This file is indexed.

/usr/include/CGAL/Algebraic_structure_traits.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
// Copyright (c) 2006-2007 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Michael Hemmer    <hemmer@mpi-inf.mpg.de>
//
// =============================================================================


#ifndef CGAL_ALGEBRAIC_STRUCTURE_TRAITS_H
#define CGAL_ALGEBRAIC_STRUCTURE_TRAITS_H

#include <functional>
#include <CGAL/tags.h>
#include <CGAL/type_traits.h>
#include <CGAL/Coercion_traits.h>
#include <CGAL/assertions.h>
#include <CGAL/use.h>

namespace CGAL {

// REMARK: Some of the following comments and references are just copy & pasted
//         from EXACUS and have to be adapted/removed in the future.

// The tags for Algebra_type corresponding to the number type concepts
// ===================================================================

//! corresponds to the \c IntegralDomainWithoutDiv concept.
struct Integral_domain_without_division_tag {};

//! corresponds to the \c IntegralDomain concept.
struct Integral_domain_tag : public Integral_domain_without_division_tag {};

//! corresponds to the \c UFDomain concept.
struct Unique_factorization_domain_tag : public Integral_domain_tag {};

//! corresponds to the \c EuclideanRing concept.
struct Euclidean_ring_tag : public Unique_factorization_domain_tag {};

//! corresponds to the \c Field concept.
struct Field_tag : public Integral_domain_tag {};

//! corresponds to the \c FieldWithSqrt concept.
struct Field_with_sqrt_tag : public Field_tag {};

//! corresponds to the \c FieldWithKthRoot concept
struct Field_with_kth_root_tag : public Field_with_sqrt_tag {};

//! corresponds to the \c FieldWithRootOF concept.
struct Field_with_root_of_tag : public Field_with_kth_root_tag {};


// The algebraic structure traits template
// =========================================================================
template< class Type_ > 
class Algebraic_structure_traits  {
  public:
    typedef Type_  Type;
    typedef Null_tag       Algebraic_category;
    typedef Null_tag       Is_exact;
    typedef Null_tag       Is_numerical_sensitive;

    typedef Null_functor Simplify;
    typedef Null_functor Unit_part;
    typedef Null_functor Integral_division;
    typedef Null_functor Is_square;    
    typedef Null_functor Gcd;
    typedef Null_functor Div_mod;
    typedef Null_functor Div;
    typedef Null_functor Mod;
    typedef Null_functor Square;
    typedef Null_functor Is_zero;
    typedef Null_functor Is_one;    
    typedef Null_functor Sqrt;
    typedef Null_functor Kth_root;
    typedef Null_functor Root_of; 
    typedef Null_functor Divides; 
    typedef Null_functor Inverse; 
};

// The algebraic structure traits base class
// =========================================================================
template< class Type, class Algebra_type >
class Algebraic_structure_traits_base;

//! The template specialization that can be used for types that are not any
//! of the number type concepts. All functors are set to \c Null_functor
//! or suitable defaults. The \c Simplify functor does nothing by default.
template< class Type_ >
class Algebraic_structure_traits_base< Type_, Null_tag > {
  public:
    typedef Type_  Type;
    typedef Null_tag       Algebraic_category;
    typedef Tag_false      Is_exact;
    typedef Null_tag       Is_numerical_sensitive;
    typedef Null_tag       Boolean; 

    // does nothing by default
    class Simplify 
      : public std::unary_function< Type&, void > {
      public:
        void operator()( Type& ) const {}
    };

    typedef Null_functor Unit_part;
    typedef Null_functor Integral_division;
    typedef Null_functor Is_square;    
    typedef Null_functor Gcd;
    typedef Null_functor Div_mod;
    typedef Null_functor Div;
    typedef Null_functor Mod;
    typedef Null_functor Square;
    typedef Null_functor Is_zero;
    typedef Null_functor Is_one;    
    typedef Null_functor Sqrt;
    typedef Null_functor Kth_root;
    typedef Null_functor Root_of; 
    typedef Null_functor Divides;
    typedef Null_functor Inverse;
};

//! The template specialization that is used if the number type is
//! a model of the \c IntegralDomainWithoutDiv concept. The \c Simplify
//! does nothing by default and the \c Unit_part is equal to
//! \c Type(-1) for negative numbers and 
//! \c Type(1) otherwise
template< class Type_ >
class Algebraic_structure_traits_base< Type_, 
                                       Integral_domain_without_division_tag > 
    : public Algebraic_structure_traits_base< Type_, 
                                              Null_tag > {
  public:
    typedef Type_                                 Type;
    typedef Integral_domain_without_division_tag  Algebraic_category;
    typedef bool                                  Boolean;

    // returns Type(1) by default
    class Unit_part 
      : public std::unary_function< Type, Type > { 
      public:
        Type operator()( const Type& x ) const {
          return( x < Type(0)) ? 
                  Type(-1) : Type(1); 
        }
    };
    
    class Square 
      : public std::unary_function< Type, Type > {
      public:        
        Type operator()( const Type& x ) const {
          return x*x;
        }
    };
    
    class Is_zero 
      : public std::unary_function< Type, bool > {
      public:        
        bool operator()( const Type& x ) const {
          return x == Type(0);
        }
    };

    class Is_one 
      : public std::unary_function< Type, bool > {
      public:        
        bool operator()( const Type& x ) const {
          return x == Type(1);
        }
    };

};


//! The template specialization that is used if the number type is
//! a model of the \c IntegralDomain concept. It is equivalent to the 
//! specialization
//! for the \c IntegralDomainWithoutDiv concept. The additionally required 
//! \c Integral_division functor needs to be implemented in the 
//! \c Algebraic_structure_traits itself.
template< class Type_ >
class Algebraic_structure_traits_base< Type_, 
                                       Integral_domain_tag >
    : public Algebraic_structure_traits_base< Type_, 
                                       Integral_domain_without_division_tag > {
  public:
    typedef Type_       Type;
    typedef Integral_domain_tag  Algebraic_category;
};


//! The template specialization that is used if the number type is
//! a model of the \c UFDomain concept. It is equivalent to the specialization
//! for the \c IntegralDomain concept. The additionally required 
//! \c Integral_div functor
//! and \c Gcd functor need to be implemented in the 
//! \c Algebraic_structure_traits itself.
template< class Type_ >
class Algebraic_structure_traits_base< Type_, 
                                       Unique_factorization_domain_tag >
    : public Algebraic_structure_traits_base< Type_, 
                                              Integral_domain_tag > {
  public:
    typedef Type_  Type;
    typedef Unique_factorization_domain_tag    Algebraic_category;

  // Default implementation of Divides functor for unique factorization domains
  // x divides y if gcd(y,x) equals x up to inverses 
  class Divides 
    : public std::binary_function<Type,Type,bool>{ 
  public:
    bool operator()( const Type& x,  const Type& y) const {  
      typedef CGAL::Algebraic_structure_traits<Type> AST;
      typename AST::Gcd gcd;
      typename AST::Unit_part unit_part;
      typename AST::Integral_division idiv;
      return gcd(y,x) == idiv(x,unit_part(x));
    }
    // second operator computing q = x/y 
    bool operator()( const Type& x,  const Type& y, Type& q) const {    
      typedef CGAL::Algebraic_structure_traits<Type> AST;
      typename AST::Integral_division idiv;
      bool result = (*this)(x,y);
      if( result == true ) 
        q = idiv(x,y);
      return result; 
    }
    CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT(Type,bool)
  };
};


//! The template specialization that is used if the number type is
//! a model of the \c EuclideanRing concept.
template< class Type_ >
class Algebraic_structure_traits_base< Type_, 
                                       Euclidean_ring_tag >
    : public Algebraic_structure_traits_base< Type_, 
                                              Unique_factorization_domain_tag > {
  public:
    typedef Type_        Type;
    typedef Euclidean_ring_tag    Algebraic_category;

    // maps to \c Div by default.
    class Integral_division 
      : public std::binary_function< Type, Type,
                                Type > { 
      public:
        Type operator()( 
                const Type& x, 
                const Type& y) const { 
            typedef Algebraic_structure_traits<Type> AST; 
            typedef typename AST::Is_exact Is_exact;
            CGAL_USE_TYPE(Is_exact);
            typename AST::Div actual_div;
            
            CGAL_precondition_msg( 
                    !Is_exact::value || actual_div( x, y) * y == x,
                    "'x' must be divisible by 'y' in "
                    "Algebraic_structure_traits<...>::Integral_div()(x,y)" );
            return actual_div( x, y);          
        }
        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
    };

    // Algorithm from NiX/euclids_algorithm.h
    class Gcd 
      : public std::binary_function< Type, Type,
                                Type > { 
      public:
        Type operator()( 
                const Type& x, 
                const Type& y) const {
            typedef Algebraic_structure_traits<Type> AST;
            typename AST::Mod mod;
            typename AST::Unit_part unit_part;
            typename AST::Integral_division integral_div;
            // First: the extreme cases and negative sign corrections.
            if (x == Type(0)) {
                if (y == Type(0))  
                    return Type(0);
                return integral_div( y, unit_part(y) );
            }
            if (y == Type(0))
                return integral_div(x, unit_part(x) );
            Type u = integral_div( x, unit_part(x) );
            Type v = integral_div( y, unit_part(y) );
            // Second: assuming mod is the most expensive op here, 
            // we don't compute it unnecessarily if u < v
            if (u < v) {
                v = mod(v,u);
                // maintain invariant of v > 0 for the loop below
                if ( v == Type(0) )
                    return u;
            }
            // Third: generic case of two positive integer values and u >= v.
            // The standard loop would be:
            //      while ( v != 0) {
            //          int tmp = mod(u,v);
            //          u = v;
            //          v = tmp;
            //      }
            //      return u;
            //
            // But we want to save us all the variable assignments and unroll
            // the loop. Before that, we transform it into a do {...} while()
            // loop to reduce branching statements.
            Type w;
            do {
                w = mod(u,v);
                if ( w == Type(0))
                    return v;
                u = mod(v,w);
                if ( u == Type(0))
                    return w;
                v = mod(w,u);
            } while (v != Type(0));
            return u;
        }  
        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
    };

    // based on \c Div and \c Mod.
    class Div_mod { 
    public:
        typedef Type    first_argument_type;
        typedef Type    second_argument_type;
        typedef Type&   third_argument_type;
        typedef Type&   fourth_argument_type;
        typedef void  result_type;
        void operator()( const Type& x, 
                const Type& y, 
                Type& q, Type& r) const {
            typedef Algebraic_structure_traits<Type> Traits;
            typename Traits::Div  actual_div;
            typename Traits::Mod  actual_mod;
            q = actual_div( x, y );
            r = actual_mod( x, y );          
            return;
        }
        
        template < class NT1, class NT2 >
        void operator()( 
                const NT1& x, 
                const NT2& y,
                Type& q, 
                Type& r ) const {
            typedef Coercion_traits< NT1, NT2 > CT;
            typedef typename CT::Type Type; 
            CGAL_USE_TYPE(Type);
            CGAL_static_assertion(( 
              ::boost::is_same<Type , Type >::value));
            
            typename Coercion_traits< NT1, NT2 >::Cast cast;
            operator()( cast(x), cast(y), q, r );          
        }
    };
    
    // based on \c Div_mod.
    class Div 
      : public std::binary_function< Type, Type,
                                Type > {
      public:
        Type operator()( const Type& x, 
                                        const Type& y) const {
          typename Algebraic_structure_traits<Type>
                                                    ::Div_mod actual_div_mod;
          Type q;     
          Type r;
          actual_div_mod( x, y, q, r );
          return q;
        };
        
        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
    };

    // based on \c Div_mod.
    class Mod 
      : public std::binary_function< Type, Type,
                                Type > { 
      public:
        Type operator()( const Type& x, 
                                        const Type& y) const {
          typename Algebraic_structure_traits<Type>
                                                    ::Div_mod actual_div_mod;
          Type q;     
          Type r;
          actual_div_mod( x, y, q, r );
          return r;
        };
        
        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
    };

  // Divides for Euclidean Ring 
  class Divides 
    : public std::binary_function<Type, Type, bool>{
  public:
    bool operator()( const Type& x, const Type& y) const {
      typedef Algebraic_structure_traits<Type> AST;
      typename AST::Mod mod;
      CGAL_precondition(typename AST::Is_zero()(x) == false );
      return typename AST::Is_zero()(mod(y,x));
    }
    // second operator computing q 
    bool operator()( const Type& x, const Type& y, Type& q) const {
      typedef Algebraic_structure_traits<Type> AST;
      typename AST::Div_mod div_mod;
      CGAL_precondition(typename AST::Is_zero()(x) == false );
      Type r;
      div_mod(y,x,q,r);
      return (typename AST::Is_zero()(r));
    }
    CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT(Type,bool)
  };
};


//! The template specialization that is used if the number type is
//! a model of the \c Field concept. \c Unit_part ()(x)
//! returns \c NT(1) if the value \c x is equal to \c NT(0) and
//! otherwise the value \c x itself. The \c Integral_div
//! maps to the \c operator/.
//! See also \link NiX_NT_traits_functors concept NT_traits \endlink .
//! \ingroup NiX_NT_traits_bases
//
template< class Type_ >
class Algebraic_structure_traits_base< Type_, Field_tag >
    : public Algebraic_structure_traits_base< Type_, 
                                              Integral_domain_tag > {
  public:
    typedef Type_        Type;
    typedef Field_tag             Algebraic_category;

    // returns the argument \a a by default
    class Unit_part 
      : public std::unary_function< Type, Type > { 
      public:
        Type operator()( const Type& x ) const {
            return( x == Type(0)) ? Type(1) : x;
        }
    };
    // maps to \c operator/ by default.
    class Integral_division 
      : public std::binary_function< Type, Type,
                                Type > { 
      public:
        Type operator()( const Type& x, 
                                        const Type& y) const { 
            typedef Algebraic_structure_traits<Type> AST; 
            typedef typename AST::Is_exact Is_exact;
            CGAL_USE_TYPE(Is_exact);
	    CGAL_precondition_code( bool ie = Is_exact::value; )
            CGAL_precondition_msg( !ie || (x / y) * y  == x,
                    "'x' must be divisible by 'y' in "
                    "Algebraic_structure_traits<...>::Integral_div()(x,y)" );
            return x / y;
        }
      CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
    };
  
  // maps to \c 1/x by default.
  class Inverse 
    : public std::unary_function< Type, Type > { 
  public:
    Type operator()( const Type& x ) const { 
      return Type(1)/x;
    }
  };
  

  // Default implementation of Divides functor for Field: 
  // returns always true
  // \pre: x != 0
  class Divides
    : public std::binary_function< Type, Type, bool > { 
  public:
    bool operator()( const Type& CGAL_precondition_code(x), const Type& /* y */) const {
      CGAL_precondition_code( typedef Algebraic_structure_traits<Type> AST);
      CGAL_precondition( typename AST::Is_zero()(x) == false );
      return true;
    } 
    // second operator computing q
    bool operator()( const Type& x, const Type& y, Type& q) const {
      CGAL_precondition_code(typedef Algebraic_structure_traits<Type> AST);
      CGAL_precondition( typename AST::Is_zero()(x) == false );
      q = y/x;
      return true;
    }
    CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT(Type,bool)
  };
};


//! The template specialization that is used if the number type is a model
//! of the \c FieldWithSqrt concept. It is equivalent to the 
//! specialization for the \c Field concept. The additionally required 
//! \c NiX::NT_traits::Sqrt functor need to be
//! implemented in the \c NT_traits itself.
//! \ingroup NiX_NT_traits_bases
//
template< class Type_ >
class Algebraic_structure_traits_base< Type_, 
                                       Field_with_sqrt_tag>
    : public Algebraic_structure_traits_base< Type_, 
                                              Field_tag> {
  public:
    typedef Type_        Type;
    typedef Field_with_sqrt_tag   Algebraic_category;

    struct Is_square
        :public std::binary_function<Type,Type&,bool>
    {
        bool operator()(const Type& ) const {return true;}
        bool operator()(
                const Type& x,
                Type      & result) const {
            typename Algebraic_structure_traits<Type>::Sqrt sqrt;
            result = sqrt(x);
            return true;
        }
    };
};

//! The template specialization that is used if the number type is a model
//! of the \c FieldWithKthRoot concept. It is equivalent to the 
//! specialization for the \c Field concept. The additionally required 
//! \c NiX::NT_traits::Kth_root functor need to be
//! implemented in the \c Algebraic_structure_traits itself.
//! \ingroup NiX_NT_traits_bases
//
template< class Type_ >
class Algebraic_structure_traits_base< Type_, 
                                       Field_with_kth_root_tag>
    : public Algebraic_structure_traits_base< Type_, 
                                              Field_with_sqrt_tag> {
    
    
    
  public:
    typedef Type_        Type;
    typedef Field_with_kth_root_tag   Algebraic_category;
};




//! The template specialization that is used if the number type is a model
//! of the \c FieldWithRootOf concept. It is equivalent to the 
//! specialization for the \c FieldWithKthRoot concept. The additionally 
//! required \c NiX::NT_traits::Root_of functor need to be
//! implemented in the \c NT_traits itself.
//! \ingroup NiX_NT_traits_bases
//
template< class Type_ >
class Algebraic_structure_traits_base< Type_, 
                                       Field_with_root_of_tag >
    : public Algebraic_structure_traits_base< Type_, 
                                              Field_with_kth_root_tag > {
  public:
    typedef Type_           Type;
    typedef Field_with_root_of_tag   Algebraic_category;
};

// Some common functors to be used by AST specializations
namespace INTERN_AST {
  template< class Type >
  class Div_per_operator 
    : public std::binary_function< Type, Type, 
                              Type > {
    public:      
      Type operator()( const Type& x, 
                                      const Type& y ) const {
        return x / y;
      }
      
      CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
  };
  
  template< class Type >
  class Mod_per_operator 
    : public std::binary_function< Type, Type,
                              Type > {
    public:
      Type operator()( const Type& x, 
                                      const Type& y ) const {
        return x % y;
      }
      
      CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
  };
  
  template< class Type >
  class Is_square_per_sqrt
    : public std::binary_function< Type, Type&,
                              bool > {
    public:      
      bool operator()( const Type& x, 
                       Type& y ) const {
          typename Algebraic_structure_traits< Type >::Sqrt
              actual_sqrt;
          y = actual_sqrt( x );
          return y * y == x;
      }
      bool operator()( const Type& x) const {
          Type dummy;
          return operator()(x,dummy);
      }
  };
} // INTERN_AST
} //namespace CGAL

#endif  // CGAL_ALGEBRAIC_STRUCTURE_TRAITS_H