/usr/include/kj/mutex.h is in libcapnp-dev 0.4.0-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 | // Copyright (c) 2013, Kenton Varda <temporal@gmail.com>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef KJ_MUTEX_H_
#define KJ_MUTEX_H_
#include "memory.h"
#if __linux__ && !defined(KJ_USE_FUTEX)
#define KJ_USE_FUTEX 1
#endif
#if !KJ_USE_FUTEX
// On Linux we use futex. On other platforms we wrap pthreads.
// TODO(someday): Write efficient low-level locking primitives for other platforms.
#include <pthread.h>
#endif
namespace kj {
// =======================================================================================
// Private details -- public interfaces follow below.
namespace _ { // private
class Mutex {
// Internal implementation details. See `MutexGuarded<T>`.
public:
Mutex();
~Mutex();
KJ_DISALLOW_COPY(Mutex);
enum Exclusivity {
EXCLUSIVE,
SHARED
};
void lock(Exclusivity exclusivity);
void unlock(Exclusivity exclusivity);
void assertLockedByCaller(Exclusivity exclusivity);
// In debug mode, assert that the mutex is locked by the calling thread, or if that is
// non-trivial, assert that the mutex is locked (which should be good enough to catch problems
// in unit tests). In non-debug builds, do nothing.
private:
#if KJ_USE_FUTEX
uint futex;
// bit 31 (msb) = set if exclusive lock held
// bit 30 (msb) = set if threads are waiting for exclusive lock
// bits 0-29 = count of readers; If an exclusive lock is held, this is the count of threads
// waiting for a read lock, otherwise it is the count of threads that currently hold a read
// lock.
static constexpr uint EXCLUSIVE_HELD = 1u << 31;
static constexpr uint EXCLUSIVE_REQUESTED = 1u << 30;
static constexpr uint SHARED_COUNT_MASK = EXCLUSIVE_REQUESTED - 1;
#else
mutable pthread_rwlock_t mutex;
#endif
};
class Once {
// Internal implementation details. See `Lazy<T>`.
public:
#if KJ_USE_FUTEX
inline Once(bool startInitialized = false)
: futex(startInitialized ? INITIALIZED : UNINITIALIZED) {}
#else
Once(bool startInitialized = false);
~Once();
#endif
KJ_DISALLOW_COPY(Once);
class Initializer {
public:
virtual void run() = 0;
};
void runOnce(Initializer& init);
inline bool isInitialized() noexcept {
// Fast path check to see if runOnce() would simply return immediately.
#if KJ_USE_FUTEX
return __atomic_load_n(&futex, __ATOMIC_ACQUIRE) == INITIALIZED;
#else
return __atomic_load_n(&state, __ATOMIC_ACQUIRE) == INITIALIZED;
#endif
}
void reset();
// Returns the state from initialized to uninitialized. It is an error to call this when
// not already initialized, or when runOnce() or isInitialized() might be called concurrently in
// another thread.
void disable() noexcept;
// Prevent future calls to runOnce() and reset() from having any effect, and make isInitialized()
// return false forever. If an initializer is currently running, block until it completes.
bool isDisabled() noexcept {
// Returns true if `disable()` has been called.
#if KJ_USE_FUTEX
return __atomic_load_n(&futex, __ATOMIC_ACQUIRE) == DISABLED;
#else
return __atomic_load_n(&state, __ATOMIC_ACQUIRE) == DISABLED;
#endif
}
private:
#if KJ_USE_FUTEX
uint futex;
enum State {
UNINITIALIZED,
INITIALIZING,
INITIALIZING_WITH_WAITERS,
INITIALIZED,
DISABLED
};
#else
enum State {
UNINITIALIZED,
INITIALIZED,
DISABLED
};
State state;
pthread_mutex_t mutex;
#endif
};
} // namespace _ (private)
// =======================================================================================
// Public interface
template <typename T>
class Locked {
// Return type for `MutexGuarded<T>::lock()`. `Locked<T>` provides access to the guarded object
// and unlocks the mutex when it goes out of scope.
public:
KJ_DISALLOW_COPY(Locked);
inline Locked(): mutex(nullptr), ptr(nullptr) {}
inline Locked(Locked&& other): mutex(other.mutex), ptr(other.ptr) {
other.mutex = nullptr;
other.ptr = nullptr;
}
inline ~Locked() {
if (mutex != nullptr) mutex->unlock(isConst<T>() ? _::Mutex::SHARED : _::Mutex::EXCLUSIVE);
}
inline Locked& operator=(Locked&& other) {
if (mutex != nullptr) mutex->unlock(isConst<T>() ? _::Mutex::SHARED : _::Mutex::EXCLUSIVE);
mutex = other.mutex;
ptr = other.ptr;
other.mutex = nullptr;
other.ptr = nullptr;
return *this;
}
inline void release() {
if (mutex != nullptr) mutex->unlock(isConst<T>() ? _::Mutex::SHARED : _::Mutex::EXCLUSIVE);
mutex = nullptr;
ptr = nullptr;
}
inline T* operator->() { return ptr; }
inline const T* operator->() const { return ptr; }
inline T& operator*() { return *ptr; }
inline const T& operator*() const { return *ptr; }
inline T* get() { return ptr; }
inline const T* get() const { return ptr; }
inline operator T*() { return ptr; }
inline operator const T*() const { return ptr; }
private:
_::Mutex* mutex;
T* ptr;
inline Locked(_::Mutex& mutex, T& value): mutex(&mutex), ptr(&value) {}
template <typename U>
friend class MutexGuarded;
};
template <typename T>
class MutexGuarded {
// An object of type T, guarded by a mutex. In order to access the object, you must lock it.
//
// Write locks are not "recursive" -- trying to lock again in a thread that already holds a lock
// will deadlock. Recursive write locks are usually a sign of bad design.
//
// Unfortunately, **READ LOCKS ARE NOT RECURSIVE** either. Common sense says they should be.
// But on many operating systems (BSD, OSX), recursively read-locking a pthread_rwlock is
// actually unsafe. The problem is that writers are "prioritized" over readers, so a read lock
// request will block if any write lock requests are outstanding. So, if thread A takes a read
// lock, thread B requests a write lock (and starts waiting), and then thread A tries to take
// another read lock recursively, the result is deadlock.
public:
template <typename... Params>
explicit MutexGuarded(Params&&... params);
// Initialize the mutex-guarded object by passing the given parameters to its constructor.
Locked<T> lockExclusive() const;
// Exclusively locks the object and returns it. The returned `Locked<T>` can be passed by
// move, similar to `Own<T>`.
//
// This method is declared `const` in accordance with KJ style rules which say that constness
// should be used to indicate thread-safety. It is safe to share a const pointer between threads,
// but it is not safe to share a mutable pointer. Since the whole point of MutexGuarded is to
// be shared between threads, its methods should be const, even though locking it produces a
// non-const pointer to the contained object.
Locked<const T> lockShared() const;
// Lock the value for shared access. Multiple shared locks can be taken concurrently, but cannot
// be held at the same time as a non-shared lock.
inline const T& getWithoutLock() const { return value; }
inline T& getWithoutLock() { return value; }
// Escape hatch for cases where some external factor guarantees that it's safe to get the
// value. You should treat these like const_cast -- be highly suspicious of any use.
inline const T& getAlreadyLockedShared() const;
inline T& getAlreadyLockedShared();
inline T& getAlreadyLockedExclusive() const;
// Like `getWithoutLock()`, but asserts that the lock is already held by the calling thread.
private:
mutable _::Mutex mutex;
mutable T value;
};
template <typename T>
class MutexGuarded<const T> {
// MutexGuarded cannot guard a const type. This would be pointless anyway, and would complicate
// the implementation of Locked<T>, which uses constness to decide what kind of lock it holds.
static_assert(sizeof(T) < 0, "MutexGuarded's type cannot be const.");
};
template <typename T>
class Lazy {
// A lazily-initialized value.
public:
template <typename Func>
T& get(Func&& init);
template <typename Func>
const T& get(Func&& init) const;
// The first thread to call get() will invoke the given init function to construct the value.
// Other threads will block until construction completes, then return the same value.
//
// `init` is a functor(typically a lambda) which takes `SpaceFor<T>&` as its parameter and returns
// `Own<T>`. If `init` throws an exception, the exception is propagated out of that thread's
// call to `get()`, and subsequent calls behave as if `get()` hadn't been called at all yet --
// in other words, subsequent calls retry initialization until it succeeds.
private:
mutable _::Once once;
mutable SpaceFor<T> space;
mutable Own<T> value;
template <typename Func>
class InitImpl;
};
// =======================================================================================
// Inline implementation details
template <typename T>
template <typename... Params>
inline MutexGuarded<T>::MutexGuarded(Params&&... params)
: value(kj::fwd<Params>(params)...) {}
template <typename T>
inline Locked<T> MutexGuarded<T>::lockExclusive() const {
mutex.lock(_::Mutex::EXCLUSIVE);
return Locked<T>(mutex, value);
}
template <typename T>
inline Locked<const T> MutexGuarded<T>::lockShared() const {
mutex.lock(_::Mutex::SHARED);
return Locked<const T>(mutex, value);
}
template <typename T>
inline const T& MutexGuarded<T>::getAlreadyLockedShared() const {
#ifdef KJ_DEBUG
mutex.assertLockedByCaller(_::Mutex::SHARED);
#endif
return value;
}
template <typename T>
inline T& MutexGuarded<T>::getAlreadyLockedShared() {
#ifdef KJ_DEBUG
mutex.assertLockedByCaller(_::Mutex::SHARED);
#endif
return value;
}
template <typename T>
inline T& MutexGuarded<T>::getAlreadyLockedExclusive() const {
#ifdef KJ_DEBUG
mutex.assertLockedByCaller(_::Mutex::EXCLUSIVE);
#endif
return const_cast<T&>(value);
}
template <typename T>
template <typename Func>
class Lazy<T>::InitImpl: public _::Once::Initializer {
public:
inline InitImpl(const Lazy<T>& lazy, Func&& func): lazy(lazy), func(kj::fwd<Func>(func)) {}
void run() override {
lazy.value = func(lazy.space);
}
private:
const Lazy<T>& lazy;
Func func;
};
template <typename T>
template <typename Func>
inline T& Lazy<T>::get(Func&& init) {
if (!once.isInitialized()) {
InitImpl<Func> initImpl(*this, kj::fwd<Func>(init));
once.runOnce(initImpl);
}
return *value;
}
template <typename T>
template <typename Func>
inline const T& Lazy<T>::get(Func&& init) const {
if (!once.isInitialized()) {
InitImpl<Func> initImpl(*this, kj::fwd<Func>(init));
once.runOnce(initImpl);
}
return *value;
}
} // namespace kj
#endif // KJ_MUTEX_H_
|