/usr/include/CGAL/AABB_tree.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 | // Copyright (c) 2008,2011 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Camille Wormser, Pierre Alliez, Stephane Tayeb
#ifndef CGAL_AABB_TREE_H
#define CGAL_AABB_TREE_H
#include <vector>
#include <iterator>
#include <CGAL/internal/AABB_tree/AABB_traversal_traits.h>
#include <CGAL/internal/AABB_tree/AABB_node.h>
#include <CGAL/internal/AABB_tree/AABB_search_tree.h>
#include <boost/optional.hpp>
#ifdef CGAL_HAS_THREADS
#include <boost/thread/mutex.hpp>
#endif
/// \file AABB_tree.h
namespace CGAL {
/// \addtogroup PkgAABB_tree
/// @{
/**
* Class AABB_tree is a static data structure for efficient
* intersection and distance computations in 3D. It builds a
* hierarchy of axis-aligned bounding boxes (an AABB tree) from a set
* of 3D geometric objects, and can receive intersection and distance
* queries, provided that the corresponding predicates are
* implemented in the traits class AABBTraits.
*
* \sa `AABBTraits`
* \sa `AABBPrimitive`
*
*/
template <typename AABBTraits>
class AABB_tree
{
private:
// internal KD-tree used to accelerate the distance queries
typedef AABB_search_tree<AABBTraits> Search_tree;
// type of the primitives container
typedef std::vector<typename AABBTraits::Primitive> Primitives;
public:
typedef AABBTraits AABB_traits;
/// \name Types
///@{
/// Number type returned by the distance queries.
typedef typename AABBTraits::FT FT;
/// Type of 3D point.
typedef typename AABBTraits::Point_3 Point;
/// Type of input primitive.
typedef typename AABBTraits::Primitive Primitive;
/// Identifier for a primitive in the tree.
typedef typename Primitive::Id Primitive_id;
/// Unsigned integral size type.
typedef typename Primitives::size_type size_type;
/// Type of bounding box.
typedef typename AABBTraits::Bounding_box Bounding_box;
///
typedef typename AABBTraits::Point_and_primitive_id Point_and_primitive_id;
///
typedef typename AABBTraits::Object_and_primitive_id Object_and_primitive_id;
///@}
public:
/// \name Creation
///@{
/// Constructs an empty tree.
AABB_tree();
/**
* @brief Builds the datastructure from a sequence of primitives.
* @param first iterator over first primitive to insert
* @param beyond past-the-end iterator
*
* The tree stays empty if the memory allocation is not successful.
* \tparam ConstPrimitiveIterator can be
* any const iterator on a container of
* AABB_tree::Primitive::id_type such that AABB_tree::Primitive
* has a constructor taking a ConstPrimitiveIterator as
* argument.
*/
template<typename ConstPrimitiveIterator>
AABB_tree(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond);
///@}
/// \name Operations
///@{
/// Clears the current tree and rebuilds it from scratch. See
/// constructor above for the parameters.
template<typename ConstPrimitiveIterator>
void rebuild(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond);
/// Adds a sequence of primitives to the set of primitives of the
/// tree. \tparam ConstPrimitiveIterator can be any const iterator
/// such that `AABB_tree::Primitive` has a constructor taking an
/// ConstPrimitiveIterator as argument.
template<typename ConstPrimitiveIterator>
void insert(ConstPrimitiveIterator first, ConstPrimitiveIterator beyond);
/// Adds a primitive to the set of primitives of the tree.
inline void insert(const Primitive& p);
/// Clears and destroys the tree.
~AABB_tree()
{
clear();
}
/// Clears the tree.
void clear()
{
// clear AABB tree
m_primitives.clear();
clear_nodes();
clear_search_tree();
}
/// Returns the axis-aligned bounding box of the whole tree.
/// \pre `!empty()`
const Bounding_box bbox() const {
CGAL_precondition(!empty());
if(size() > 1)
return root_node()->bbox();
else
return AABB_traits().compute_bbox_object()(m_primitives.begin(),
m_primitives.end());
}
/// Returns the number of primitives in the tree.
size_type size() const { return m_primitives.size(); }
/// Returns \c true, iff the tree contains no primitive.
bool empty() const { return m_primitives.empty(); }
///@}
/// \name Advanced
///@{
/// After one or more calls to `AABB_tree::insert()` the internal data
/// structure of the tree must be reconstructed. This procedure
/// has a complexity of \f$O(n log(n))\f$, where \f$n\f$ is the number of
/// primitives of the tree. This procedure is called implicitly
/// at the first call to a query member function. You can call
/// AABB_tree::build() explicitly to ensure that the next call to
/// query functions will not trigger the reconstruction of the
/// data structure.
void build();
///@}
private:
template<typename ConstPointIterator>
bool accelerate_distance_queries_impl(ConstPointIterator first,
ConstPointIterator beyond) const;
public:
/// \name Intersection Tests
///@{
/// Returns `true`, iff the query intersects at least one of
/// the input primitives. \tparam Query must be a type for
/// which `do_intersect` predicates are
/// defined in the traits class `AABBTraits`.
template<typename Query>
bool do_intersect(const Query& query) const;
/// Returns the number of primitives intersected by the
/// query. \tparam Query must be a type for which
/// `do_intersect` predicates are defined
/// in the traits class `AABBTraits`.
template<typename Query>
size_type number_of_intersected_primitives(const Query& query) const;
/// Outputs to the iterator the list of all intersected primitives
/// ids. This function does not compute the intersection points
/// and is hence faster than the function `all_intersections()`
/// function below. \tparam Query must be a type for which
/// `do_intersect` predicates are defined
/// in the traits class `AABBTraits`.
template<typename Query, typename OutputIterator>
OutputIterator all_intersected_primitives(const Query& query, OutputIterator out) const;
/// Returns the first encountered intersected primitive id, iff
/// the query intersects at least one of the input primitives. No
/// particular order is guaranteed over the tree traversal, such
/// that, e.g, the primitive returned is not necessarily the
/// closest from the source point of a ray query. \tparam Query
/// must be a type for which
/// `do_intersect` predicates are defined
/// in the traits class `AABBTraits`.
template <typename Query>
boost::optional<Primitive_id> any_intersected_primitive(const Query& query) const;
///@}
/// \name Intersections
///@{
/// Outputs to the iterator the list of all intersections between
/// the query and input data, as objects of type
/// `Object_and_primitive_id`. \tparam Query must be a type
/// for which `do_intersect` predicates
/// and intersections are defined in the traits class `AABBTraits`.
template<typename Query, typename OutputIterator>
OutputIterator all_intersections(const Query& query, OutputIterator out) const;
/// Returns the first encountered intersection, iff the query
/// intersects at least one of the input primitives. No particular
/// order is guaranteed over the tree traversal, such that, e.g,
/// the primitive returned is not necessarily the closest from the
/// source point of a ray query. \tparam Query must be a type
/// for which `do_intersect` predicates
/// and intersections are defined in the traits class AABBTraits.
template <typename Query>
boost::optional<Object_and_primitive_id> any_intersection(const Query& query) const;
///@}
/// \name Distance Queries
///@{
/// Returns the minimum squared distance between the query point
/// and all input primitives. Method
/// `accelerate_distance_queries()` should be called before the
/// first distance query, so that an internal secondary search
/// structure is build, for improving performance.
/// \pre `!empty()`
FT squared_distance(const Point& query) const;
/// Returns the point in the union of all input primitives which
/// is closest to the query. In case there are several closest
/// points, one arbitrarily chosen closest point is
/// returned. Method `accelerate_distance_queries()` should be
/// called before the first distance query, so that an internal
/// secondary search structure is build, for improving
/// performance.
/// \pre `!empty()`
Point closest_point(const Point& query) const;
/// Returns a `Point_and_primitive_id` which realizes the
/// smallest distance between the query point and all input
/// primitives. Method `accelerate_distance_queries()` should be
/// called before the first distance query, so that an internal
/// secondary search structure is build, for improving
/// performance.
/// \pre `!empty()`
Point_and_primitive_id closest_point_and_primitive(const Point& query) const;
///@}
/// \name Accelerating the Distance Queries
///
/// In the following paragraphs, we discuss details of the
/// implementation of the distance queries. We explain the
/// internal use of hints, how the user can pass his own hints to
/// the tree, and how the user can influence the construction of
/// the secondary data structure used for accelerating distance
/// queries.
/// Internally, the distance queries algorithms are initialized
/// with some hint, which has the same type as the return type of
/// the query, and this value is refined along a traversal of the
/// tree, until it is optimal, that is to say until it realizes
/// the shortest distance to the primitives. In particular, the
/// exact specification of these internal algorithms is that they
/// minimize the distance to the object composed of the union of
/// the primitives and the hint.
/// It follows that
/// - in order to return the exact distance to the set of
/// primitives, the algorithms need the hint to be exactly on the
/// primitives;
/// - if this is not the case, and if the hint happens to be closer
/// to the query point than any of the primitives, then the hint
/// is returned.
///
/// This second observation is reasonable, in the sense that
/// providing a hint to the algorithm means claiming that this
/// hint belongs to the union of the primitives. These
/// considerations about the hints being exactly on the primitives
/// or not are important: in the case where the set of primitives
/// is a triangle soup, and if some of the primitives are large,
/// one may want to provide a much better hint than a vertex of
/// the triangle soup could be. It could be, for example, the
/// barycenter of one of the triangles. But, except with the use
/// of an exact constructions kernel, one cannot easily construct
/// points other than the vertices, that lie exactly on a triangle
/// soup. Hence, providing a good hint sometimes means not being
/// able to provide it exactly on the primitives. In rare
/// occasions, this hint can be returned as the closest point.
/// In order to accelerate distance queries significantly, the
/// AABB tree builds an internal KD-tree containing a set of
/// potential hints, when the method
/// `accelerate_distance_queries()` is called. This KD-tree
/// provides very good hints that allow the algorithms to run much
/// faster than with a default hint (such as the
/// `reference_point` of the first primitive). The set of
/// potential hints is a sampling of the union of the primitives,
/// which is obtained, by default, by calling the method
/// `reference_point` of each of the primitives. However, such
/// a sampling with one point per primitive may not be the most
/// relevant one: if some primitives are very large, it helps
/// inserting more than one sample on them. Conversely, a sparser
/// sampling with less than one point per input primitive is
/// relevant in some cases.
///@{
/// Constructs internal search tree from
/// a point set taken on the internal primitives
/// returns `true` iff successful memory allocation
bool accelerate_distance_queries() const;
/// Constructs an internal KD-tree containing the specified point
/// set, to be used as the set of potential hints for accelerating
/// the distance queries.
/// \tparam ConstPointIterator is an iterator with
/// value type `Point_and_primitive_id`.
template<typename ConstPointIterator>
bool accelerate_distance_queries(ConstPointIterator first,
ConstPointIterator beyond) const
{
#ifdef CGAL_HAS_THREADS
//this ensures that this is done once at a time
boost::mutex::scoped_lock scoped_lock(kd_tree_mutex);
#endif
clear_search_tree();
return accelerate_distance_queries_impl(first,beyond);
}
/// Returns the minimum squared distance between the query point
/// and all input primitives. The internal KD-tree is not used.
/// \pre `!empty()`
FT squared_distance(const Point& query, const Point& hint) const;
/// Returns the point in the union of all input primitives which
/// is closest to the query. In case there are several closest
/// points, one arbitrarily chosen closest point is returned. The
/// internal KD-tree is not used.
/// \pre `!empty()`
Point closest_point(const Point& query, const Point& hint) const;
/// Returns a `Point_and_primitive_id` which realizes the
/// smallest distance between the query point and all input
/// primitives. The internal KD-tree is not used.
/// \pre `!empty()`
Point_and_primitive_id closest_point_and_primitive(const Point& query, const Point_and_primitive_id& hint) const;
///@}
private:
// clear nodes
void clear_nodes()
{
if(size() > 1) {
delete [] m_p_root_node;
}
m_p_root_node = NULL;
}
// clears internal KD tree
void clear_search_tree() const
{
delete m_p_search_tree;
m_p_search_tree = NULL;
m_search_tree_constructed = false;
m_default_search_tree_constructed = false;
}
public:
/// \internal
template <class Query, class Traversal_traits>
void traversal(const Query& query, Traversal_traits& traits) const
{
switch(size())
{
case 0:
break;
case 1:
traits.intersection(query, singleton_data());
break;
default: // if(size() >= 2)
root_node()->template traversal<Traversal_traits,Query>(query, traits, m_primitives.size());
}
}
private:
typedef AABB_node<AABBTraits> Node;
public:
// returns a point which must be on one primitive
Point_and_primitive_id any_reference_point_and_id() const
{
CGAL_assertion(!empty());
return Point_and_primitive_id(m_primitives[0].reference_point(), m_primitives[0].id());
}
public:
Point_and_primitive_id best_hint(const Point& query) const
{
if(m_search_tree_constructed)
return m_p_search_tree->closest_point(query);
else
return this->any_reference_point_and_id();
}
private:
// set of input primitives
Primitives m_primitives;
// single root node
Node* m_p_root_node;
#ifdef CGAL_HAS_THREADS
mutable boost::mutex internal_tree_mutex;//mutex used to protect const calls inducing build()
mutable boost::mutex kd_tree_mutex;//mutex used to protect calls to accelerate_distance_queries
#endif
const Node* root_node() const {
CGAL_assertion(size() > 1);
if(m_need_build){
#ifdef CGAL_HAS_THREADS
//this ensures that build() will be called once
boost::mutex::scoped_lock scoped_lock(internal_tree_mutex);
if(m_need_build)
#endif
const_cast< AABB_tree<AABBTraits>* >(this)->build();
}
return m_p_root_node;
}
const Primitive& singleton_data() const {
CGAL_assertion(size() == 1);
return *m_primitives.begin();
}
// search KD-tree
mutable const Search_tree* m_p_search_tree;
mutable bool m_search_tree_constructed;
mutable bool m_default_search_tree_constructed;
bool m_need_build;
private:
// Disabled copy constructor & assignment operator
typedef AABB_tree<AABBTraits> Self;
AABB_tree(const Self& src);
Self& operator=(const Self& src);
}; // end class AABB_tree
/// @}
template<typename Tr>
AABB_tree<Tr>::AABB_tree()
: m_primitives()
, m_p_root_node(NULL)
, m_p_search_tree(NULL)
, m_search_tree_constructed(false)
, m_default_search_tree_constructed(false)
, m_need_build(false)
{}
template<typename Tr>
template<typename ConstPrimitiveIterator>
AABB_tree<Tr>::AABB_tree(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond)
: m_primitives()
, m_p_root_node(NULL)
, m_p_search_tree(NULL)
, m_search_tree_constructed(false)
, m_default_search_tree_constructed(false)
, m_need_build(false)
{
// Insert each primitive into tree
insert(first, beyond);
}
template<typename Tr>
template<typename ConstPrimitiveIterator>
void AABB_tree<Tr>::insert(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond)
{
while(first != beyond)
{
m_primitives.push_back(Primitive(first));
++first;
}
m_need_build = true;
}
template<typename Tr>
void AABB_tree<Tr>::insert(const Primitive& p)
{
m_primitives.push_back(p);
m_need_build = true;
}
// Clears tree and insert a set of primitives
template<typename Tr>
template<typename ConstPrimitiveIterator>
void AABB_tree<Tr>::rebuild(ConstPrimitiveIterator first,
ConstPrimitiveIterator beyond)
{
// cleanup current tree and internal KD tree
clear();
// inserts primitives
insert(first, beyond);
build();
}
// Build the data structure, after calls to insert(..)
template<typename Tr>
void AABB_tree<Tr>::build()
{
clear_nodes();
if(m_primitives.size() > 1) {
// allocates tree nodes
m_p_root_node = new Node[m_primitives.size()-1]();
if(m_p_root_node == NULL)
{
std::cerr << "Unable to allocate memory for AABB tree" << std::endl;
CGAL_assertion(m_p_root_node != NULL);
m_primitives.clear();
clear();
}
// constructs the tree
m_p_root_node->expand(m_primitives.begin(), m_primitives.end(),
m_primitives.size());
}
// In case the users has switched on the accelerated distance query
// data structure with the default arguments, then it has to be
// rebuilt.
if(m_default_search_tree_constructed)
accelerate_distance_queries();
m_need_build = false;
}
// constructs the search KD tree from given points
// to accelerate the distance queries
template<typename Tr>
template<typename ConstPointIterator>
bool AABB_tree<Tr>::accelerate_distance_queries_impl(ConstPointIterator first,
ConstPointIterator beyond) const
{
m_p_search_tree = new Search_tree(first, beyond);
if(m_p_search_tree != NULL)
{
m_search_tree_constructed = true;
return true;
}
else
{
std::cerr << "Unable to allocate memory for accelerating distance queries" << std::endl;
return false;
}
}
// constructs the search KD tree from internal primitives
template<typename Tr>
bool AABB_tree<Tr>::accelerate_distance_queries() const
{
if(m_primitives.empty()) return true;
#ifdef CGAL_HAS_THREADS
//this ensures that this function will be done once
boost::mutex::scoped_lock scoped_lock(kd_tree_mutex);
#endif
//we only redo computation only if needed
if (!m_need_build && m_default_search_tree_constructed)
return m_search_tree_constructed;
// iterate over primitives to get reference points on them
std::vector<Point_and_primitive_id> points;
typename Primitives::const_iterator it;
for(it = m_primitives.begin(); it != m_primitives.end(); ++it)
points.push_back(Point_and_primitive_id(it->reference_point(), it->id()));
// clears current KD tree
clear_search_tree();
m_default_search_tree_constructed = true;
return accelerate_distance_queries_impl(points.begin(), points.end());
}
template<typename Tr>
template<typename Query>
bool
AABB_tree<Tr>::do_intersect(const Query& query) const
{
using namespace CGAL::internal::AABB_tree;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
Do_intersect_traits<AABBTraits, Query> traversal_traits;
this->traversal(query, traversal_traits);
return traversal_traits.is_intersection_found();
}
template<typename Tr>
template<typename Query>
typename AABB_tree<Tr>::size_type
AABB_tree<Tr>::number_of_intersected_primitives(const Query& query) const
{
using namespace CGAL::internal::AABB_tree;
using CGAL::internal::AABB_tree::Counting_output_iterator;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
typedef Counting_output_iterator<Primitive_id, size_type> Counting_iterator;
size_type counter = 0;
Counting_iterator out(&counter);
Listing_primitive_traits<AABBTraits,
Query, Counting_iterator> traversal_traits(out);
this->traversal(query, traversal_traits);
return counter;
}
template<typename Tr>
template<typename Query, typename OutputIterator>
OutputIterator
AABB_tree<Tr>::all_intersected_primitives(const Query& query,
OutputIterator out) const
{
using namespace CGAL::internal::AABB_tree;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
Listing_primitive_traits<AABBTraits,
Query, OutputIterator> traversal_traits(out);
this->traversal(query, traversal_traits);
return out;
}
template<typename Tr>
template<typename Query, typename OutputIterator>
OutputIterator
AABB_tree<Tr>::all_intersections(const Query& query,
OutputIterator out) const
{
using namespace CGAL::internal::AABB_tree;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
Listing_intersection_traits<AABBTraits,
Query, OutputIterator> traversal_traits(out);
this->traversal(query, traversal_traits);
return out;
}
template <typename Tr>
template <typename Query>
boost::optional<typename AABB_tree<Tr>::Object_and_primitive_id>
AABB_tree<Tr>::any_intersection(const Query& query) const
{
using namespace CGAL::internal::AABB_tree;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
First_intersection_traits<AABBTraits, Query> traversal_traits;
this->traversal(query, traversal_traits);
return traversal_traits.result();
}
template <typename Tr>
template <typename Query>
boost::optional<typename AABB_tree<Tr>::Primitive_id>
AABB_tree<Tr>::any_intersected_primitive(const Query& query) const
{
using namespace CGAL::internal::AABB_tree;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
First_primitive_traits<AABBTraits, Query> traversal_traits;
this->traversal(query, traversal_traits);
return traversal_traits.result();
}
// closest point with user-specified hint
template<typename Tr>
typename AABB_tree<Tr>::Point
AABB_tree<Tr>::closest_point(const Point& query,
const Point& hint) const
{
CGAL_precondition(!empty());
typename Primitive::Id hint_primitive = m_primitives[0].id();
using namespace CGAL::internal::AABB_tree;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
Projection_traits<AABBTraits> projection_traits(hint,hint_primitive);
this->traversal(query, projection_traits);
return projection_traits.closest_point();
}
// closest point without hint, the search KD-tree is queried for the
// first closest neighbor point to get a hint
template<typename Tr>
typename AABB_tree<Tr>::Point
AABB_tree<Tr>::closest_point(const Point& query) const
{
CGAL_precondition(!empty());
const Point_and_primitive_id hint = best_hint(query);
return closest_point(query,hint.first);
}
// squared distance with user-specified hint
template<typename Tr>
typename AABB_tree<Tr>::FT
AABB_tree<Tr>::squared_distance(const Point& query,
const Point& hint) const
{
CGAL_precondition(!empty());
const Point closest = this->closest_point(query, hint);
return Tr().squared_distance_object()(query, closest);
}
// squared distance without user-specified hint
template<typename Tr>
typename AABB_tree<Tr>::FT
AABB_tree<Tr>::squared_distance(const Point& query) const
{
CGAL_precondition(!empty());
const Point closest = this->closest_point(query);
return Tr().squared_distance_object()(query, closest);
}
// closest point with user-specified hint
template<typename Tr>
typename AABB_tree<Tr>::Point_and_primitive_id
AABB_tree<Tr>::closest_point_and_primitive(const Point& query) const
{
CGAL_precondition(!empty());
return closest_point_and_primitive(query,best_hint(query));
}
// closest point with user-specified hint
template<typename Tr>
typename AABB_tree<Tr>::Point_and_primitive_id
AABB_tree<Tr>::closest_point_and_primitive(const Point& query,
const Point_and_primitive_id& hint) const
{
CGAL_precondition(!empty());
using namespace CGAL::internal::AABB_tree;
typedef typename AABB_tree<Tr>::AABB_traits AABBTraits;
Projection_traits<AABBTraits> projection_traits(hint.first,hint.second);
this->traversal(query, projection_traits);
return projection_traits.closest_point_and_primitive();
}
} // end namespace CGAL
#endif // CGAL_AABB_TREE_H
/***EMACS SETTINGS** */
/* Local Variables: */
/* tab-width: 2 */
/* indent-tabs-mode: t */
/* End: */
|