/usr/include/kj/tuple.h is in libcapnp-dev 0.4.0-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 | // Copyright (c) 2013, Kenton Varda <temporal@gmail.com>
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This file defines a notion of tuples that is simpler that `std::tuple`. It works as follows:
// - `kj::Tuple<A, B, C> is the type of a tuple of an A, a B, and a C.
// - `kj::tuple(a, b, c)` returns a tuple containing a, b, and c. If any of these are themselves
// tuples, they are flattened, so `tuple(a, tuple(b, c), d)` is equivalent to `tuple(a, b, c, d)`.
// - `kj::get<n>(myTuple)` returns the element of `myTuple` at index n.
// - `kj::apply(func, ...)` calls func on the following arguments after first expanding any tuples
// in the argument list. So `kj::apply(foo, a, tuple(b, c), d)` would call `foo(a, b, c, d)`.
//
// Note that:
// - The type `Tuple<T>` is a synonym for T. This is why `get` and `apply` are not members of the
// type.
// - It is illegal for an element of `Tuple` to itself be a tuple, as tuples are meant to be
// flattened.
// - It is illegal for an element of `Tuple` to be a reference, due to problems this would cause
// with type inference and `tuple()`.
#ifndef KJ_TUPLE_H_
#define KJ_TUPLE_H_
#include "common.h"
namespace kj {
namespace _ { // private
template <size_t index, typename... T>
struct TypeByIndex_;
template <typename First, typename... Rest>
struct TypeByIndex_<0, First, Rest...> {
typedef First Type;
};
template <size_t index, typename First, typename... Rest>
struct TypeByIndex_<index, First, Rest...>
: public TypeByIndex_<index - 1, Rest...> {};
template <size_t index>
struct TypeByIndex_<index> {
static_assert(index != index, "Index out-of-range.");
};
template <size_t index, typename... T>
using TypeByIndex = typename TypeByIndex_<index, T...>::Type;
// Chose a particular type out of a list of types, by index.
template <size_t... s>
struct Indexes {};
// Dummy helper type that just encapsulates a sequential list of indexes, so that we can match
// templates against them and unpack them with '...'.
template <size_t end, size_t... prefix>
struct MakeIndexes_: public MakeIndexes_<end - 1, end - 1, prefix...> {};
template <size_t... prefix>
struct MakeIndexes_<0, prefix...> {
typedef Indexes<prefix...> Type;
};
template <size_t end>
using MakeIndexes = typename MakeIndexes_<end>::Type;
// Equivalent to Indexes<0, 1, 2, ..., end>.
template <typename... T>
class Tuple;
template <size_t index, typename... U>
inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
template <size_t index, typename... U>
inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
template <size_t index, typename... U>
inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
template <uint index, typename T>
struct TupleElement {
// Encapsulates one element of a tuple. The actual tuple implementation multiply-inherits
// from a TupleElement for each element, which is more efficient than a recursive definition.
T value;
TupleElement() = default;
constexpr inline TupleElement(const T& value): value(value) {}
constexpr inline TupleElement(T&& value): value(kj::mv(value)) {}
};
template <uint index, typename T>
struct TupleElement<index, T&> {
// If tuples contained references, one of the following would have to be true:
// - `auto x = tuple(y, z)` would cause x to be a tuple of references to y and z, which is
// probably not what you expected.
// - `Tuple<Foo&, Bar&> x = tuple(a, b)` would not work, because `tuple()` returned
// Tuple<Foo, Bar>.
static_assert(sizeof(T*) == 0, "Sorry, tuples cannot contain references.");
};
template <uint index, typename... T>
struct TupleElement<index, Tuple<T...>> {
static_assert(sizeof(Tuple<T...>*) == 0,
"Tuples cannot contain other tuples -- they should be flattened.");
};
template <typename Indexes, typename... Types>
struct TupleImpl;
template <size_t... indexes, typename... Types>
struct TupleImpl<Indexes<indexes...>, Types...>
: public TupleElement<indexes, Types>... {
// Implementation of Tuple. The only reason we need this rather than rolling this into class
// Tuple (below) is so that we can get "indexes" as an unpackable list.
static_assert(sizeof...(indexes) == sizeof...(Types), "Incorrect use of TupleImpl.");
template <typename... Params>
inline TupleImpl(Params&&... params)
: TupleElement<indexes, Types>(kj::fwd<Params>(params))... {
// Work around Clang 3.2 bug 16303 where this is not detected. (Unfortunately, Clang sometimes
// segfaults instead.)
static_assert(sizeof...(params) == sizeof...(indexes),
"Wrong number of parameters to Tuple constructor.");
}
template <typename... U>
constexpr inline TupleImpl(Tuple<U...>&& other)
: TupleElement<indexes, Types>(kj::mv(getImpl<indexes>(other)))... {}
template <typename... U>
constexpr inline TupleImpl(Tuple<U...>& other)
: TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
template <typename... U>
constexpr inline TupleImpl(const Tuple<U...>& other)
: TupleElement<indexes, Types>(getImpl<indexes>(other))... {}
};
struct MakeTupleFunc;
template <typename... T>
class Tuple {
// The actual Tuple class (used for tuples of size other than 1).
public:
Tuple() = default;
template <typename... U>
constexpr inline Tuple(Tuple<U...>&& other): impl(kj::mv(other)) {}
template <typename... U>
constexpr inline Tuple(Tuple<U...>& other): impl(other) {}
template <typename... U>
constexpr inline Tuple(const Tuple<U...>& other): impl(other) {}
private:
template <typename... Params>
constexpr Tuple(Params&&... params): impl(kj::fwd<Params>(params)...) {}
TupleImpl<MakeIndexes<sizeof...(T)>, T...> impl;
template <size_t index, typename... U>
friend inline TypeByIndex<index, U...>& getImpl(Tuple<U...>& tuple);
template <size_t index, typename... U>
friend inline TypeByIndex<index, U...>&& getImpl(Tuple<U...>&& tuple);
template <size_t index, typename... U>
friend inline const TypeByIndex<index, U...>& getImpl(const Tuple<U...>& tuple);
friend struct MakeTupleFunc;
};
template <>
class Tuple<> {
// Simplified zero-member version of Tuple. In particular this is important to make sure that
// Tuple<>() is constexpr.
};
template <typename T>
class Tuple<T>;
// Single-element tuple should never be used. The public API should ensure this.
template <size_t index, typename... T>
inline TypeByIndex<index, T...>& getImpl(Tuple<T...>& tuple) {
// Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
return implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
}
template <size_t index, typename... T>
inline TypeByIndex<index, T...>&& getImpl(Tuple<T...>&& tuple) {
// Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
return kj::mv(implicitCast<TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value);
}
template <size_t index, typename... T>
inline const TypeByIndex<index, T...>& getImpl(const Tuple<T...>& tuple) {
// Get member of a Tuple by index, e.g. `get<2>(myTuple)`.
static_assert(index < sizeof...(T), "Tuple element index out-of-bounds.");
return implicitCast<const TupleElement<index, TypeByIndex<index, T...>>&>(tuple.impl).value;
}
template <size_t index, typename T>
inline T&& getImpl(T&& value) {
// Get member of a Tuple by index, e.g. `getImpl<2>(myTuple)`.
// Non-tuples are equivalent to one-element tuples.
static_assert(index == 0, "Tuple element index out-of-bounds.");
return kj::fwd<T>(value);
}
template <typename Func, typename SoFar, typename... T>
struct ExpandAndApplyResult_;
// Template which computes the return type of applying Func to T... after flattening tuples.
// SoFar starts as Tuple<> and accumulates the flattened parameter types -- so after this template
// is recursively expanded, T... is empty and SoFar is a Tuple containing all the parameters.
template <typename Func, typename First, typename... Rest, typename... T>
struct ExpandAndApplyResult_<Func, Tuple<T...>, First, Rest...>
: public ExpandAndApplyResult_<Func, Tuple<T..., First>, Rest...> {};
template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>, Rest...>
: public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&&..., Rest...> {};
template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
struct ExpandAndApplyResult_<Func, Tuple<T...>, Tuple<FirstTypes...>&, Rest...>
: public ExpandAndApplyResult_<Func, Tuple<T...>, FirstTypes&..., Rest...> {};
template <typename Func, typename... FirstTypes, typename... Rest, typename... T>
struct ExpandAndApplyResult_<Func, Tuple<T...>, const Tuple<FirstTypes...>&, Rest...>
: public ExpandAndApplyResult_<Func, Tuple<T...>, const FirstTypes&..., Rest...> {};
template <typename Func, typename... T>
struct ExpandAndApplyResult_<Func, Tuple<T...>> {
typedef decltype(instance<Func>()(instance<T&&>()...)) Type;
};
template <typename Func, typename... T>
using ExpandAndApplyResult = typename ExpandAndApplyResult_<Func, Tuple<>, T...>::Type;
// Computes the expected return type of `expandAndApply()`.
template <typename Func>
inline auto expandAndApply(Func&& func) -> ExpandAndApplyResult<Func> {
return func();
}
template <typename Func, typename First, typename... Rest>
struct ExpandAndApplyFunc {
Func&& func;
First&& first;
ExpandAndApplyFunc(Func&& func, First&& first)
: func(kj::fwd<Func>(func)), first(kj::fwd<First>(first)) {}
template <typename... T>
auto operator()(T&&... params)
-> decltype(this->func(kj::fwd<First>(first), kj::fwd<T>(params)...)) {
return this->func(kj::fwd<First>(first), kj::fwd<T>(params)...);
}
};
template <typename Func, typename First, typename... Rest>
inline auto expandAndApply(Func&& func, First&& first, Rest&&... rest)
-> ExpandAndApplyResult<Func, First, Rest...> {
return expandAndApply(
ExpandAndApplyFunc<Func, First, Rest...>(kj::fwd<Func>(func), kj::fwd<First>(first)),
kj::fwd<Rest>(rest)...);
}
template <typename Func, typename... FirstTypes, typename... Rest>
inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
-> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
kj::fwd<Func>(func), kj::mv(first), kj::fwd<Rest>(rest)...);
}
template <typename Func, typename... FirstTypes, typename... Rest>
inline auto expandAndApply(Func&& func, Tuple<FirstTypes...>& first, Rest&&... rest)
-> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
}
template <typename Func, typename... FirstTypes, typename... Rest>
inline auto expandAndApply(Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
-> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
return expandAndApplyWithIndexes(MakeIndexes<sizeof...(FirstTypes)>(),
kj::fwd<Func>(func), first, kj::fwd<Rest>(rest)...);
}
template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
inline auto expandAndApplyWithIndexes(
Indexes<indexes...>, Func&& func, Tuple<FirstTypes...>&& first, Rest&&... rest)
-> ExpandAndApplyResult<Func, FirstTypes&&..., Rest...> {
return expandAndApply(kj::fwd<Func>(func), kj::mv(getImpl<indexes>(first))...,
kj::fwd<Rest>(rest)...);
}
template <typename Func, typename... FirstTypes, typename... Rest, size_t... indexes>
inline auto expandAndApplyWithIndexes(
Indexes<indexes...>, Func&& func, const Tuple<FirstTypes...>& first, Rest&&... rest)
-> ExpandAndApplyResult<Func, FirstTypes..., Rest...> {
return expandAndApply(kj::fwd<Func>(func), getImpl<indexes>(first)...,
kj::fwd<Rest>(rest)...);
}
struct MakeTupleFunc {
template <typename... Params>
Tuple<Decay<Params>...> operator()(Params&&... params) {
return Tuple<Decay<Params>...>(kj::fwd<Params>(params)...);
}
template <typename Param>
Decay<Param> operator()(Param&& param) {
return kj::fwd<Param>(param);
}
};
} // namespace _ (private)
template <typename... T> struct Tuple_ { typedef _::Tuple<T...> Type; };
template <typename T> struct Tuple_<T> { typedef T Type; };
template <typename... T> using Tuple = typename Tuple_<T...>::Type;
// Tuple type. `Tuple<T>` (i.e. a single-element tuple) is a synonym for `T`. Tuples of size
// other than 1 expand to an internal type. Either way, you can construct a Tuple using
// `kj::tuple(...)`, get an element by index `i` using `kj::get<i>(myTuple)`, and expand the tuple
// as arguments to a function using `kj::apply(func, myTuple)`.
//
// Tuples are always flat -- that is, no element of a Tuple is ever itself a Tuple. If you
// construct a tuple from other tuples, the elements are flattened and concatenated.
template <typename... Params>
inline auto tuple(Params&&... params)
-> decltype(_::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...)) {
// Construct a new tuple from the given values. Any tuples in the argument list will be
// flattened into the result.
return _::expandAndApply(_::MakeTupleFunc(), kj::fwd<Params>(params)...);
}
template <size_t index, typename Tuple>
inline auto get(Tuple&& tuple) -> decltype(_::getImpl<index>(kj::fwd<Tuple>(tuple))) {
// Unpack and return the tuple element at the given index. The index is specified as a template
// parameter, e.g. `kj::get<3>(myTuple)`.
return _::getImpl<index>(kj::fwd<Tuple>(tuple));
}
template <typename Func, typename... Params>
inline auto apply(Func&& func, Params&&... params)
-> decltype(_::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...)) {
// Apply a function to some arguments, expanding tuples into separate arguments.
return _::expandAndApply(kj::fwd<Func>(func), kj::fwd<Params>(params)...);
}
} // namespace kj
#endif // KJ_TUPLE_H_
|