This file is indexed.

/usr/include/kj/parse/common.h is in libcapnp-dev 0.4.0-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
// Copyright (c) 2013, Kenton Varda <temporal@gmail.com>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Parser combinator framework!
//
// This file declares several functions which construct parsers, usually taking other parsers as
// input, thus making them parser combinators.
//
// A valid parser is any functor which takes a reference to an input cursor (defined below) as its
// input and returns a Maybe.  The parser returns null on parse failure, or returns the parsed
// result on success.
//
// An "input cursor" is any type which implements the same interface as IteratorInput, below.  Such
// a type acts as a pointer to the current input location.  When a parser returns successfully, it
// will have updated the input cursor to point to the position just past the end of what was parsed.
// On failure, the cursor position is unspecified.

#ifndef KJ_PARSE_COMMON_H_
#define KJ_PARSE_COMMON_H_

#include "../common.h"
#include "../memory.h"
#include "../array.h"
#include "../tuple.h"
#include "../vector.h"

namespace kj {
namespace parse {

template <typename Element, typename Iterator>
class IteratorInput {
  // A parser input implementation based on an iterator range.

public:
  IteratorInput(Iterator begin, Iterator end)
      : parent(nullptr), pos(begin), end(end), best(begin) {}
  explicit IteratorInput(IteratorInput& parent)
      : parent(&parent), pos(parent.pos), end(parent.end), best(parent.pos) {}
  ~IteratorInput() {
    if (parent != nullptr) {
      parent->best = kj::max(kj::max(pos, best), parent->best);
    }
  }
  KJ_DISALLOW_COPY(IteratorInput);

  void advanceParent() {
    parent->pos = pos;
  }
  void forgetParent() {
    parent = nullptr;
  }

  bool atEnd() { return pos == end; }
  auto current() -> decltype(*instance<Iterator>()) {
    KJ_IREQUIRE(!atEnd());
    return *pos;
  }
  auto consume() -> decltype(*instance<Iterator>()) {
    KJ_IREQUIRE(!atEnd());
    return *pos++;
  }
  void next() {
    KJ_IREQUIRE(!atEnd());
    ++pos;
  }

  Iterator getBest() { return kj::max(pos, best); }

  Iterator getPosition() { return pos; }

private:
  IteratorInput* parent;
  Iterator pos;
  Iterator end;
  Iterator best;  // furthest we got with any sub-input
};

template <typename T> struct OutputType_;
template <typename T> struct OutputType_<Maybe<T>> { typedef T Type; };
template <typename Parser, typename Input>
using OutputType = typename OutputType_<decltype(instance<Parser&>()(instance<Input&>()))>::Type;
// Synonym for the output type of a parser, given the parser type and the input type.

// =======================================================================================

template <typename Input, typename Output>
class ParserRef {
  // Acts as a reference to some other parser, with simplified type.  The referenced parser
  // is polymorphic by virtual call rather than templates.  For grammars of non-trivial size,
  // it is important to inject refs into the grammar here and there to prevent the parser types
  // from becoming ridiculous.  Using too many of them can hurt performance, though.

public:
  ParserRef(): parser(nullptr), wrapper(nullptr) {}
  ParserRef(const ParserRef&) = default;
  ParserRef(ParserRef&&) = default;
  ParserRef& operator=(const ParserRef& other) = default;
  ParserRef& operator=(ParserRef&& other) = default;

  template <typename Other>
  constexpr ParserRef(Other&& other)
      : parser(&other), wrapper(&WrapperImplInstance<Decay<Other>>::instance) {
    static_assert(kj::isReference<Other>(), "ParseRef should not be assigned to a temporary.");
  }

  template <typename Other>
  inline ParserRef& operator=(Other&& other) {
    static_assert(kj::isReference<Other>(), "ParseRef should not be assigned to a temporary.");
    parser = &other;
    wrapper = &WrapperImplInstance<Decay<Other>>::instance;
    return *this;
  }

  KJ_ALWAYS_INLINE(Maybe<Output> operator()(Input& input) const) {
    // Always inline in the hopes that this allows branch prediction to kick in so the virtual call
    // doesn't hurt so much.
    return wrapper->parse(parser, input);
  }

private:
  struct Wrapper {
    virtual Maybe<Output> parse(const void* parser, Input& input) const = 0;
  };
  template <typename ParserImpl>
  struct WrapperImpl: public Wrapper {
    Maybe<Output> parse(const void* parser, Input& input) const override {
      return (*reinterpret_cast<const ParserImpl*>(parser))(input);
    }
  };
  template <typename ParserImpl>
  struct WrapperImplInstance {
    static constexpr WrapperImpl<ParserImpl> instance = WrapperImpl<ParserImpl>();
  };

  const void* parser;
  const Wrapper* wrapper;
};

template <typename Input, typename Output>
template <typename ParserImpl>
constexpr ParserRef<Input, Output>::WrapperImpl<ParserImpl>
ParserRef<Input, Output>::WrapperImplInstance<ParserImpl>::instance;

template <typename Input, typename ParserImpl>
constexpr ParserRef<Input, OutputType<ParserImpl, Input>> ref(ParserImpl& impl) {
  // Constructs a ParserRef.  You must specify the input type explicitly, e.g.
  // `ref<MyInput>(myParser)`.

  return ParserRef<Input, OutputType<ParserImpl, Input>>(impl);
}

// -------------------------------------------------------------------
// any
// Output = one token

class Any_ {
public:
  template <typename Input>
  Maybe<Decay<decltype(instance<Input>().consume())>> operator()(Input& input) const {
    if (input.atEnd()) {
      return nullptr;
    } else {
      return input.consume();
    }
  }
};

constexpr Any_ any = Any_();
// A parser which matches any token and simply returns it.

// -------------------------------------------------------------------
// exactly()
// Output = Tuple<>

template <typename T>
class Exactly_ {
public:
  explicit constexpr Exactly_(T&& expected): expected(expected) {}

  template <typename Input>
  Maybe<Tuple<>> operator()(Input& input) const {
    if (input.atEnd() || input.current() != expected) {
      return nullptr;
    } else {
      input.next();
      return Tuple<>();
    }
  }

private:
  T expected;
};

template <typename T>
constexpr Exactly_<T> exactly(T&& expected) {
  // Constructs a parser which succeeds when the input is exactly the token specified.  The
  // result is always the empty tuple.

  return Exactly_<T>(kj::fwd<T>(expected));
}

// -------------------------------------------------------------------
// exactlyConst()
// Output = Tuple<>

template <typename T, T expected>
class ExactlyConst_ {
public:
  explicit constexpr ExactlyConst_() {}

  template <typename Input>
  Maybe<Tuple<>> operator()(Input& input) const {
    if (input.atEnd() || input.current() != expected) {
      return nullptr;
    } else {
      input.next();
      return Tuple<>();
    }
  }
};

template <typename T, T expected>
constexpr ExactlyConst_<T, expected> exactlyConst() {
  // Constructs a parser which succeeds when the input is exactly the token specified.  The
  // result is always the empty tuple.  This parser is templated on the token value which may cause
  // it to perform better -- or worse.  Be sure to measure.

  return ExactlyConst_<T, expected>();
}

// -------------------------------------------------------------------
// constResult()

template <typename SubParser, typename Result>
class ConstResult_ {
public:
  explicit constexpr ConstResult_(SubParser&& subParser, Result&& result)
      : subParser(kj::fwd<SubParser>(subParser)), result(kj::fwd<Result>(result)) {}

  template <typename Input>
  Maybe<Result> operator()(Input& input) const {
    if (subParser(input) == nullptr) {
      return nullptr;
    } else {
      return result;
    }
  }

private:
  SubParser subParser;
  Result result;
};

template <typename SubParser, typename Result>
constexpr ConstResult_<SubParser, Result> constResult(SubParser&& subParser, Result&& result) {
  // Constructs a parser which returns exactly `result` if `subParser` is successful.
  return ConstResult_<SubParser, Result>(kj::fwd<SubParser>(subParser), kj::fwd<Result>(result));
}

template <typename SubParser>
constexpr ConstResult_<SubParser, Tuple<>> discard(SubParser&& subParser) {
  // Constructs a parser which wraps `subParser` but discards the result.
  return constResult(kj::fwd<SubParser>(subParser), Tuple<>());
}

// -------------------------------------------------------------------
// sequence()
// Output = Flattened Tuple of outputs of sub-parsers.

template <typename... SubParsers> class Sequence_;

template <typename FirstSubParser, typename... SubParsers>
class Sequence_<FirstSubParser, SubParsers...> {
public:
  template <typename T, typename... U>
  explicit constexpr Sequence_(T&& firstSubParser, U&&... rest)
      : first(kj::fwd<T>(firstSubParser)), rest(kj::fwd<U>(rest)...) {}

  template <typename Input>
  auto operator()(Input& input) const ->
      Maybe<decltype(tuple(
          instance<OutputType<FirstSubParser, Input>>(),
          instance<OutputType<SubParsers, Input>>()...))> {
    return parseNext(input);
  }

  template <typename Input, typename... InitialParams>
  auto parseNext(Input& input, InitialParams&&... initialParams) const ->
      Maybe<decltype(tuple(
          kj::fwd<InitialParams>(initialParams)...,
          instance<OutputType<FirstSubParser, Input>>(),
          instance<OutputType<SubParsers, Input>>()...))> {
    KJ_IF_MAYBE(firstResult, first(input)) {
      return rest.parseNext(input, kj::fwd<InitialParams>(initialParams)...,
                            kj::mv(*firstResult));
    } else {
      return nullptr;
    }
  }

private:
  FirstSubParser first;
  Sequence_<SubParsers...> rest;
};

template <>
class Sequence_<> {
public:
  template <typename Input>
  Maybe<Tuple<>> operator()(Input& input) const {
    return parseNext(input);
  }

  template <typename Input, typename... Params>
  auto parseNext(Input& input, Params&&... params) const ->
      Maybe<decltype(tuple(kj::fwd<Params>(params)...))> {
    return tuple(kj::fwd<Params>(params)...);
  }
};

template <typename... SubParsers>
constexpr Sequence_<SubParsers...> sequence(SubParsers&&... subParsers) {
  // Constructs a parser that executes each of the parameter parsers in sequence and returns a
  // tuple of their results.

  return Sequence_<SubParsers...>(kj::fwd<SubParsers>(subParsers)...);
}

// -------------------------------------------------------------------
// many()
// Output = Array of output of sub-parser, or just a uint count if the sub-parser returns Tuple<>.

template <typename SubParser, bool atLeastOne>
class Many_ {
  template <typename Input, typename Output = OutputType<SubParser, Input>>
  struct Impl;
public:
  explicit constexpr Many_(SubParser&& subParser)
      : subParser(kj::fwd<SubParser>(subParser)) {}

  template <typename Input>
  auto operator()(Input& input) const
      -> decltype(Impl<Input>::apply(instance<const SubParser&>(), input));

private:
  SubParser subParser;
};

template <typename SubParser, bool atLeastOne>
template <typename Input, typename Output>
struct Many_<SubParser, atLeastOne>::Impl {
  static Maybe<Array<Output>> apply(const SubParser& subParser, Input& input) {
    typedef Vector<OutputType<SubParser, Input>> Results;
    Results results;

    while (!input.atEnd()) {
      Input subInput(input);

      KJ_IF_MAYBE(subResult, subParser(subInput)) {
        subInput.advanceParent();
        results.add(kj::mv(*subResult));
      } else {
        break;
      }
    }

    if (atLeastOne && results.empty()) {
      return nullptr;
    }

    return results.releaseAsArray();
  }
};

template <typename SubParser, bool atLeastOne>
template <typename Input>
struct Many_<SubParser, atLeastOne>::Impl<Input, Tuple<>> {
  // If the sub-parser output is Tuple<>, just return a count.

  static Maybe<uint> apply(const SubParser& subParser, Input& input) {
    uint count = 0;

    while (!input.atEnd()) {
      Input subInput(input);

      KJ_IF_MAYBE(subResult, subParser(subInput)) {
        subInput.advanceParent();
        ++count;
      } else {
        break;
      }
    }

    if (atLeastOne && count == 0) {
      return nullptr;
    }

    return count;
  }
};

template <typename SubParser, bool atLeastOne>
template <typename Input>
auto Many_<SubParser, atLeastOne>::operator()(Input& input) const
    -> decltype(Impl<Input>::apply(instance<const SubParser&>(), input)) {
  return Impl<Input, OutputType<SubParser, Input>>::apply(subParser, input);
}

template <typename SubParser>
constexpr Many_<SubParser, false> many(SubParser&& subParser) {
  // Constructs a parser that repeatedly executes the given parser until it fails, returning an
  // Array of the results (or a uint count if `subParser` returns an empty tuple).
  return Many_<SubParser, false>(kj::fwd<SubParser>(subParser));
}

template <typename SubParser>
constexpr Many_<SubParser, true> oneOrMore(SubParser&& subParser) {
  // Like `many()` but the parser must parse at least one item to be successful.
  return Many_<SubParser, true>(kj::fwd<SubParser>(subParser));
}

// -------------------------------------------------------------------
// times()
// Output = Array of output of sub-parser, or Tuple<> if sub-parser returns Tuple<>.

template <typename SubParser>
class Times_ {
  template <typename Input, typename Output = OutputType<SubParser, Input>>
  struct Impl;
public:
  explicit constexpr Times_(SubParser&& subParser, uint count)
      : subParser(kj::fwd<SubParser>(subParser)), count(count) {}

  template <typename Input>
  auto operator()(Input& input) const
      -> decltype(Impl<Input>::apply(instance<const SubParser&>(), instance<uint>(), input));

private:
  SubParser subParser;
  uint count;
};

template <typename SubParser>
template <typename Input, typename Output>
struct Times_<SubParser>::Impl {
  static Maybe<Array<Output>> apply(const SubParser& subParser, uint count, Input& input) {
    auto results = heapArrayBuilder<OutputType<SubParser, Input>>(count);

    while (results.size() < count) {
      if (input.atEnd()) {
        return nullptr;
      } else KJ_IF_MAYBE(subResult, subParser(input)) {
        results.add(kj::mv(*subResult));
      } else {
        return nullptr;
      }
    }

    return results.finish();
  }
};

template <typename SubParser>
template <typename Input>
struct Times_<SubParser>::Impl<Input, Tuple<>> {
  // If the sub-parser output is Tuple<>, just return a count.

  static Maybe<Tuple<>> apply(const SubParser& subParser, uint count, Input& input) {
    uint actualCount = 0;

    while (actualCount < count) {
      if (input.atEnd()) {
        return nullptr;
      } else KJ_IF_MAYBE(subResult, subParser(input)) {
        ++actualCount;
      } else {
        return nullptr;
      }
    }

    return tuple();
  }
};

template <typename SubParser>
template <typename Input>
auto Times_<SubParser>::operator()(Input& input) const
    -> decltype(Impl<Input>::apply(instance<const SubParser&>(), instance<uint>(), input)) {
  return Impl<Input, OutputType<SubParser, Input>>::apply(subParser, count, input);
}

template <typename SubParser>
constexpr Times_<SubParser> times(SubParser&& subParser, uint count) {
  // Constructs a parser that repeats the subParser exactly `count` times.
  return Times_<SubParser>(kj::fwd<SubParser>(subParser), count);
}

// -------------------------------------------------------------------
// optional()
// Output = Maybe<output of sub-parser>

template <typename SubParser>
class Optional_ {
public:
  explicit constexpr Optional_(SubParser&& subParser)
      : subParser(kj::fwd<SubParser>(subParser)) {}

  template <typename Input>
  Maybe<Maybe<OutputType<SubParser, Input>>> operator()(Input& input) const {
    typedef Maybe<OutputType<SubParser, Input>> Result;

    Input subInput(input);
    KJ_IF_MAYBE(subResult, subParser(subInput)) {
      subInput.advanceParent();
      return Result(kj::mv(*subResult));
    } else {
      return Result(nullptr);
    }
  }

private:
  SubParser subParser;
};

template <typename SubParser>
constexpr Optional_<SubParser> optional(SubParser&& subParser) {
  // Constructs a parser that accepts zero or one of the given sub-parser, returning a Maybe
  // of the sub-parser's result.
  return Optional_<SubParser>(kj::fwd<SubParser>(subParser));
}

// -------------------------------------------------------------------
// oneOf()
// All SubParsers must have same output type, which becomes the output type of the
// OneOfParser.

template <typename... SubParsers>
class OneOf_;

template <typename FirstSubParser, typename... SubParsers>
class OneOf_<FirstSubParser, SubParsers...> {
public:
  explicit constexpr OneOf_(FirstSubParser&& firstSubParser, SubParsers&&... rest)
      : first(kj::fwd<FirstSubParser>(firstSubParser)), rest(kj::fwd<SubParsers>(rest)...) {}

  template <typename Input>
  Maybe<OutputType<FirstSubParser, Input>> operator()(Input& input) const {
    {
      Input subInput(input);
      Maybe<OutputType<FirstSubParser, Input>> firstResult = first(subInput);

      if (firstResult != nullptr) {
        subInput.advanceParent();
        return kj::mv(firstResult);
      }
    }

    // Hoping for some tail recursion here...
    return rest(input);
  }

private:
  FirstSubParser first;
  OneOf_<SubParsers...> rest;
};

template <>
class OneOf_<> {
public:
  template <typename Input>
  decltype(nullptr) operator()(Input& input) const {
    return nullptr;
  }
};

template <typename... SubParsers>
constexpr OneOf_<SubParsers...> oneOf(SubParsers&&... parsers) {
  // Constructs a parser that accepts one of a set of options.  The parser behaves as the first
  // sub-parser in the list which returns successfully.  All of the sub-parsers must return the
  // same type.
  return OneOf_<SubParsers...>(kj::fwd<SubParsers>(parsers)...);
}

// -------------------------------------------------------------------
// transform()
// Output = Result of applying transform functor to input value.  If input is a tuple, it is
// unpacked to form the transformation parameters.

template <typename Position>
struct Span {
public:
  inline const Position& begin() const { return begin_; }
  inline const Position& end() const { return end_; }

  Span() = default;
  inline constexpr Span(Position&& begin, Position&& end): begin_(mv(begin)), end_(mv(end)) {}

private:
  Position begin_;
  Position end_;
};

template <typename Position>
constexpr Span<Decay<Position>> span(Position&& start, Position&& end) {
  return Span<Decay<Position>>(kj::fwd<Position>(start), kj::fwd<Position>(end));
}

template <typename SubParser, typename TransformFunc>
class Transform_ {
public:
  explicit constexpr Transform_(SubParser&& subParser, TransformFunc&& transform)
      : subParser(kj::fwd<SubParser>(subParser)), transform(kj::fwd<TransformFunc>(transform)) {}

  template <typename Input>
  Maybe<decltype(kj::apply(instance<TransformFunc&>(),
                           instance<OutputType<SubParser, Input>&&>()))>
      operator()(Input& input) const {
    KJ_IF_MAYBE(subResult, subParser(input)) {
      return kj::apply(transform, kj::mv(*subResult));
    } else {
      return nullptr;
    }
  }

private:
  SubParser subParser;
  TransformFunc transform;
};

template <typename SubParser, typename TransformFunc>
class TransformOrReject_ {
public:
  explicit constexpr TransformOrReject_(SubParser&& subParser, TransformFunc&& transform)
      : subParser(kj::fwd<SubParser>(subParser)), transform(kj::fwd<TransformFunc>(transform)) {}

  template <typename Input>
  decltype(kj::apply(instance<TransformFunc&>(), instance<OutputType<SubParser, Input>&&>()))
      operator()(Input& input) const {
    KJ_IF_MAYBE(subResult, subParser(input)) {
      return kj::apply(transform, kj::mv(*subResult));
    } else {
      return nullptr;
    }
  }

private:
  SubParser subParser;
  TransformFunc transform;
};

template <typename SubParser, typename TransformFunc>
class TransformWithLocation_ {
public:
  explicit constexpr TransformWithLocation_(SubParser&& subParser, TransformFunc&& transform)
      : subParser(kj::fwd<SubParser>(subParser)), transform(kj::fwd<TransformFunc>(transform)) {}

  template <typename Input>
  Maybe<decltype(kj::apply(instance<TransformFunc&>(),
                           instance<Span<Decay<decltype(instance<Input&>().getPosition())>>>(),
                           instance<OutputType<SubParser, Input>&&>()))>
      operator()(Input& input) const {
    auto start = input.getPosition();
    KJ_IF_MAYBE(subResult, subParser(input)) {
      return kj::apply(transform, Span<decltype(start)>(kj::mv(start), input.getPosition()),
                       kj::mv(*subResult));
    } else {
      return nullptr;
    }
  }

private:
  SubParser subParser;
  TransformFunc transform;
};

template <typename SubParser, typename TransformFunc>
constexpr Transform_<SubParser, TransformFunc> transform(
    SubParser&& subParser, TransformFunc&& functor) {
  // Constructs a parser which executes some other parser and then transforms the result by invoking
  // `functor` on it.  Typically `functor` is a lambda.  It is invoked using `kj::apply`,
  // meaning tuples will be unpacked as arguments.
  return Transform_<SubParser, TransformFunc>(
      kj::fwd<SubParser>(subParser), kj::fwd<TransformFunc>(functor));
}

template <typename SubParser, typename TransformFunc>
constexpr TransformOrReject_<SubParser, TransformFunc> transformOrReject(
    SubParser&& subParser, TransformFunc&& functor) {
  // Like `transform()` except that `functor` returns a `Maybe`.  If it returns null, parsing fails,
  // otherwise the parser's result is the content of the `Maybe`.
  return TransformOrReject_<SubParser, TransformFunc>(
      kj::fwd<SubParser>(subParser), kj::fwd<TransformFunc>(functor));
}

template <typename SubParser, typename TransformFunc>
constexpr TransformWithLocation_<SubParser, TransformFunc> transformWithLocation(
    SubParser&& subParser, TransformFunc&& functor) {
  // Like `transform` except that `functor` also takes a `Span` as its first parameter specifying
  // the location of the parsed content.  The span's position type is whatever the parser input's
  // getPosition() returns.
  return TransformWithLocation_<SubParser, TransformFunc>(
      kj::fwd<SubParser>(subParser), kj::fwd<TransformFunc>(functor));
}

// -------------------------------------------------------------------
// notLookingAt()
// Fails if the given parser succeeds at the current location.

template <typename SubParser>
class NotLookingAt_ {
public:
  explicit constexpr NotLookingAt_(SubParser&& subParser)
      : subParser(kj::fwd<SubParser>(subParser)) {}

  template <typename Input>
  Maybe<Tuple<>> operator()(Input& input) const {
    Input subInput(input);
    subInput.forgetParent();
    if (subParser(subInput) == nullptr) {
      return Tuple<>();
    } else {
      return nullptr;
    }
  }

private:
  SubParser subParser;
};

template <typename SubParser>
constexpr NotLookingAt_<SubParser> notLookingAt(SubParser&& subParser) {
  // Constructs a parser which fails at any position where the given parser succeeds.  Otherwise,
  // it succeeds without consuming any input and returns an empty tuple.
  return NotLookingAt_<SubParser>(kj::fwd<SubParser>(subParser));
}

// -------------------------------------------------------------------
// endOfInput()
// Output = Tuple<>, only succeeds if at end-of-input

class EndOfInput_ {
public:
  template <typename Input>
  Maybe<Tuple<>> operator()(Input& input) const {
    if (input.atEnd()) {
      return Tuple<>();
    } else {
      return nullptr;
    }
  }
};

constexpr EndOfInput_ endOfInput = EndOfInput_();
// A parser that succeeds only if it is called with no input.

}  // namespace parse
}  // namespace kj

#endif  // KJ_PARSE_COMMON_H_