This file is indexed.

/usr/include/CGAL/AABB_tree.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
// Copyright (c) 2008,2011  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Camille Wormser, Pierre Alliez, Stephane Tayeb

#ifndef CGAL_AABB_TREE_H
#define CGAL_AABB_TREE_H

#include <vector>
#include <iterator>
#include <CGAL/internal/AABB_tree/AABB_traversal_traits.h>
#include <CGAL/internal/AABB_tree/AABB_node.h>
#include <CGAL/internal/AABB_tree/AABB_search_tree.h>
#include <boost/optional.hpp>

#ifdef CGAL_HAS_THREADS
#include <boost/thread/mutex.hpp>
#endif

/// \file AABB_tree.h

namespace CGAL {

/// \addtogroup PkgAABB_tree
/// @{

	/**
   * Class AABB_tree is a static data structure for efficient
   * intersection and distance computations in 3D. It builds a
   * hierarchy of axis-aligned bounding boxes (an AABB tree) from a set
   * of 3D geometric objects, and can receive intersection and distance
   * queries, provided that the corresponding predicates are
   * implemented in the traits class AABBTraits.
   *
   * \sa `AABBTraits`
   * \sa `AABBPrimitive`
   *
   */
	template <typename AABBTraits>
	class AABB_tree
	{
	private:
		// internal KD-tree used to accelerate the distance queries
		typedef AABB_search_tree<AABBTraits> Search_tree;

		// type of the primitives container
		typedef std::vector<typename AABBTraits::Primitive> Primitives;

	public:
    typedef AABBTraits AABB_traits;
    
    /// \name Types
    ///@{

    /// Number type returned by the distance queries.
		typedef typename AABBTraits::FT FT;


    /// Type of 3D point.
		typedef typename AABBTraits::Point_3 Point;

    /// Type of input primitive.
		typedef typename AABBTraits::Primitive Primitive;
		/// Identifier for a primitive in the tree.
		typedef typename Primitive::Id Primitive_id;
		/// Unsigned integral size type.
		typedef typename Primitives::size_type size_type; 
    /// Type of bounding box.
		typedef typename AABBTraits::Bounding_box Bounding_box;
    /// 
		typedef typename AABBTraits::Point_and_primitive_id Point_and_primitive_id;
    /// 
		typedef typename AABBTraits::Object_and_primitive_id Object_and_primitive_id;
    
    ///@}

	public:
    /// \name Creation
    ///@{

		/// Constructs an empty tree.
    AABB_tree();

		/**
     * @brief Builds the datastructure from a sequence of primitives.
     * @param first iterator over first primitive to insert
     * @param beyond past-the-end iterator
     *
     * The tree stays empty if the memory allocation is not successful.
		 * \tparam ConstPrimitiveIterator can be
     * any const iterator on a container of
     * AABB_tree::Primitive::id_type such that AABB_tree::Primitive
     * has a constructor taking a ConstPrimitiveIterator as
     * argument.
     */
		template<typename ConstPrimitiveIterator>
		AABB_tree(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond);

    ///@}

		/// \name Operations
		///@{

    /// Clears the current tree and rebuilds it from scratch. See
    /// constructor above for the parameters.
		template<typename ConstPrimitiveIterator>
		void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond);

    /// Adds a sequence of primitives to the set of primitives of the
    /// tree. \tparam ConstPrimitiveIterator can be any const iterator
    /// such that `AABB_tree::Primitive` has a constructor taking an
    /// ConstPrimitiveIterator as argument.
		template<typename ConstPrimitiveIterator>
		void insert(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond);

    /// Adds a primitive to the set of primitives of the tree.
    inline void insert(const Primitive& p);

		/// Clears and destroys the tree.
		~AABB_tree()
		{
			clear();
		}

		/// Clears the tree.
		void clear()
		{
			// clear AABB tree
			m_primitives.clear();
      clear_nodes();
			clear_search_tree();
		}

		/// Returns the axis-aligned bounding box of the whole tree.
		/// \pre `!empty()`
		const Bounding_box bbox() const { 
			CGAL_precondition(!empty());
			if(size() > 1)
				return root_node()->bbox(); 
			else
				return AABB_traits().compute_bbox_object()(m_primitives.begin(), 
																									 m_primitives.end());
		}
    
    /// Returns the number of primitives in the tree.
		size_type size() const { return m_primitives.size(); }
    
    /// Returns \c true, iff the tree contains no primitive.
		bool empty() const { return m_primitives.empty(); }
		///@}

    /// \name Advanced
    ///@{

    /// After one or more calls to `AABB_tree::insert()` the internal data
    /// structure of the tree must be reconstructed. This procedure
    /// has a complexity of \f$O(n log(n))\f$, where \f$n\f$ is the number of
    /// primitives of the tree.  This procedure is called implicitly
    /// at the first call to a query member function. You can call
    /// AABB_tree::build() explicitly to ensure that the next call to
    /// query functions will not trigger the reconstruction of the
    /// data structure.
    void build();

    ///@}

private:    
		template<typename ConstPointIterator>
		bool accelerate_distance_queries_impl(ConstPointIterator first,
                                          ConstPointIterator beyond) const;
public:

    /// \name Intersection Tests
    ///@{

		/// Returns `true`, iff the query intersects at least one of
		/// the input primitives. \tparam Query must be a type for
		/// which `do_intersect` predicates are
		/// defined in the traits class `AABBTraits`.
		template<typename Query>
		bool do_intersect(const Query& query) const;

    /// Returns the number of primitives intersected by the
    /// query. \tparam Query must be a type for which
    /// `do_intersect` predicates are defined
    /// in the traits class `AABBTraits`.
		template<typename Query>
		size_type number_of_intersected_primitives(const Query& query) const;

    /// Outputs to the iterator the list of all intersected primitives
    /// ids. This function does not compute the intersection points
    /// and is hence faster than the function `all_intersections()`
    /// function below. \tparam Query must be a type for which
    /// `do_intersect` predicates are defined
    /// in the traits class `AABBTraits`.
		template<typename Query, typename OutputIterator>
		OutputIterator all_intersected_primitives(const Query& query, OutputIterator out) const;


    /// Returns the first encountered intersected primitive id, iff
    /// the query intersects at least one of the input primitives. No
    /// particular order is guaranteed over the tree traversal, such
    /// that, e.g, the primitive returned is not necessarily the
    /// closest from the source point of a ray query. \tparam Query
    /// must be a type for which
    /// `do_intersect` predicates are defined
    /// in the traits class `AABBTraits`.
		template <typename Query>
		boost::optional<Primitive_id> any_intersected_primitive(const Query& query) const;
    
    ///@}

    /// \name Intersections
    ///@{

    /// Outputs to the iterator the list of all intersections between
    /// the query and input data, as objects of type
    /// `Object_and_primitive_id`. \tparam Query must be a type
    /// for which `do_intersect` predicates
    /// and intersections are defined in the traits class `AABBTraits`.
		template<typename Query, typename OutputIterator>
		OutputIterator all_intersections(const Query& query, OutputIterator out) const;


    /// Returns the first encountered intersection, iff the query
    /// intersects at least one of the input primitives. No particular
    /// order is guaranteed over the tree traversal, such that, e.g,
    /// the primitive returned is not necessarily the closest from the
    /// source point of a ray query. \tparam Query must be a type
    /// for which `do_intersect` predicates
    /// and intersections are defined in the traits class AABBTraits.
		template <typename Query>
		boost::optional<Object_and_primitive_id> any_intersection(const Query& query) const;

    ///@}

    /// \name Distance Queries
    ///@{

    /// Returns the minimum squared distance between the query point
    /// and all input primitives. Method
    /// `accelerate_distance_queries()` should be called before the
    /// first distance query, so that an internal secondary search
    /// structure is build, for improving performance.
		/// \pre `!empty()`
		FT squared_distance(const Point& query) const;

    /// Returns the point in the union of all input primitives which
    /// is closest to the query. In case there are several closest
    /// points, one arbitrarily chosen closest point is
    /// returned. Method `accelerate_distance_queries()` should be
    /// called before the first distance query, so that an internal
    /// secondary search structure is build, for improving
    /// performance.
		/// \pre `!empty()`
		Point closest_point(const Point& query) const;

    
    /// Returns a `Point_and_primitive_id` which realizes the
    /// smallest distance between the query point and all input
    /// primitives. Method `accelerate_distance_queries()` should be
    /// called before the first distance query, so that an internal
    /// secondary search structure is build, for improving
    /// performance.
		/// \pre `!empty()`
		Point_and_primitive_id closest_point_and_primitive(const Point& query) const;


    ///@}

    /// \name Accelerating the Distance Queries
    /// 
    /// In the following paragraphs, we discuss details of the
    /// implementation of the distance queries. We explain the
    /// internal use of hints, how the user can pass his own hints to
    /// the tree, and how the user can influence the construction of
    /// the secondary data structure used for accelerating distance
    /// queries.
    /// Internally, the distance queries algorithms are initialized
    /// with some hint, which has the same type as the return type of
    /// the query, and this value is refined along a traversal of the
    /// tree, until it is optimal, that is to say until it realizes
    /// the shortest distance to the primitives. In particular, the
    /// exact specification of these internal algorithms is that they
    /// minimize the distance to the object composed of the union of
    /// the primitives and the hint.
    /// It follows that 
    /// - in order to return the exact distance to the set of
    /// primitives, the algorithms need the hint to be exactly on the
    /// primitives;
    /// - if this is not the case, and if the hint happens to be closer
    /// to the query point than any of the primitives, then the hint
    /// is returned.
    ///
    /// This second observation is reasonable, in the sense that
    /// providing a hint to the algorithm means claiming that this
    /// hint belongs to the union of the primitives. These
    /// considerations about the hints being exactly on the primitives
    /// or not are important: in the case where the set of primitives
    /// is a triangle soup, and if some of the primitives are large,
    /// one may want to provide a much better hint than a vertex of
    /// the triangle soup could be. It could be, for example, the
    /// barycenter of one of the triangles. But, except with the use
    /// of an exact constructions kernel, one cannot easily construct
    /// points other than the vertices, that lie exactly on a triangle
    /// soup. Hence, providing a good hint sometimes means not being
    /// able to provide it exactly on the primitives. In rare
    /// occasions, this hint can be returned as the closest point.
    /// In order to accelerate distance queries significantly, the
    /// AABB tree builds an internal KD-tree containing a set of
    /// potential hints, when the method
    /// `accelerate_distance_queries()` is called. This KD-tree
    /// provides very good hints that allow the algorithms to run much
    /// faster than with a default hint (such as the
    /// `reference_point` of the first primitive). The set of
    /// potential hints is a sampling of the union of the primitives,
    /// which is obtained, by default, by calling the method
    /// `reference_point` of each of the primitives. However, such
    /// a sampling with one point per primitive may not be the most
    /// relevant one: if some primitives are very large, it helps
    /// inserting more than one sample on them. Conversely, a sparser
    /// sampling with less than one point per input primitive is
    /// relevant in some cases.
    ///@{

		/// Constructs internal search tree from
		/// a point set taken on the internal primitives
		/// returns `true` iff successful memory allocation
		bool accelerate_distance_queries() const;

    /// Constructs an internal KD-tree containing the specified point
    /// set, to be used as the set of potential hints for accelerating
    /// the distance queries. 
		/// \tparam ConstPointIterator is an iterator with
    /// value type `Point_and_primitive_id`.
		template<typename ConstPointIterator>
		bool accelerate_distance_queries(ConstPointIterator first,
                                     ConstPointIterator beyond) const
    {
      #ifdef CGAL_HAS_THREADS
      //this ensures that this is done once at a time
      boost::mutex::scoped_lock scoped_lock(kd_tree_mutex);
      #endif
      clear_search_tree();
      return accelerate_distance_queries_impl(first,beyond);
      
    }
    
    /// Returns the minimum squared distance between the query point
    /// and all input primitives. The internal KD-tree is not used.
		/// \pre `!empty()`
		FT squared_distance(const Point& query, const Point& hint) const;

    /// Returns the point in the union of all input primitives which
    /// is closest to the query. In case there are several closest
    /// points, one arbitrarily chosen closest point is returned. The
    /// internal KD-tree is not used.
		/// \pre `!empty()`
		Point closest_point(const Point& query, const Point& hint) const;
    
    /// Returns a `Point_and_primitive_id` which realizes the
    /// smallest distance between the query point and all input
    /// primitives. The internal KD-tree is not used.
		/// \pre `!empty()`
		Point_and_primitive_id closest_point_and_primitive(const Point& query, const Point_and_primitive_id& hint) const;

    ///@}

	private:
    // clear nodes
    void clear_nodes()
    {
			if(size() > 1) {
				delete [] m_p_root_node;
			}
			m_p_root_node = NULL;
    }

		// clears internal KD tree
		void clear_search_tree() const
		{
			delete m_p_search_tree;
			m_p_search_tree = NULL;
			m_search_tree_constructed = false;
			m_default_search_tree_constructed = false;
		}

	public:

    /// \internal
		template <class Query, class Traversal_traits>
		void traversal(const Query& query, Traversal_traits& traits) const
		{
			switch(size())
			{
			case 0:
				break;
			case 1:
				traits.intersection(query, singleton_data());
				break;
			default: // if(size() >= 2)
				root_node()->template traversal<Traversal_traits,Query>(query, traits, m_primitives.size());
			}
		}

	private:
		typedef AABB_node<AABBTraits> Node;


	public:
		// returns a point which must be on one primitive
		Point_and_primitive_id any_reference_point_and_id() const
		{
			CGAL_assertion(!empty());
			return Point_and_primitive_id(m_primitives[0].reference_point(), m_primitives[0].id());
		}

	public:
		Point_and_primitive_id best_hint(const Point& query) const
		{
			if(m_search_tree_constructed)
				return m_p_search_tree->closest_point(query);
			else
				return this->any_reference_point_and_id();
		}

	private:
		// set of input primitives
		Primitives m_primitives;
		// single root node
		Node* m_p_root_node;
    #ifdef CGAL_HAS_THREADS
    mutable boost::mutex internal_tree_mutex;//mutex used to protect const calls inducing build()
    mutable boost::mutex kd_tree_mutex;//mutex used to protect calls to accelerate_distance_queries
    #endif
  
    const Node* root_node() const {
			CGAL_assertion(size() > 1);
      if(m_need_build){
        #ifdef CGAL_HAS_THREADS
        //this ensures that build() will be called once
        boost::mutex::scoped_lock scoped_lock(internal_tree_mutex);
        if(m_need_build)
        #endif
          const_cast< AABB_tree<AABBTraits>* >(this)->build(); 
      }
      return m_p_root_node;
    }

		const Primitive& singleton_data() const {
			CGAL_assertion(size() == 1);
			return *m_primitives.begin();
		}

		// search KD-tree
		mutable const Search_tree* m_p_search_tree;
		mutable bool m_search_tree_constructed;
    mutable bool m_default_search_tree_constructed;
    bool m_need_build;

	private:
		// Disabled copy constructor & assignment operator
		typedef AABB_tree<AABBTraits> Self;
		AABB_tree(const Self& src);
		Self& operator=(const Self& src);

	};  // end class AABB_tree

/// @}

  template<typename Tr>
  AABB_tree<Tr>::AABB_tree()
    : m_primitives()
    , m_p_root_node(NULL)
    , m_p_search_tree(NULL)
    , m_search_tree_constructed(false)
    , m_default_search_tree_constructed(false)
    , m_need_build(false)
  {}

	template<typename Tr>
	template<typename ConstPrimitiveIterator>
	AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
                           ConstPrimitiveIterator beyond)
		: m_primitives()
		, m_p_root_node(NULL)
		, m_p_search_tree(NULL)
		, m_search_tree_constructed(false)
    , m_default_search_tree_constructed(false)
    , m_need_build(false)
	{
		// Insert each primitive into tree
    insert(first, beyond);
 	}

	template<typename Tr>
	template<typename ConstPrimitiveIterator>
	void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
                             ConstPrimitiveIterator beyond)
	{
		while(first != beyond)
		{
			m_primitives.push_back(Primitive(first));
			++first;
		}
    m_need_build = true;
  }

	template<typename Tr>
	void AABB_tree<Tr>::insert(const Primitive& p)
	{
    m_primitives.push_back(p);
    m_need_build = true;
  }

	// Clears tree and insert a set of primitives
	template<typename Tr>
	template<typename ConstPrimitiveIterator>
	void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
                              ConstPrimitiveIterator beyond)
	{
		// cleanup current tree and internal KD tree
		clear();

		// inserts primitives
    insert(first, beyond);

    build();
	}

	// Build the data structure, after calls to insert(..)
	template<typename Tr>
	void AABB_tree<Tr>::build()
	{
    clear_nodes();

    if(m_primitives.size() > 1) {

			// allocates tree nodes
			m_p_root_node = new Node[m_primitives.size()-1]();
			if(m_p_root_node == NULL)
			{
				std::cerr << "Unable to allocate memory for AABB tree" << std::endl;
				CGAL_assertion(m_p_root_node != NULL);
				m_primitives.clear();
				clear();
			}

			// constructs the tree
			m_p_root_node->expand(m_primitives.begin(), m_primitives.end(),
														m_primitives.size());
		}

    // In case the users has switched on the accelerated distance query
    // data structure with the default arguments, then it has to be
    // rebuilt.
    if(m_default_search_tree_constructed)
      accelerate_distance_queries();

    m_need_build = false;    
	}


	// constructs the search KD tree from given points
	// to accelerate the distance queries
	template<typename Tr>
	template<typename ConstPointIterator>
	bool AABB_tree<Tr>::accelerate_distance_queries_impl(ConstPointIterator first,
		ConstPointIterator beyond) const
	{
		m_p_search_tree = new Search_tree(first, beyond);
		if(m_p_search_tree != NULL)
		{
			m_search_tree_constructed = true;
			return true;
		}
		else
    {
			std::cerr << "Unable to allocate memory for accelerating distance queries" << std::endl;
			return false;
    }
	}

	// constructs the search KD tree from internal primitives
	template<typename Tr>
	bool AABB_tree<Tr>::accelerate_distance_queries() const
	{
		if(m_primitives.empty()) return true;
    #ifdef CGAL_HAS_THREADS
    //this ensures that this function will be done once
    boost::mutex::scoped_lock scoped_lock(kd_tree_mutex);
    #endif

    //we only redo computation only if needed 
    if (!m_need_build && m_default_search_tree_constructed)
      return m_search_tree_constructed;
    
		// iterate over primitives to get reference points on them
		std::vector<Point_and_primitive_id> points;
		typename Primitives::const_iterator it;
		for(it = m_primitives.begin(); it != m_primitives.end(); ++it)
			points.push_back(Point_and_primitive_id(it->reference_point(), it->id()));

    // clears current KD tree
    clear_search_tree();
    m_default_search_tree_constructed = true;
		return accelerate_distance_queries_impl(points.begin(), points.end());
	}

	template<typename Tr>
	template<typename Query>
	bool
		AABB_tree<Tr>::do_intersect(const Query& query) const
	{
    using namespace CGAL::internal::AABB_tree;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
		Do_intersect_traits<AABBTraits, Query> traversal_traits;
		this->traversal(query, traversal_traits);
		return traversal_traits.is_intersection_found();
	}

	template<typename Tr>
	template<typename Query>
	typename AABB_tree<Tr>::size_type
		AABB_tree<Tr>::number_of_intersected_primitives(const Query& query) const
	{
    using namespace CGAL::internal::AABB_tree;
    using CGAL::internal::AABB_tree::Counting_output_iterator;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
    typedef Counting_output_iterator<Primitive_id, size_type> Counting_iterator;

    size_type counter = 0;
    Counting_iterator out(&counter);

		Listing_primitive_traits<AABBTraits, 
      Query, Counting_iterator> traversal_traits(out);
		this->traversal(query, traversal_traits);
		return counter;
	}

	template<typename Tr>
	template<typename Query, typename OutputIterator>
	OutputIterator
		AABB_tree<Tr>::all_intersected_primitives(const Query& query,
		OutputIterator out) const
	{
    using namespace CGAL::internal::AABB_tree;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
		Listing_primitive_traits<AABBTraits, 
      Query, OutputIterator> traversal_traits(out);
		this->traversal(query, traversal_traits);
		return out;
	}

	template<typename Tr>
	template<typename Query, typename OutputIterator>
	OutputIterator
		AABB_tree<Tr>::all_intersections(const Query& query,
		OutputIterator out) const
	{
    using namespace CGAL::internal::AABB_tree;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
		Listing_intersection_traits<AABBTraits, 
      Query, OutputIterator> traversal_traits(out);
		this->traversal(query, traversal_traits);
		return out;
	}

	template <typename Tr>
	template <typename Query>
	boost::optional<typename AABB_tree<Tr>::Object_and_primitive_id>
		AABB_tree<Tr>::any_intersection(const Query& query) const
	{
    using namespace CGAL::internal::AABB_tree;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
		First_intersection_traits<AABBTraits, Query> traversal_traits;
		this->traversal(query, traversal_traits);
		return traversal_traits.result();
	}

	template <typename Tr>
	template <typename Query>
	boost::optional<typename AABB_tree<Tr>::Primitive_id>
		AABB_tree<Tr>::any_intersected_primitive(const Query& query) const
	{
    using namespace CGAL::internal::AABB_tree;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
		First_primitive_traits<AABBTraits, Query> traversal_traits;
		this->traversal(query, traversal_traits);
		return traversal_traits.result();
	}

	// closest point with user-specified hint
	template<typename Tr>
	typename AABB_tree<Tr>::Point
		AABB_tree<Tr>::closest_point(const Point& query,
		const Point& hint) const
	{
		CGAL_precondition(!empty());
		typename Primitive::Id hint_primitive = m_primitives[0].id();
    using namespace CGAL::internal::AABB_tree;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
		Projection_traits<AABBTraits> projection_traits(hint,hint_primitive);
		this->traversal(query, projection_traits);
		return projection_traits.closest_point();
	}

	// closest point without hint, the search KD-tree is queried for the
	// first closest neighbor point to get a hint
	template<typename Tr>
	typename AABB_tree<Tr>::Point
		AABB_tree<Tr>::closest_point(const Point& query) const
	{
		CGAL_precondition(!empty());
		const Point_and_primitive_id hint = best_hint(query);
		return closest_point(query,hint.first);
	}

	// squared distance with user-specified hint
	template<typename Tr>
	typename AABB_tree<Tr>::FT
		AABB_tree<Tr>::squared_distance(const Point& query,
		const Point& hint) const
	{
		CGAL_precondition(!empty());
		const Point closest = this->closest_point(query, hint);
		return Tr().squared_distance_object()(query, closest);
	}

	// squared distance without user-specified hint
	template<typename Tr>
	typename AABB_tree<Tr>::FT
		AABB_tree<Tr>::squared_distance(const Point& query) const
	{
		CGAL_precondition(!empty());
		const Point closest = this->closest_point(query);
		return Tr().squared_distance_object()(query, closest);
	}

	// closest point with user-specified hint
	template<typename Tr>
	typename AABB_tree<Tr>::Point_and_primitive_id
		AABB_tree<Tr>::closest_point_and_primitive(const Point& query) const
	{
		CGAL_precondition(!empty());
		return closest_point_and_primitive(query,best_hint(query));
	}

	// closest point with user-specified hint
	template<typename Tr>
	typename AABB_tree<Tr>::Point_and_primitive_id
		AABB_tree<Tr>::closest_point_and_primitive(const Point& query,
		const Point_and_primitive_id& hint) const
	{
		CGAL_precondition(!empty());
    using namespace CGAL::internal::AABB_tree;
    typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
		Projection_traits<AABBTraits> projection_traits(hint.first,hint.second);
		this->traversal(query, projection_traits);
		return projection_traits.closest_point_and_primitive();
	}

} // end namespace CGAL

#endif // CGAL_AABB_TREE_H

/***EMACS SETTINGS**    */
/* Local Variables:     */
/* tab-width: 2         */
/* indent-tabs-mode: t  */
/* End:                 */