename RemoveConstOrDisable_<T>::Type;
template <typename T> struct IsReference_ { static constexpr bool value = false; };
template <typename T> struct IsReference_<T&> { static constexpr bool value = true; };
template <typename T> constexpr bool isReference() { return IsReference_<T>::value; }
namespace _ { // private
template <typename T>
T refIfLvalue(T&&);
} // namespace _ (private)
#define KJ_DECLTYPE_REF(exp) decltype(::kj::_::refIfLvalue(exp))
// Like decltype(exp), but if exp is an lvalue, produces a reference type.
//
// int i;
// decltype(i) i1(i); // i1 has type int.
// KJ_DECLTYPE_REF(i + 1) i2(i + 1); // i2 has type int.
// KJ_DECLTYPE_REF(i) i3(i); // i3 has type int&.
// KJ_DECLTYPE_REF(kj::mv(i)) i4(kj::mv(i)); // i4 has type int.
template <typename T>
struct CanConvert_ {
static int sfinae(T);
static bool sfinae(...);
};
template <typename T, typename U>
constexpr bool canConvert() {
return sizeof(CanConvert_<U>::sfinae(instance<T>())) == sizeof(int);
}
#if __clang__
template <typename T>
constexpr bool canMemcpy() {
// Returns true if T can be copied using memcpy instead of using the copy constructor or
// assignment operator.
// Clang unhelpfully defines __has_trivial_{copy,assign}(T) to be true if the copy constructor /
// assign operator are deleted, on the basis that a strict reading of the definition of "trivial"
// according to the standard says that deleted functions are in fact trivial. Meanwhile Clang
// provides these admittedly-better intrinsics, but GCC does not.
return __is_trivially_constructible(T, const T&) && __is_trivially_assignable(T, const T&);
}
#else
template <typename T>
constexpr bool canMemcpy() {
// Returns true if T can be copied using memcpy instead of using the copy constructor or
// assignment operator.
// GCC defines these to mean what we want them to mean.
return __has_trivial_copy(T) && __has_trivial_assign(T);
}
#endif
// =======================================================================================
// Equivalents to std::move() and std::forward(), since these are very commonly needed and the
// std header <utility> pulls in lots of other stuff.
//
// We use abbreviated names mv and fwd because these helpers (especially mv) are so commonly used
// that the cost of typing more letters outweighs the cost of being slightly harder to understand
// when first encountered.
template<typename T> constexpr T&& mv(T& t) noexcept { return static_cast<T&&>(t); }
template<typename T> constexpr T&& fwd(NoInfer<T>& t) noexcept { return static_cast<T&&>(t); }
template<typename T> constexpr T cp(T& t) noexcept { return t; }
template<typename T> constexpr T cp(const T& t) noexcept { return t; }
// Useful to force a copy, particularly to pass into a function that expects T&&.
template <typename T, typename U>
inline constexpr auto min(T&& a, U&& b) -> decltype(a < b ? a : b) { return a < b ? a : b; }
template <typename T, typename U>
inline constexpr auto max(T&& a, U&& b) -> decltype(a > b ? a : b) { return a > b ? a : b; }
template <typename T, size_t s>
inline constexpr size_t size(T (&arr)[s]) { return s; }
template <typename T>
inline constexpr size_t size(T&& arr) { return arr.size(); }
// Returns the size of the parameter, whether the parameter is a regular C array or a container
// with a `.size()` method.
class MaxValue_ {
private:
template <typename T>
inline constexpr T maxSigned() const {
return (1ull << (sizeof(T) * 8 - 1)) - 1;
}
template <typename T>
inline constexpr T maxUnsigned() const {
return ~static_cast<T>(0u);
}
public:
#define _kJ_HANDLE_TYPE(T) \
inline constexpr operator signed T() const { return MaxValue_::maxSigned < signed T>(); } \
inline constexpr operator unsigned T() const { return MaxValue_::maxUnsigned<unsigned T>(); }
_kJ_HANDLE_TYPE(char)
_kJ_HANDLE_TYPE(short)
_kJ_HANDLE_TYPE(int)
_kJ_HANDLE_TYPE(long)
_kJ_HANDLE_TYPE(long long)
#undef _kJ_HANDLE_TYPE
};
class MinValue_ {
private:
template <typename T>
inline constexpr T minSigned() const {
return 1ull << (sizeof(T) * 8 - 1);
}
template <typename T>
inline constexpr T minUnsigned() const {
return 0u;
}
public:
#define _kJ_HANDLE_TYPE(T) \
inline constexpr operator signed T() const { return MinValue_::minSigned < signed T>(); } \
inline constexpr operator unsigned T() const { return MinValue_::minUnsigned<unsigned T>(); }
_kJ_HANDLE_TYPE(char)
_kJ_HANDLE_TYPE(short)
_kJ_HANDLE_TYPE(int)
_kJ_HANDLE_TYPE(long)
_kJ_HANDLE_TYPE(long long)
#undef _kJ_HANDLE_TYPE
};
static constexpr MaxValue_ maxValue = MaxValue_();
// A special constant which, when cast to an integer type, takes on the maximum possible value of
// that type. This is useful to use as e.g. a parameter to a function because it will be robust
// in the face of changes to the parameter's type.
//
// `char` is not supported, but `signed char` and `unsigned char` are.
static constexpr MinValue_ minValue = MinValue_();
// A special constant which, when cast to an integer type, takes on the minimum possible value
// of that type. This is useful to use as e.g. a parameter to a function because it will be robust
// in the face of changes to the parameter's type.
//
// `char` is not supported, but `signed char` and `unsigned char` are.
inline constexpr float inf() { return __builtin_huge_valf(); }
inline constexpr float nan() { return __builtin_nanf(""); }
// =======================================================================================
// Useful fake containers
template <typename T>
class Range {
public:
inline constexpr Range(const T& begin, const T& end): begin_(begin), end_(end) {}
class Iterator {
public:
Iterator() = default;
inline Iterator(const T& value): value(value) {}
inline const T& operator* () const { return value; }
inline const T& operator[](size_t index) const { return value + index; }
inline Iterator& operator++() { ++value; return *this; }
inline Iterator operator++(int) { return Iterator(value++); }
inline Iterator& operator--() { --value; return *this; }
inline Iterator operator--(int) { return Iterator(value--); }
inline Iterator& operator+=(ptrdiff_t amount) { value += amount; return *this; }
inline Iterator& operator-=(ptrdiff_t amount) { value -= amount; return *this; }
inline Iterator operator+ (ptrdiff_t amount) const { return Iterator(value + amount); }
inline Iterator operator- (ptrdiff_t amount) const { return Iterator(value - amount); }
inline ptrdiff_t operator- (const Iterator& other) const { return value - other.value; }
inline bool operator==(const Iterator& other) const { return value == other.value; }
inline bool operator!=(const Iterator& other) const { return value != other.value; }
inline bool operator<=(const Iterator& other) const { return value <= other.value; }
inline bool operator>=(const Iterator& other) const { return value >= other.value; }
inline bool operator< (const Iterator& other) const { return value < other.value; }
inline bool operator> (const Iterator& other) const { return value > other.value; }
private:
T value;
};
inline Iterator begin() const { return Iterator(begin_); }
inline Iterator end() const { return Iterator(end_); }
inline auto size() const -> decltype(instance<T>() - instance<T>()) { return end_ - begin_; }
private:
T begin_;
T end_;
};
template <typename T>
inline constexpr Range<Decay<T>> range(T begin, T end) { return Range<Decay<T>>(begin, end); }
// Returns a fake iterable container containing all values of T from `begin` (inclusive) to `end`
// (exclusive). Example:
//
// // Prints 1, 2, 3, 4, 5, 6, 7, 8, 9.
// for (int i: kj::range(1, 10)) { print(i); }
template <typename T>
inline constexpr Range<size_t> indices(T&& container) {
// Shortcut for iterating over the indices of a container:
//
// for (size_t i: kj::indices(myArray)) { handle(myArray[i]); }
return range<size_t>(0, kj::size(container));
}
template <typename T>
class Repeat {
public:
inline constexpr Repeat(const T& value, size_t count): value(value), count(count) {}
class Iterator {
public:
Iterator() = default;
inline Iterator(const T& value, size_t index): value(value), index(index) {}
inline const T& operator* () const { return value; }
inline const T& operator[](ptrdiff_t index) const { return value; }
inline Iterator& operator++() { ++index; return *this; }
inline Iterator operator++(int) { return Iterator(value, index++); }
inline Iterator& operator--() { --index; return *this; }
inline Iterator operator--(int) { return Iterator(value, index--); }
inline Iterator& operator+=(ptrdiff_t amount) { index += amount; return *this; }
inline Iterator& operator-=(ptrdiff_t amount) { index -= amount; return *this; }
inline Iterator operator+ (ptrdiff_t amount) const { return Iterator(value, index + amount); }
inline Iterator operator- (ptrdiff_t amount) const { return Iterator(value, index - amount); }
inline ptrdiff_t operator- (const Iterator& other) const { return index - other.index; }
inline bool operator==(const Iterator& other) const { return index == other.index; }
inline bool operator!=(const Iterator& other) const { return index != other.index; }
inline bool operator<=(const Iterator& other) const { return index <= other.index; }
inline bool operator>=(const Iterator& other) const { return index >= other.index; }
inline bool operator< (const Iterator& other) const { return index < other.index; }
inline bool operator> (const Iterator& other) const { return index > other.index; }
private:
T value;
size_t index;
};
inline Iterator begin() const { return Iterator(value, 0); }
inline Iterator end() const { return Iterator(value, count); }
inline size_t size() const { return count; }
private:
T value;
size_t count;
};
template <typename T>
inline constexpr Repeat<Decay<T>> repeat(T&& value, size_t count) {
// Returns a fake iterable which contains `count` repeats of `value`. Useful for e.g. creating
// a bunch of spaces: `kj::repeat(' ', indent * 2)`
return Repeat<Decay<T>>(value, count);
}
// =======================================================================================
// Manually invoking constructors and destructors
//
// ctor(x, ...) and dtor(x) invoke x's constructor or destructor, respectively.
// We want placement new, but we don't want to #include <new>. operator new cannot be defined in
// a namespace, and defining it globally conflicts with the definition in <new>. So we have to
// define a dummy type and an operator new that uses it.
namespace _ { // private
struct PlacementNew {};
} // namespace _ (private)
} // namespace kj
inline void* operator new(size_t, kj::_::PlacementNew, void* __p) noexcept {
return __p;
}
namespace kj {
template <typename T, typename... Params>
inline void ctor(T& location, Params&&... params) {
new (_::PlacementNew(), &location) T(kj::fwd<Params>(params)...);
}
template <typename T>
inline void dtor(T& location) {
location.~T();
}
// =======================================================================================
// Maybe
//
// Use in cases where you want to indicate that a value may be null. Using Maybe<T&> instead of T*
// forces the caller to handle the null case in order to satisfy the compiler, thus reliably
// preventing null pointer dereferences at runtime.
//
// Maybe<T> can be implicitly constructed from T and from nullptr. Additionally, it can be
// implicitly constructed from T*, in which case the pointer is checked for nullness at runtime.
// To read the value of a Maybe<T>, do:
//
// KJ_IF_MAYBE(value, someFuncReturningMaybe()) {
// doSomething(*value);
// } else {
// maybeWasNull();
// }
//
// KJ_IF_MAYBE's first parameter is a variable name which will be defined within the following
// block. The variable will behave like a (guaranteed non-null) pointer to the Maybe's value,
// though it may or may not actually be a pointer.
//
// Note that Maybe<T&> actually just wraps a pointer, whereas Maybe<T> wraps a T and a boolean
// indicating nullness.
template <typename T>
class Maybe;
namespace _ { // private
template <typename T>
class NullableValue {
// Class whose interface behaves much like T*, but actually contains an instance of T and a
// boolean flag indicating nullness.
public:
inline NullableValue(NullableValue&& other) noexcept(noexcept(T(instance<T&&>())))
: isSet(other.isSet) {
if (isSet) {
ctor(value, kj::mv(other.value));
}
}
inline NullableValue(const NullableValue& other)
: isSet(other.isSet) {
if (isSet) {
ctor(value, other.value);
}
}
inline ~NullableValue() noexcept(noexcept(instance<T&>().~T())) {
if (isSet) {
dtor(value);
}
}
inline T& operator*() { return value; }
inline const T& operator*() const { return value; }
inline T* operator->() { return &value; }
inline const T* operator->() const { return &value; }
inline operator T*() { return isSet ? &value : nullptr; }
inline operator const T*() const { return isSet ? &value : nullptr; }
private: // internal interface used by friends only
inline NullableValue() noexcept: isSet(false) {}
inline NullableValue(T&& t) noexcept(noexcept(T(instance<T&&>())))
: isSet(true) {
ctor(value, kj::mv(t));
}
inline NullableValue(T& t)
: isSet(true) {
ctor(value, t);
}
inline NullableValue(const T& t)
: isSet(true) {
ctor(value, t);
}
inline NullableValue(const T* t)
: isSet(t != nullptr) {
if (isSet) ctor(value, *t);
}
template <typename U>
inline NullableValue(NullableValue<U>&& other) noexcept(noexcept(T(instance<U&&>())))
: isSet(other.isSet) {
if (isSet) {
ctor(value, kj::mv(other.value));
}
}
template <typename U>
inline NullableValue(const NullableValue<U>& other)
: isSet(other.isSet) {
if (isSet) {
ctor(value, other.value);
}
}
template <typename U>
inline NullableValue(const NullableValue<U&>& other)
: isSet(other.isSet) {
if (isSet) {
ctor(value, *other.ptr);
}
}
inline NullableValue(decltype(nullptr)): isSet(false) {}
inline NullableValue& operator=(NullableValue&& other) {
if (&other != this) {
// Careful about throwing destructors/constructors here.
if (isSet) {
isSet = false;
dtor(value);
}
if (other.isSet) {
ctor(value, kj::mv(other.value));
isSet = true;
}
}
return *this;
}
inline NullableValue& operator=(NullableValue& other) {
if (&other != this) {
// Careful about throwing destructors/constructors here.
if (isSet) {
isSet = false;
dtor(value);
}
if (other.isSet) {
ctor(value, other.value);
isSet = true;
}
}
return *this;
}
inline NullableValue& operator=(const NullableValue& other) {
if (&other != this) {
// Careful about throwing destructors/constructors here.
if (isSet) {
isSet = false;
dtor(value);
}
if (other.isSet) {
ctor(value, other.value);
isSet = true;
}
}
return *this;
}
inline bool operator==(decltype(nullptr)) const { return !isSet; }
inline bool operator!=(decltype(nullptr)) const { return isSet; }
private:
bool isSet;
union {
T value;
};
friend class kj::Maybe<T>;
template <typename U>
friend NullableValue<U>&& readMaybe(Maybe<U>&& maybe);
};
template <typename T>
inline NullableValue<T>&& readMaybe(Maybe<T>&& maybe) { return kj::mv(maybe.ptr); }
template <typename T>
inline T* readMaybe(Maybe<T>& maybe) { return maybe.ptr; }
template <typename T>
inline const T* readMaybe(const Maybe<T>& maybe) { return maybe.ptr; }
template <typename T>
inline T* readMaybe(Maybe<T&>&& maybe) { return maybe.ptr; }
template <typename T>
inline T* readMaybe(const Maybe<T&>& maybe) { return maybe.ptr; }
template <typename T>
inline T* readMaybe(T* ptr) { return ptr; }
// Allow KJ_IF_MAYBE to work on regular pointers.
} // namespace _ (private)
#define KJ_IF_MAYBE(name, exp) if (auto name = ::kj::_::readMaybe(exp))
template <typename T>
class Maybe {
// A T, or nullptr.
// IF YOU CHANGE THIS CLASS: Note that there is a specialization of it in memory.h.
public:
Maybe(): ptr(nullptr) {}
Maybe(T&& t) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(t)) {}
Maybe(T& t): ptr(t) {}
Maybe(const T& t): ptr(t) {}
Maybe(const T* t) noexcept: ptr(t) {}
Maybe(Maybe&& other) noexcept(noexcept(T(instance<T&&>()))): ptr(kj::mv(other.ptr)) {}
Maybe(const Maybe& other): ptr(other.ptr) {}
template <typename U>
Maybe(Maybe<U>&& other) noexcept(noexcept(T(instance<U&&>()))) {
KJ_IF_MAYBE(val, kj::mv(other)) {
ptr = *val;
}
}
template <typename U>
Maybe(const Maybe<U>& other) {
KJ_IF_MAYBE(val, other) {
ptr = *val;
}
}
Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}
inline Maybe& operator=(Maybe&& other) { ptr = kj::mv(other.ptr); return *this; }
inline Maybe& operator=(Maybe& other) { ptr = other.ptr; return *this; }
inline Maybe& operator=(const Maybe& other) { ptr = other.ptr; return *this; }
inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }
T& orDefault(T& defaultValue) {
if (ptr == nullptr) {
return defaultValue;
} else {
return *ptr;
}
}
const T& orDefault(const T& defaultValue) const {
if (ptr == nullptr) {
return defaultValue;
} else {
return *ptr;
}
}
template <typename Func>
auto map(Func&& f) -> Maybe<decltype(f(instance<T&>()))> {
if (ptr == nullptr) {
return nullptr;
} else {
return f(*ptr);
}
}
template <typename Func>
auto map(Func&& f) const -> Maybe<decltype(f(instance<const T&>()))> {
if (ptr == nullptr) {
return nullptr;
} else {
return f(*ptr);
}
}
// TODO(someday): Once it's safe to require GCC 4.8, use ref qualifiers to provide a version of
// map() that uses move semantics if *this is an rvalue.
private:
_::NullableValue<T> ptr;
template <typename U>
friend class Maybe;
template <typename U>
friend _::NullableValue<U>&& _::readMaybe(Maybe<U>&& maybe);
template <typename U>
friend U* _::readMaybe(Maybe<U>& maybe);
template <typename U>
friend const U* _::readMaybe(const Maybe<U>& maybe);
};
template <typename T>
class Maybe<T&>: public DisallowConstCopyIfNotConst<T> {
public:
Maybe() noexcept: ptr(nullptr) {}
Maybe(T& t) noexcept: ptr(&t) {}
Maybe(T* t) noexcept: ptr(t) {}
template <typename U>
inline Maybe(Maybe<U&>& other) noexcept: ptr(other.ptr) {}
template <typename U>
inline Maybe(const Maybe<const U&>& other) noexcept: ptr(other.ptr) {}
inline Maybe(decltype(nullptr)) noexcept: ptr(nullptr) {}
inline Maybe& operator=(T& other) noexcept { ptr = &other; return *this; }
inline Maybe& operator=(T* other) noexcept { ptr = other; return *this; }
template <typename U>
inline Maybe& operator=(Maybe<U&>& other) noexcept { ptr = other.ptr; return *this; }
template <typename U>
inline Maybe& operator=(const Maybe<const U&>& other) noexcept { ptr = other.ptr; return *this; }
inline bool operator==(decltype(nullptr)) const { return ptr == nullptr; }
inline bool operator!=(decltype(nullptr)) const { return ptr != nullptr; }
T& orDefault(T& defaultValue) {
if (ptr == nullptr) {
return defaultValue;
} else {
return *ptr;
}
}
const T& orDefault(const T& defaultValue) const {
if (ptr == nullptr) {
return defaultValue;
} else {
return *ptr;
}
}
template <typename Func>
auto map(Func&& f) -> Maybe<decltype(f(instance<T&>()))> {
if (ptr == nullptr) {
return nullptr;
} else {
return f(*ptr);
}
}
private:
T* ptr;
template <typename U>
friend class Maybe;
template <typename U>
friend U* _::readMaybe(Maybe<U&>&& maybe);
template <typename U>
friend U* _::readMaybe(const Maybe<U&>& maybe);
};
// =======================================================================================
// ArrayPtr
//
// So common that we put it in common.h rather than array.h.
template <typename T>
class ArrayPtr: public DisallowConstCopyIfNotConst<T> {
// A pointer to an array. Includes a size. Like any pointer, it doesn't own the target data,
// and passing by value only copies the pointer, not the target.
public:
inline constexpr ArrayPtr(): ptr(nullptr), size_(0) {}
inline constexpr ArrayPtr(decltype(nullptr)): ptr(nullptr), size_(0) {}
inline constexpr ArrayPtr(T* ptr, size_t size): ptr(ptr), size_(size) {}
inline constexpr ArrayPtr(T* begin, T* end): ptr(begin), size_(end - begin) {}
inline constexpr ArrayPtr(std::initializer_list<RemoveConstOrDisable<T>> init)
: ptr(init.begin()), size_(init.size()) {}
template <size_t size>
inline constexpr ArrayPtr(T (&native)[size]): ptr(native), size_(size) {}
// Construct an ArrayPtr from a native C-style array.
inline operator ArrayPtr<const T>() const {
return ArrayPtr<const T>(ptr, size_);
}
inline ArrayPtr<const T> asConst() const {
return ArrayPtr<const T>(ptr, size_);
}
inline size_t size() const { return size_; }
inline const T& operator[](size_t index) const {
KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
return ptr[index];
}
inline T& operator[](size_t index) {
KJ_IREQUIRE(index < size_, "Out-of-bounds ArrayPtr access.");
return ptr[index];
}
inline T* begin() { return ptr; }
inline T* end() { return ptr + size_; }
inline T& front() { return *ptr; }
inline T& back() { return *(ptr + size_ - 1); }
inline const T* begin() const { return ptr; }
inline const T* end() const { return ptr + size_; }
inline const T& front() const { return *ptr; }
inline const T& back() const { return *(ptr + size_ - 1); }
inline ArrayPtr<const T> slice(size_t start, size_t end) const {
KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
return ArrayPtr<const T>(ptr + start, end - start);
}
inline ArrayPtr slice(size_t start, size_t end) {
KJ_IREQUIRE(start <= end && end <= size_, "Out-of-bounds ArrayPtr::slice().");
return ArrayPtr(ptr + start, end - start);
}
inline bool operator==(decltype(nullptr)) const { return size_ == 0; }
inline bool operator!=(decltype(nullptr)) const { return size_ != 0; }
inline bool operator==(const ArrayPtr& other) const {
if (size_ != other.size_) return false;
for (size_t i = 0; i < size_; i++) {
if (ptr[i] != other[i]) return false;
}
return true;
}
inline bool operator!=(const ArrayPtr& other) const { return !(*this == other); }
private:
T* ptr;
size_t size_;
};
template <typename T>
inline constexpr ArrayPtr<T> arrayPtr(T* ptr, size_t size) {
// Use this function to construct ArrayPtrs without writing out the type name.
return ArrayPtr<T>(ptr, size);
}
template <typename T>
inline constexpr ArrayPtr<T> arrayPtr(T* begin, T* end) {
// Use this function to construct ArrayPtrs without writing out the type name.
return ArrayPtr<T>(begin, end);
}
// =======================================================================================
// Casts
template <typename To, typename From>
To implicitCast(From&& from) {
// `implicitCast<T>(value)` casts `value` to type `T` only if the conversion is implicit. Useful
// for e.g. resolving ambiguous overloads without sacrificing type-safety.
return kj::fwd<From>(from);
}
template <typename To, typename From>
Maybe<To&> dynamicDowncastIfAvailable(From& from) {
// If RTTI is disabled, always returns nullptr. Otherwise, works like dynamic_cast. Useful
// in situations where dynamic_cast could allow an optimization, but isn't strictly necessary
// for correctness. It is highly recommended that you try to arrange all your dynamic_casts
// this way, as a dynamic_cast that is necessary for correctness implies a flaw in the interface
// design.
// Force a compile error if To is not a subtype of From. Cross-casting is rare; if it is needed
// we should have a separate cast function like dynamicCrosscastIfAvailable().
if (false) {
kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
}
#if KJ_NO_RTTI
return nullptr;
#else
return dynamic_cast<To*>(&from);
#endif
}
template <typename To, typename From>
To& downcast(From& from) {
// Down-cast a value to a sub-type, asserting that the cast is valid. In opt mode this is a
// static_cast, but in debug mode (when RTTI is enabled) a dynamic_cast will be used to verify
// that the value really has the requested type.
// Force a compile error if To is not a subtype of From.
if (false) {
kj::implicitCast<From*>(kj::implicitCast<To*>(nullptr));
}
#if !KJ_NO_RTTI
KJ_IREQUIRE(dynamic_cast<To*>(&from) != nullptr, "Value cannot be downcast() to requested type.");
#endif
return static_cast<To&>(from);
}
// =======================================================================================
// Defer
namespace _ { // private
template <typename Func>
class Deferred {
public:
inline Deferred(Func func): func(func), canceled(false) {}
inline ~Deferred() { if (!canceled) func(); }
KJ_DISALLOW_COPY(Deferred);
// This move constructor is usually optimized away by the compiler.
inline Deferred(Deferred&& other): func(kj::mv(other.func)), canceled(false) {
other.canceled = true;
}
private:
Func func;
bool canceled;
};
} // namespace _ (private)
template <typename Func>
_::Deferred<Decay<Func>> defer(Func&& func) {
// Returns an object which will invoke the given functor in its destructor. The object is not
// copyable but is movable with the semantics you'd expect. Since the return type is private,
// you need to assign to an `auto` variable.
//
// The KJ_DEFER macro provides slightly more convenient syntax for the common case where you
// want some code to run at function exit.
return _::Deferred<Decay<Func>>(kj::fwd<Func>(func));
}
#define KJ_DEFER(code) auto KJ_UNIQUE_NAME(_kjDefer) = ::kj::defer([&](){code;})
// Run the given code when the function exits, whether by return or exception.
} // namespace kj
#endif // KJ_COMMON_H_
|