This file is indexed.

/usr/include/kj/tuple.h is in libcapnp-dev 0.4.0-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
// Copyright (c) 2013, Kenton Varda <temporal@gmail.com>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
//    list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
//    this list of conditions and the following disclaimer in the documentation
//    and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// This file defines a notion of tuples that is simpler that `std::tuple`.  It works as follows:
// - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C.
// - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c.  If any of these are themselves
//   tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`.
// - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n.
// - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples
//   in the argument list.  So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`.
//
// Note that:
// - The type `Tuple<T>` is a synonym for T.  This is why `get` and `apply` are not members of the
//   type.
// - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be
//   flattened.
// - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause
//   with type inference and `tuple()`.

#ifndef KJ_TUPLE_H_
#define KJ_TUPLE_H_

#include "common.h"

namespace kj {
namespace _ {  // private

template <size_t index, typename... T>
struct TypeByIndex_;
template <typename First, typename... Rest>
struct TypeByIndex_<0, First, Rest...> {
  typedef First Type;
};
template <size_t index, typename First, typename... Rest>
struct TypeByIndex_<index, First, Rest...>
    : public TypeByIndex_<index - 1, Rest...> {};
template <size_t index>
struct TypeByIndex_<index> {
  static_assert(index != index, "Index out-of-range.");
};
template <size_t index, typename... T>
using TypeByIndex = typename TypeByIndex_<index, T...>::Type;
// Chose a particular type out of a list of types, by index.

template <size_t... s>
struct Indexes {};
// Dummy helper type that just encapsulates a sequential list of indexes, so that we can match
// templates against them and unpack them with '...'.

template <size_t end, size_t... prefix>
struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {};
template <size_t... prefix>
struct MakeIndexes_<0, prefix...> {
  typedef Indexes<prefix...> Type;
};
template <size_t end>
using MakeIndexes = typename MakeIndexes_<end>::Type;
// Equivalent to Indexes<0, 1, 2, ..., end>.

template <typename... T>
class Tuple;
template <size_t index, typename... U>
inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
template <size_t index, typename... U>
inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
template <size_t index, typename... U>
inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);

template <uint index, typename T>
struct TupleElement {
  // Encapsulates one element of a tuple.  The actual tuple implementation multiply-inherits
  // from a TupleElement for each element, which is more efficient than a recursive definition.

  T value;
  TupleElement() = default;
  constexpr inline TupleElement(const T& value): value(value) {}
  constexpr inline TupleElement(T&& value): value(kj::mv(value)) {}
};

template <uint index, typename T>
struct TupleElement<index, T&> {
  // If tuples contained references, one of the following would have to be true:
  // - `auto x = tuple(y, z)` would cause x to be a tuple of references to y and z, which is
  //   probably not what you expected.
  // - `Tuple<Foo&, Bar&> x = tuple(a, b)` would not work, because `tuple()` returned
  //   Tuple<Foo, Bar>.
  static_assert(sizeof(T*) == 0, "Sorry, tuples cannot contain references.");
};

template <uint index, typename... T>
struct TupleElement<index, Tuple<T...>> {
  static_assert(sizeof(Tuple<T...>*) == 0,
                "Tuples cannot contain other tuples -- they should be flattened.");
};

template <typename Indexes, typename... Types>
struct TupleImpl;

template <size_t... indexes, typename... Types>
struct TupleImpl<Indexes<indexes...>, Types...>
    : public TupleElement<indexes, Types>... {
  // Implementation of Tuple.  The only reason we need this rather than rolling this into class
  // Tuple (below) is so that we can get "indexes" as an unpackable list.

  static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl.");

  template <typename... Params>
  inline TupleImpl(Params&&... params)
      : TupleElement<indexes, Types>(kj::fwd<Params>(params))... {
    // Work around Clang 3.2 bug 16303 where this is not detected.  (Unfortunately, Clang sometimes
    // segfaults instead.)
    static_assert(sizeof...(params) == sizeof...(indexes),
                  "Wrong number of parameters to Tuple constructor.");
  }

  template <typename... U>
  constexpr inline TupleImpl(Tuple<U...>&& other)
      : TupleElement<indexes, Types>(kj::mv(getImpl<indexes>(other)))... {}
  template <typename... U>
  constexpr inline TupleImpl(Tuple<U...>& other)
      : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
  template <typename... U>
  constexpr inline TupleImpl(const Tuple<U...>& other)
      : TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
};

struct MakeTupleFunc;

template <typename... T>
class Tuple {
  // The actual Tuple class (used for tuples of size other than 1).

public:
  Tuple() = default;
  template <typename... U>
  constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {}
  template <typename... U>
  constexpr inline Tuple(Tuple<U...>& other): impl(other) {}
  template <typename... U>
  constexpr inline Tuple(const Tuple<U...>& other): impl(other) {}

private:
  template <typename... Params>
  constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {}

  TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl;

  template <size_t index, typename... U>
  friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
  template <size_t index, typename... U>
  friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
  template <size_t index, typename... U>
  friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
  friend struct MakeTupleFunc;
};

template <>
class Tuple<> {
  // Simplified zero-member version of Tuple.  In particular this is important to make sure that
  // Tuple<>() is constexpr.
};

template <typename T>
class Tuple<T>;
// Single-element tuple should never be used.  The public API should ensure this.

template <size_t index, typename... T>
inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) {
  // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
  static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
  return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
}
template <size_t index, typename... T>
inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) {
  // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
  static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
  return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value);
}
template <size_t index, typename... T>
inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) {
  // Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
  static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
  return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
}
template <size_t index, typename T>
inline T&& getImpl(T&& value) {
  // Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`.

  // Non-tuples are equivalent to one-element tuples.
  static_assert(index == 0, "Tuple element index out-of-bounds.");
  return kj::fwd<T>(value);
}


template <typename Func, typename SoFar, typename... T>
struct ExpandAndApplyResult_;
// Template which computes the return type of applying Func to T... after flattening tuples.
// SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template
// is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters.

template <typename Func, typename First, typename... Rest, typename... T>
struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...>
    : public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {};
template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...>
    : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {};
template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...>
    : public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {};
template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...>
    : public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {};
template <typename Func, typename... T>
struct ExpandAndApplyResult_<Func, Tuple<T...>> {
  typedef decltype(instance<Func>()(instance<T&&>()...)) Type;
};
template <typename Func, typename... T>
using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type;
// Computes the expected return type of `expandAndApply()`.

template <typename Func>
inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> {
  return func();
}

template <typename Func, typename First, typename... Rest>
struct ExpandAndApplyFunc {
  Func&& func;
  First&& first;
  ExpandAndApplyFunc(Func&& func, First&& first)
      : func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {}
  template <typename... T>
  auto operator()(T&&... params)
      -> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) {
    return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...);
  }
};

template <typename Func, typename First, typename... Rest>
inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest)
    -> ExpandAndApplyResult<Func, First, Rest...> {

  return expandAndApply(
      ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)),
      kj::fwd<Rest>(rest)...);
}

template <typename Func, typename... FirstTypes, typename... Rest>
inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
    -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
  return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
      kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...);
}

template <typename Func, typename... FirstTypes, typename... Rest>
inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest)
    -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
  return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
      kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
}

template <typename Func, typename... FirstTypes, typename... Rest>
inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
    -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
  return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
      kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
}

template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
inline auto expandAndApplyWithIndexes(
    Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
    -> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
  return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))...,
                        kj::fwd<Rest>(rest)...);
}

template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
inline auto expandAndApplyWithIndexes(
    Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
    -> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
  return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)...,
                       kj::fwd<Rest>(rest)...);
}

struct MakeTupleFunc {
  template <typename... Params>
  Tuple<Decay<Params>...> operator()(Params&&... params) {
    return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...);
  }
  template <typename Param>
  Decay<Param> operator()(Param&& param) {
    return kj::fwd<Param>(param);
  }
};

}  // namespace _ (private)

template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; };
template <typename T> struct Tuple_<T> { typedef T Type; };

template <typename... T> using Tuple = typename Tuple_<T...>::Type;
// Tuple type.  `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`.  Tuples of size
// other than 1 expand to an internal type.  Either way, you can construct a Tuple using
// `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple
// as arguments to a function using `kj::apply(func, myTuple)`.
//
// Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple.  If you
// construct a tuple from other tuples, the elements are flattened and concatenated.

template <typename... Params>
inline auto tuple(Params&&... params)
    -> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) {
  // Construct a new tuple from the given values.  Any tuples in the argument list will be
  // flattened into the result.
  return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...);
}

template <size_t index, typename Tuple>
inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) {
  // Unpack and return the tuple element at the given index.  The index is specified as a template
  // parameter, e.g. `kj::get<3>(myTuple)`.
  return _::getImpl<index>(kj::fwd<Tuple>(tuple));
}

template <typename Func, typename... Params>
inline auto apply(Func&& func, Params&&... params)
    -> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) {
  // Apply a function to some arguments, expanding tuples into separate arguments.
  return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...);
}

}  // namespace kj

#endif  // KJ_TUPLE_H_