/usr/include/CGAL/Alpha_shape_2.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 | // Copyright (c) 1997, 2012 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Tran Kai Frank DA
// Andreas Fabri <Andreas.Fabri@geometryfactory.com>
#ifndef CGAL_ALPHA_SHAPE_2_H
#define CGAL_ALPHA_SHAPE_2_H
#include <CGAL/basic.h>
#include <list>
#include <set>
#include <map>
#include <vector>
#include <algorithm>
#include <utility>
#include <iostream>
#include <CGAL/utility.h>
#include <CGAL/Unique_hash_map.h>
#include <CGAL/Triangulation_vertex_base_2.h>
#include <CGAL/Triangulation_face_base_2.h>
#include <CGAL/Alpha_shape_vertex_base_2.h>
#include <CGAL/Alpha_shape_face_base_2.h>
#include <CGAL/internal/Lazy_alpha_nt_2.h>
namespace CGAL {
template < class Dt,class ExactAlphaComparisonTag = Tag_false>
class Alpha_shape_2 : public Dt
{
// DEFINITION The class Alpha_shape_2<Dt> represents the family
// of alpha-shapes of points in a plane for all positive alpha. It
// maintains the underlying Delaunay triangulation which represents
// connectivity and order among its faces. Each k-dimensional face of the
// Delaunay triangulation is associated with an interval that specifies
// for which values of alpha the face belongs to the alpha-shape (sorted
// linear arrays resp. multimaps or interval trees). There are links
// between the intervals and the k-dimensional faces of the Delaunay
// triangulation (multimaps resp. std::hashtables).
//
//------------------------- TYPES ------------------------------------
public:
typedef Dt Triangulation;
typedef typename Dt::Geom_traits Gt;
typedef typename Gt::Compute_squared_radius_2 Compute_squared_radius_2;
typedef typename Dt::Triangulation_data_structure Tds;
typedef typename internal::Alpha_nt_selector_2<Gt,ExactAlphaComparisonTag>::Type_of_alpha Type_of_alpha;
//check simplices are correctly instantiated
CGAL_static_assertion( (boost::is_same<Type_of_alpha,typename Dt::Face::FT>::value) );
CGAL_static_assertion( (boost::is_same<Type_of_alpha,typename Dt::Vertex::FT>::value) );
typedef Type_of_alpha NT;
typedef Type_of_alpha FT;
typedef typename Gt::Point_2 Point;
typedef typename Gt::Segment_2 Segment;
typedef typename Gt::Line_2 Line;
typedef typename Dt::Face_handle Face_handle;
typedef typename Dt::Vertex_handle Vertex_handle;
typedef typename Dt::Edge Edge;
typedef typename Dt::Face_circulator Face_circulator;
typedef typename Dt::Edge_circulator Edge_circulator;
typedef typename Dt::Vertex_circulator Vertex_circulator;
typedef typename Dt::Finite_faces_iterator Finite_faces_iterator;
typedef typename Dt::Edge_iterator Edge_iterator;
typedef typename Dt::Finite_vertices_iterator Finite_vertices_iterator;
typedef typename Dt::Locate_type Locate_type;
typedef typename Dt::size_type size_type;
using Dt::finite_vertices_begin;
using Dt::finite_vertices_end;
using Dt::faces_begin;
using Dt::faces_end;
using Dt::edges_begin;
using Dt::edges_end;
using Dt::number_of_vertices;
using Dt::cw;
using Dt::ccw;
using Dt::VERTEX;
using Dt::EDGE;
using Dt::FACE;
using Dt::OUTSIDE_CONVEX_HULL;
using Dt::OUTSIDE_AFFINE_HULL;
using Dt::dimension;
using Dt::is_infinite;
// for backward compatibility
typedef Finite_vertices_iterator Vertex_iterator;
typedef Finite_faces_iterator Face_iterator;
private:
typedef std::multimap< Type_of_alpha, Face_handle > Interval_face_map;
typedef typename Interval_face_map::value_type Interval_face;
typedef typename Tds::Face::Interval_3 Interval3;
typedef std::multimap< Interval3, Edge > Interval_edge_map;
typedef typename Interval_edge_map::value_type Interval_edge;
typedef std::pair< Type_of_alpha, Type_of_alpha > Interval2;
typedef std::multimap< Interval2, Vertex_handle > Interval_vertex_map;
typedef typename Interval_vertex_map::value_type Interval_vertex;
typedef Face_handle const const_void;
typedef std::pair<const_void, int> const_Edge;
typedef std::vector< Type_of_alpha > Alpha_spectrum;
typedef std::vector< Segment > Vect_seg;
typedef Unique_hash_map< Face_handle, bool > Marked_face_set;
public:
typedef typename std::list< Vertex_handle >::iterator
Alpha_shape_vertices_iterator;
typedef typename std::list< Edge >::iterator Alpha_shape_edges_iterator;
typedef typename Alpha_spectrum::const_iterator Alpha_iterator;
// An iterator that allow to traverse the sorted sequence of
// different alpha-values. The iterator is bidirectional and
// non-mutable. Its value-type is Type_of_alpha
enum Classification_type {EXTERIOR, SINGULAR, REGULAR, INTERIOR};
// Distinguishes the different cases for classifying a
// k-dimensional face of the underlying Delaunay triangulation of
// the alpha-shape.
//
// `EXTERIOR' if the face does not belong to the alpha-complex.
//
// `SINGULAR' if the face belongs to the boundary of the
// alpha-shape, but is not incident to any higher-dimensional
// face of the alpha-complex
//
// `REGULAR' if face belongs to the boundary of the alpha-shape
// and is incident to a higher-dimensional face of the
// alpha-complex
//
// `INTERIOR' if the face belongs to the alpha-complex, but does
// not belong to the boundary of the alpha-shape
enum Mode {GENERAL, REGULARIZED};
// In general, an alpha shape is a non-connected, mixed-dimension
// polygon. Its regularized version is formed by the set of
// regular edges and their vertices
//------------------------ private VARIABLES -------------------------
private:
// only finite edges and faces are inserted into the maps
Interval_face_map _interval_face_map;
Interval_edge_map _interval_edge_map;
Interval_vertex_map _interval_vertex_map;
Alpha_spectrum _alpha_spectrum;
Type_of_alpha _alpha;
Mode _mode;
// should be constants
Type_of_alpha Infinity;
Type_of_alpha UNDEFINED;
mutable std::list< Vertex_handle > Alpha_shape_vertices_list;
mutable std::list< Edge > Alpha_shape_edges_list;
mutable bool use_vertex_cache;
mutable bool use_edge_cache;
public:
//------------------------- CONSTRUCTORS ------------------------------
// Introduces an empty alpha-shape `A' for a positive
// alpha-value `alpha'. Precondition: `alpha' >= 0.
Alpha_shape_2(Type_of_alpha alpha = Type_of_alpha(0),
Mode m = GENERAL)
: _alpha(alpha), _mode(m), Infinity(-1), UNDEFINED(-2),
use_vertex_cache(false), use_edge_cache(false)
{}
// Introduces an alpha-shape `A' for a positive alpha-value
// `alpha' that is initialized with the points in the range
// from first to last
template <class InputIterator>
Alpha_shape_2(const InputIterator& first,
const InputIterator& last,
const Type_of_alpha& alpha = Type_of_alpha(0),
Mode m = GENERAL)
: _alpha(alpha), _mode(m), Infinity(-1), UNDEFINED(-2) ,
use_vertex_cache(false), use_edge_cache(false)
{
Dt::insert(first, last);
if (dimension() == 2)
{
// Compute the associated _interval_face_map
initialize_interval_face_map();
// Compute the associated _interval_edge_map
initialize_interval_edge_map();
// Compute the associated _interval_vertex_map
initialize_interval_vertex_map();
// merge the two maps
initialize_alpha_spectrum();
}
}
// Introduces an alpha-shape `A' for a positive alpha-value
// `alpha' that is initialized with the triangulation
Alpha_shape_2(Dt& dt,
const Type_of_alpha& alpha = Type_of_alpha(0),
Mode m = GENERAL)
: _alpha(alpha), _mode(m), Infinity(-1), UNDEFINED(-2) ,
use_vertex_cache(false), use_edge_cache(false)
{
Dt::swap(dt);
if (dimension() == 2)
{
// Compute the associated _interval_face_map
initialize_interval_face_map();
// Compute the associated _interval_edge_map
initialize_interval_edge_map();
// Compute the associated _interval_vertex_map
initialize_interval_vertex_map();
// merge the two maps
initialize_alpha_spectrum();
}
}
public:
//----------- OUTPUT POINTS CONNECTED BY PAIRS ----------------------
std::list<Point> Output();
std::ostream& op_ostream(std::ostream& os) const;
//----------------------- OPERATIONS ---------------------------------
// Introduces an alpha-shape `A' for a positive alpha-value
// `alpha' that is initialized with the points in the range
// from first to last
template < class InputIterator >
std::ptrdiff_t make_alpha_shape(const InputIterator& first,
const InputIterator& last)
{
clear();
size_type n = Dt::insert(first, last);
if (dimension() == 2)
{
// Compute the associated _interval_face_map
initialize_interval_face_map();
// Compute the associated _interval_edge_map
initialize_interval_edge_map();
// Compute the associated _interval_vertex_map
initialize_interval_vertex_map();
// merge the two maps
initialize_alpha_spectrum();
}
return n;
}
private :
//--------------------- INITIALIZATION OF PRIVATE MEMBERS -----------
void initialize_interval_face_map();
void initialize_interval_edge_map();
void initialize_interval_vertex_map();
void initialize_alpha_spectrum();
//---------------------------------------------------------------------
public:
void clear()
{
// clears the structure
Dt::clear();
_interval_face_map.clear();
_interval_edge_map.clear();
_interval_vertex_map.clear();
_alpha_spectrum.clear();
Alpha_shape_vertices_list.clear();
Alpha_shape_edges_list.clear();
set_alpha(Type_of_alpha(0));
set_mode(GENERAL);
}
//----------------------- PRIVATE MEMBERS --------------------------
private:
struct Less
{
bool operator()(const Interval_edge& ie,
const Type_of_alpha& alpha)
{
return ie.first.first < alpha;
}
bool operator()( const Type_of_alpha& alpha,
const Interval_edge& ie)
{
return alpha < ie.first.first;
}
// Needed for STL implementations of upper_bound which in debug mode
// check sortedness of range
bool operator()(const Interval_edge& ie,
const Interval_edge& ie2) const
{
return ie < ie2;
}
};
//----------------------- ACCESS TO PRIVATE MEMBERS -----------------
private:
Type_of_alpha find_interval(const Face_handle& f) const
{
return f->get_alpha();
// return the value Alpha f the face f
}
Interval3 find_interval(const_Edge e) const
{ // corriger le parametrage
return (e.first)->get_ranges(e.second);
// return the Interval3 for the edge n
}
//---------------------------------------------------------------------
public:
Type_of_alpha set_alpha(const Type_of_alpha& alpha)
{
// Sets the alpha-value to `alpha'. Precondition: `alpha' >= 0.
// Returns the previous alpha
Type_of_alpha previous_alpha = _alpha;
_alpha = alpha;
use_vertex_cache = false;
use_edge_cache = false;
return previous_alpha;
}
const Type_of_alpha& get_alpha() const
{
// Returns the current alpha-value.
return _alpha;
}
const Type_of_alpha& get_nth_alpha(size_type n) const
{
// Returns the n-th alpha-value.
// n < size()
if (! _alpha_spectrum.empty())
return _alpha_spectrum[n];
else
return UNDEFINED;
}
size_type number_of_alphas() const
{
// Returns the number of not necessary different alpha-values
return _alpha_spectrum.size();
}
//---------------------------------------------------------------------
private:
// the dynamic version is not yet implemented
// desactivate the triangulation member functions
Vertex_handle insert(const Point& p);
// Inserts point `p' in the alpha shape and returns the
// corresponding vertex of the underlying Delaunay triangulation.
// If point `p' coincides with an already existing vertex, this
// vertex is returned and the alpha shape remains unchanged.
// Otherwise, the vertex is inserted in the underlying Delaunay
// triangulation and the associated intervals are updated.
void remove(Vertex_handle v);
// Removes the vertex from the underlying Delaunay triangulation.
// The created hole is retriangulated and the associated intervals
// are updated.
//---------------------------------------------------------------------
public:
Mode set_mode(Mode mode = GENERAL )
{
// Sets `A' to its general or regularized version. Returns the
// previous mode.
Mode previous_mode = _mode;
_mode = mode;
return previous_mode;
}
Mode get_mode() const
{
// Returns whether `A' is general or regularized.
return _mode;
}
//---------------------------------------------------------------------
private:
void
update_alpha_shape_vertex_list()const;
//---------------------------------------------------------------------
void
update_alpha_shape_edges_list() const;
//---------------------------------------------------------------------
public:
Alpha_shape_vertices_iterator alpha_shape_vertices_begin() const
{
if(!use_vertex_cache){
update_alpha_shape_vertex_list();
}
return Alpha_shape_vertices_list.begin();
}
// for backward compatibility
Alpha_shape_vertices_iterator Alpha_shape_vertices_begin()
{
return alpha_shape_vertices_begin();
}
//---------------------------------------------------------------------
Alpha_shape_vertices_iterator alpha_shape_vertices_end() const
{
return Alpha_shape_vertices_list.end();
}
Alpha_shape_vertices_iterator Alpha_shape_vertices_end() const
{
return Alpha_shape_vertices_list.end();
}
//---------------------------------------------------------------------
Alpha_shape_edges_iterator alpha_shape_edges_begin() const
{
if(!use_edge_cache){
update_alpha_shape_edges_list();
}
return Alpha_shape_edges_list.begin();
}
Alpha_shape_edges_iterator Alpha_shape_edges_begin() const
{
return alpha_shape_edges_begin();
}
//---------------------------------------------------------------------
Alpha_shape_edges_iterator alpha_shape_edges_end() const
{
return Alpha_shape_edges_list.end();
}
Alpha_shape_edges_iterator Alpha_shape_edges_end() const
{
return Alpha_shape_edges_list.end();
}
public:
// Traversal of the alpha-Values
//
// The alpha shape class defines an iterator that allows to
// visit the sorted sequence of alpha-values. This iterator is
// non-mutable and bidirectional. Its value type is Type_of_alpha.
Alpha_iterator alpha_begin() const
{
// Returns an iterator that allows to traverse the sorted sequence
// of alpha-values of `A'.
return _alpha_spectrum.begin();
}
Alpha_iterator alpha_end() const
{
// Returns the corresponding past-the-end iterator.
return _alpha_spectrum.end();
}
Alpha_iterator alpha_find(const Type_of_alpha& alpha) const
{
// Returns an iterator pointing to an element with alpha-value
// `alpha', or the corresponding past-the-end iterator if such an
// element is not found.
return std::find(_alpha_spectrum.begin(),
_alpha_spectrum.end(),
alpha);
}
Alpha_iterator alpha_lower_bound(const Type_of_alpha& alpha) const
{
// Returns an iterator pointing to the first element with
// alpha-value not less than `alpha'.
return std::lower_bound(_alpha_spectrum.begin(),
_alpha_spectrum.end(),
alpha);
}
Alpha_iterator alpha_upper_bound(const Type_of_alpha& alpha) const
{
// Returns an iterator pointing to the first element with
// alpha-value greater than `alpha'.
return std::upper_bound(_alpha_spectrum.begin(),
_alpha_spectrum.end(),
alpha);
}
//--------------------- PREDICATES -----------------------------------
// the classification predicates take
// amortized const time if STL_STD::HASH_TABLES
// O(log #alpha_shape ) otherwise
Classification_type classify(const Point& p ) const
{
return classify( p, get_alpha());
}
Classification_type classify(const Point& p,
const Type_of_alpha& alpha) const
{
// Classifies a point `p' with respect to `A'.
Locate_type type;
int i;
Face_handle pFace = this->locate(p, type, i);
switch (type)
{
case VERTEX : return classify(pFace->vertex(i), alpha);
case EDGE : return classify(pFace, i, alpha);
case FACE : return classify(pFace, alpha);
case OUTSIDE_CONVEX_HULL :
case OUTSIDE_AFFINE_HULL : return EXTERIOR;
default : return EXTERIOR;
}
}
//---------------------------------------------------------------------
Classification_type classify(const Face_handle& f) const
{
// Classifies the face `f' of the underlying Delaunay
// triangulation with respect to `A'.
return classify(f, get_alpha());
}
Classification_type classify(const Face_handle& f,
const Type_of_alpha& alpha) const
{
// Classifies the face `f' of the underlying Delaunay
// triangulation with respect to `A'.
// we consider close circles :
// f->radius < alpha <=> f exterior
// problem the operator [] is non-const
if (is_infinite(f)) return EXTERIOR;
// the version that computes the squared radius seems to be
// much faster
return (find_interval(f) <= alpha) ?
INTERIOR :
EXTERIOR;
}
//---------------------------------------------------------------------
Classification_type classify(const Edge& edge) const
{
return classify(edge.first, edge.second, get_alpha());
}
Classification_type classify(const Face_handle& f,
int i) const
{
return classify(f, i, get_alpha());
}
Classification_type classify(const Edge& edge,
const Type_of_alpha& alpha) const
{
return classify(edge.first, edge.second, alpha);
}
Classification_type classify(const Face_handle& f,
int i,
const Type_of_alpha& alpha) const;
//---------------------------------------------------------------------
Classification_type classify(const Vertex_handle& v) const
{
return classify(v, get_alpha());
}
Classification_type classify(const Vertex_handle& v,
const Type_of_alpha& alpha) const;
//--------------------- NB COMPONENTS ---------------------------------
int
number_solid_components() const
{
return number_of_solid_components(get_alpha());
}
int
number_of_solid_components() const
{
return number_of_solid_components(get_alpha());
}
size_type
number_solid_components(const Type_of_alpha& /* alpha */) const
{
return number_of_solid_components(get_alpha());
}
size_type
number_of_solid_components(const Type_of_alpha& alpha) const;
private:
void traverse(const Face_handle& pFace,
Marked_face_set& marked_face_set,
const Type_of_alpha alpha) const;
// class Line_face_circulator;
//----------------------------------------------------------------------
public:
Alpha_iterator find_optimal_alpha(size_type nb_components);
private:
Type_of_alpha find_alpha_solid() const;
//---------------------- PREDICATES ------------------------------------
private:
bool is_attached(const Face_handle& f, int i) const
{
Bounded_side b =
Gt().side_of_bounded_circle_2_object()(f->vertex(cw(i))->point(),
f->vertex(ccw(i))->point(),
f->vertex(i)->point());
return (b == ON_BOUNDED_SIDE) ? true : false;
}
//-------------------- GEOMETRIC PRIMITIVES ----------------------------
Type_of_alpha squared_radius(const Face_handle& f) const
{
return
Compute_squared_radius_2()(f->vertex(0)->point(),
f->vertex(1)->point(),
f->vertex(2)->point());
}
Type_of_alpha squared_radius(const Face_handle& f, int i) const
{
return
Compute_squared_radius_2()(f->vertex(ccw(i))->point(),
f->vertex(cw(i))->point());
}
//---------------------------------------------------------------------
private:
// prevent default copy constructor and default assigment
Alpha_shape_2(const Alpha_shape_2& A);
Alpha_shape_2& operator=(const Alpha_shape_2& A);
public:
// to debug
void print_edge_map();
};
//---------------------------------------------------------------------
//----------------------- MEMBER FUNCTIONS -----------------------------
//---------------------------------------------------------------------
template < class Dt, class EACT >
void
Alpha_shape_2<Dt,EACT>::initialize_interval_face_map()
{
Type_of_alpha alpha_f;
// only finite faces
for(Finite_faces_iterator face_it = faces_begin(); face_it != faces_end(); ++face_it)
{
alpha_f = squared_radius(face_it);
_interval_face_map.insert(Interval_face(alpha_f, face_it));
// cross references
face_it->set_alpha(alpha_f);
}
}
//-------------------------------------------------------------------------
template < class Dt, class EACT >
void
Alpha_shape_2<Dt,EACT>::initialize_interval_edge_map()
{
Edge_iterator edge_it;
Edge edge;
// only finite faces
for( edge_it = edges_begin();
edge_it != edges_end();
++edge_it)
{
Interval3 interval;
edge = (*edge_it);
Face_handle pFace = edge.first;
int i = edge.second;
Face_handle pNeighbor = pFace->neighbor(i);
int Neigh_i = pNeighbor->index(pFace);
// not on the convex hull
if(!is_infinite(pFace) && !is_infinite(pNeighbor))
{
Type_of_alpha squared_radius_Face =
find_interval(pFace);
Type_of_alpha squared_radius_Neighbor =
find_interval(pNeighbor);
if (squared_radius_Neighbor < squared_radius_Face)
{
edge = Edge(pNeighbor, Neigh_i);
Type_of_alpha coord_tmp = squared_radius_Face;
squared_radius_Face = squared_radius_Neighbor;
squared_radius_Neighbor = coord_tmp;
}
interval = (is_attached(pFace, i) ||
is_attached(pNeighbor, Neigh_i)) ?
make_triple(UNDEFINED,
squared_radius_Face,
squared_radius_Neighbor):
make_triple(squared_radius(pFace, i),
squared_radius_Face,
squared_radius_Neighbor);
}
else
{ // on the convex hull
if(is_infinite(pFace))
{
if (!is_infinite(pNeighbor))
{
interval = (is_attached(pNeighbor,
Neigh_i)) ?
make_triple(UNDEFINED,
find_interval(pNeighbor),
Infinity):
make_triple(squared_radius(pNeighbor,
Neigh_i),
find_interval(pNeighbor),
Infinity);
edge = Edge(pNeighbor, Neigh_i);
}
else
{
// both faces are infinite by definition unattached
// the edge is finite by construction
CGAL_triangulation_precondition((is_infinite(pNeighbor)
&& is_infinite(pFace)));
interval = make_triple(squared_radius(pFace, i),
Infinity,
Infinity);
}
}
else
{ // is_infinite(pNeighbor)
CGAL_triangulation_precondition((is_infinite(pNeighbor)
&& !is_infinite(pFace)));
if (is_attached(pFace, i))
interval = make_triple(UNDEFINED,
find_interval(pFace),
Infinity);
else
interval = make_triple(squared_radius(pFace, i),
find_interval(pFace),
Infinity);
}
}
_interval_edge_map.insert(Interval_edge(interval, edge));
// cross-links
(edge.first)->set_ranges(edge.second,interval);
// MY : to fix a bug I store the interval of the edge in both faces
Face_handle neighbor = (edge.first)->neighbor(edge.second);
int ni = neighbor->index(edge.first);
neighbor->set_ranges( ni, interval);
}
// Remark:
// The interval_edge_map will be sorted as follows
// first the attached edges on the convex hull
// second not on the convex hull
// third the un-attached edges on the convex hull
// finally not on the convex hull
//
// if we are in regularized mode we should sort differently
// by the second third first Key
}
//-------------------------------------------------------------------------
template < class Dt, class EACT >
void
Alpha_shape_2<Dt,EACT>::initialize_interval_vertex_map()
{
Type_of_alpha alpha_mid_v;
Type_of_alpha alpha_max_v;
Type_of_alpha alpha_f;
Finite_vertices_iterator vertex_it;
for( vertex_it = finite_vertices_begin();
vertex_it != finite_vertices_end();
++vertex_it)
{
Vertex_handle v = vertex_it;
Face_handle f;
alpha_max_v = Type_of_alpha(0);
alpha_mid_v = (!_interval_face_map.empty() ?
(--_interval_face_map.end())->first :
Type_of_alpha(0));
//----------------- examine incident edges --------------------------
// // if we used Edelsbrunner and Muecke's definition
// // singular means not incident to any higher-dimensional face
// // regular means incident to a higher-dimensional face
// Edge_circulator edge_circ = this->incident_edges(v),
// edge_done(edge_circ);
// do
// {
// f = (*edge_circ).first;
// int i = (*edge_circ).second;
// if (is_infinite(f, i))
// {
// alpha_max_v = Infinity;
// }
// else
// {
// Interval3 interval3 = find_interval(const_Edge(f, i));
// alpha_mid_v = (interval3.first != UNDEFINED) ?
// (CGAL::min)(alpha_mid_v, interval3.first):
// (CGAL::min)(alpha_mid_v, interval3.second);
// if (alpha_max_v != Infinity)
// {
// alpha_max_v = (interval3.third != Infinity) ?
// (CGAL::max)(alpha_max_v, interval3.third):
// Infinity;
// }
// }
// }
// while(++edge_circ != edge_done);
//-------------- examine incident faces --------------------------
// we use a different definition than Edelsbrunner and Muecke
// singular means not incident to any 2-dimensional face
// regular means incident to a 2-dimensional face
Face_circulator face_circ = this->incident_faces(v),
done = face_circ;
if (!face_circ.is_empty())
{
do
{
f = face_circ;
if (is_infinite(f))
{
alpha_max_v = Infinity;
// continue;
}
else
{
alpha_f = find_interval(f);
// if we define singular as not incident to a 2-dimensional
// face
alpha_mid_v = (CGAL::min)(alpha_mid_v, alpha_f);
if (alpha_max_v != Infinity)
alpha_max_v = (CGAL::max)(alpha_max_v, alpha_f);
}
}
while(++face_circ != done);
}
Interval2 interval = std::make_pair(alpha_mid_v, alpha_max_v);
_interval_vertex_map.insert(Interval_vertex(interval, vertex_it));
// cross references
vertex_it->set_range(interval);
}
}
//-------------------------------------------------------------------------
template < class Dt, class EACT >
void
Alpha_shape_2<Dt,EACT>::initialize_alpha_spectrum()
{
// skip the attached edges
// <=> _interval_edge_map.first.first == UNDEFINED
typename Interval_edge_map::iterator
edge_it = std::upper_bound(_interval_edge_map.begin(),
_interval_edge_map.end(),
UNDEFINED,
Less());
// merge the maps which is sorted and contains the alpha-values
// of the unattached edges and the triangles.
// eliminate duplicate values due to for example attached edges
// merge and copy from STL since assignment should be function object
typename Interval_face_map::iterator
face_it = _interval_face_map.begin();
_alpha_spectrum.reserve(_interval_face_map.size() +
_interval_edge_map.size()/ 2 );
// should be only the number of unattached edges
// size_type nb_unattached_edges;
// distance(edge_it, _interval_edge_map.end(), nb_unattached_edges);
// however the distance function is expensive
while (edge_it != _interval_edge_map.end() ||
face_it != _interval_face_map.end())
{
if (face_it != _interval_face_map.end() &&
(edge_it == _interval_edge_map.end() ||
((*face_it).first < (*edge_it).first.first)))
{
if (((_alpha_spectrum.empty() ||
_alpha_spectrum.back() < (*face_it).first)) &&
((*face_it).first > Type_of_alpha(0)))
_alpha_spectrum.push_back((*face_it).first);
face_it++;
}
else
{
if (((_alpha_spectrum.empty() ||
_alpha_spectrum.back() < (*edge_it).first.first)) &&
(((*edge_it).first.first) > Type_of_alpha(0)))
_alpha_spectrum.push_back((*edge_it).first.first);
edge_it++;
}
}
while (edge_it != _interval_edge_map.end())
{
if (((_alpha_spectrum.empty() ||
_alpha_spectrum.back() < (*edge_it).first.first))&&
(((*edge_it).first.first) > Type_of_alpha(0)))
_alpha_spectrum.push_back((*edge_it).first.first);
edge_it++;
}
while (face_it != _interval_face_map.end())
{
if (((_alpha_spectrum.empty() ||
_alpha_spectrum.back() < (*face_it).first))&&
((*face_it).first > Type_of_alpha(0)))
_alpha_spectrum.push_back((*face_it).first);
face_it++;
}
}
//-------------------------------------------------------------------------
template < class Dt, class EACT >
void
Alpha_shape_2<Dt,EACT>::update_alpha_shape_vertex_list()const {
//typedef typename Alpha_shape_2<Dt,EACT>::Interval_vertex_map
// Interval_vertex_map;
typename Interval_vertex_map::const_iterator vertex_alpha_it;
//const typename Alpha_shape_2<Dt,EACT>::Interval2* pInterval2;
const Interval2* pInterval2;
Vertex_handle v;
Alpha_shape_vertices_list.clear();
// write the regular vertices
for (vertex_alpha_it = _interval_vertex_map.begin();
vertex_alpha_it != _interval_vertex_map.end() &&
(*vertex_alpha_it).first.first <= get_alpha();
++vertex_alpha_it)
{
pInterval2 = &(*vertex_alpha_it).first;
if((pInterval2->second > get_alpha()
|| pInterval2->second == Infinity))
{
// alpha must be larger than the min boundary
// and alpha is smaller than the upper boundary
// which might be infinity
// write the vertex
v = (*vertex_alpha_it).second;
CGAL_triangulation_assertion((classify(v) == REGULAR));
Alpha_shape_vertices_list.push_back(v);
}
}
if (get_mode() == Alpha_shape_2<Dt,EACT>::GENERAL)
{
// write the singular vertices
for (;
vertex_alpha_it != _interval_vertex_map.end();
++vertex_alpha_it)
{
v = (*vertex_alpha_it).second;
CGAL_triangulation_assertion((classify(v) == SINGULAR));
Alpha_shape_vertices_list.push_back(v);
}
}
use_vertex_cache = true;
}
//-------------------------------------------------------------------------
template < class Dt, class EACT >
void
Alpha_shape_2<Dt,EACT>::update_alpha_shape_edges_list() const
{
// Writes the edges of the alpha shape `A' for the current $\alpha$-value
// to the container where 'out' refers to. Returns an output iterator
// which is the end of the constructed range.
//typedef typename Alpha_shape_2<Dt,EACT>::Interval_edge_map Interval_edge_map;
typename Interval_edge_map::const_iterator edge_alpha_it;
//const typename Alpha_shape_2<Dt,EACT>::Interval3* pInterval;
const Interval3* pInterval;
Alpha_shape_edges_list.clear();
if (get_mode() == REGULARIZED)
{
// it is much faster looking at the sorted intervals
// than looking at all sorted faces
// alpha must be larger than the mid boundary
// and alpha is smaller than the upper boundary
for (edge_alpha_it = _interval_edge_map.begin();
edge_alpha_it != _interval_edge_map.end() &&
(*edge_alpha_it).first.first <= get_alpha();
++edge_alpha_it)
{
pInterval = &(*edge_alpha_it).first;
CGAL_triangulation_assertion(pInterval->second != Infinity);
// since this happens only for convex hull of dimension 2
// thus singular
if(pInterval->second <= get_alpha() &&
(pInterval->third > get_alpha()
|| pInterval->third == Infinity))
{
// alpha must be larger than the mid boundary
// and alpha is smaller than the upper boundary
// which might be infinity
// visualize the boundary
CGAL_triangulation_assertion((classify((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second)
== REGULAR));
Alpha_shape_edges_list.push_back(Edge((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second));
}
}
}
else
{ // get_mode() == GENERAL -------------------------------------------
// draw the edges
for (edge_alpha_it = _interval_edge_map.begin();
edge_alpha_it != _interval_edge_map.end() &&
(*edge_alpha_it).first.first <= get_alpha();
++edge_alpha_it)
{
pInterval = &(*edge_alpha_it).first;
if (pInterval->first == UNDEFINED)
{
CGAL_triangulation_assertion(pInterval->second != Infinity);
// since this happens only for convex hull of dimension 2
// thus singular
if(pInterval->second <= get_alpha() &&
(pInterval->third > get_alpha()
|| pInterval->third == Infinity))
{
// alpha must be larger than the mid boundary
// and alpha is smaller than the upper boundary
// which might be infinity
// visualize the boundary
CGAL_triangulation_assertion((classify((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second)
== REGULAR));
Alpha_shape_edges_list.push_back(Edge((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second));
}
}
else
{
if(pInterval->third > get_alpha()
|| pInterval->third == Infinity)
{
// if alpha is smaller than the upper boundary
// which might be infinity
// visualize the boundary
CGAL_triangulation_assertion(((classify((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second)
== REGULAR)
|| (classify((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second)
== SINGULAR)));
Alpha_shape_edges_list.push_back(Edge((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second));
}
}
}
}
use_edge_cache = true;
}
//-------------------------------------------------------------------------
template < class Dt, class EACT >
typename Alpha_shape_2<Dt,EACT>::Classification_type
Alpha_shape_2<Dt,EACT>::classify(const Face_handle& f, int i,
const Type_of_alpha& alpha) const
{
// Classifies the edge `e' of the underlying Delaunay
// triangulation with respect to `A'.
// the version that uses a simplified version without crosslinks
// is much slower
if (is_infinite(f, i))
return EXTERIOR;
// we store only finite edges in _edge_interval_map
Interval3 interval = find_interval(const_Edge(f, i));
// (*(_edge_interval_map.find(const_Edge(f, i)))).second;
if (alpha < interval.second)
{
if (get_mode() == REGULARIZED ||
interval.first == UNDEFINED ||
alpha < interval.first)
return EXTERIOR;
else // alpha >= interval.first
return SINGULAR;
}
else
{ // alpha >= interval.second
if (interval.third == Infinity ||
alpha < interval.third)
return REGULAR;
else // alpha >= interval.third
return INTERIOR;
}
}
//-------------------------------------------------------------------------
template < class Dt, class EACT >
typename Alpha_shape_2<Dt,EACT>::Classification_type
Alpha_shape_2<Dt,EACT>::classify(const Vertex_handle& v,
const Type_of_alpha& alpha) const
{
// Classifies the vertex `v' of the underlying Delaunay
// triangulation with respect to `A'.
Interval2 interval = v->get_range();
if (alpha < interval.first)
{
if (get_mode() == REGULARIZED)
return EXTERIOR;
else // general => vertices are never exterior
return SINGULAR;
}
else
{ // alpha >= interval.first
if (interval.second == Infinity ||
alpha < interval.second)
return REGULAR;
else // alpha >= interval.second
return INTERIOR;
}
}
//-------------------------------------------------------------------------
template < class Dt, class EACT >
typename Alpha_shape_2<Dt,EACT>::size_type
Alpha_shape_2<Dt,EACT>::number_of_solid_components(const Type_of_alpha& alpha) const
{
// Determine the number of connected solid components
typedef typename Marked_face_set::Data Data;
Marked_face_set marked_face_set(false);
Finite_faces_iterator face_it;
size_type nb_solid_components = 0;
if (number_of_vertices()==0)
return 0;
// only finite faces
for( face_it = faces_begin();
face_it != faces_end();
++face_it)
{
Face_handle pFace = face_it;
CGAL_triangulation_postcondition( pFace != NULL);
if (classify(pFace, alpha) == INTERIOR){
Data& data = marked_face_set[pFace];
if(data == false)
{
// we traverse only interior faces
traverse(pFace, marked_face_set, alpha);
nb_solid_components++;
}
}
}
return nb_solid_components;
}
//-------------------------------------------------------------------------
template < class Dt, class EACT >
void
Alpha_shape_2<Dt,EACT>::traverse(const Face_handle& pFace,
Marked_face_set& marked_face_set,
const Type_of_alpha alpha) const
{
typedef typename Marked_face_set::Data Data;
std::list<Face_handle> faces;
faces.push_back(pFace);
Face_handle pNeighbor, fh;
while(! faces.empty()){
fh = faces.front();
faces.pop_front();
for (int i=0; i<3; i++)
{
pNeighbor = fh->neighbor(i);
CGAL_triangulation_assertion(pNeighbor != NULL);
if (classify(pNeighbor, alpha) == INTERIOR){
Data& data = marked_face_set[pNeighbor];
if(data == false){
data = true;
faces.push_back(pNeighbor);
}
}
}
}
}
//-------------------------------------------------------------------------
template < class Dt, class EACT >
typename Alpha_shape_2<Dt,EACT>::Alpha_iterator
Alpha_shape_2<Dt,EACT>::find_optimal_alpha(size_type nb_components)
{
// find the minimum alpha that satisfies the properties
// (1) nb_components solid components
// (2) all data points on the boundary or in its interior
Type_of_alpha alpha = find_alpha_solid();
// from this alpha on the alpha_solid satisfies property (2)
Alpha_iterator first = alpha_lower_bound(alpha);
if (number_of_solid_components(alpha) == nb_components)
{
if ((first+1) < alpha_end())
return (first+1);
else
return first;
}
// do binary search on the alpha values
// number_of_solid_components() is a monotone function
// if we start with find_alpha_solid
Alpha_iterator last = alpha_end();
Alpha_iterator middle;
std::ptrdiff_t len = last - first - 1;
std::ptrdiff_t half;
while (len > 0)
{
half = len / 2;
middle = first + half;
#ifdef CGAL_DEBUG_ALPHA_SHAPE_2
std::cout << "first : " << *first << " last : " << *(first+len)
<< " mid : " << *middle
<< " nb comps : " << number_of_solid_components(*middle)
<< std::endl;
#endif // CGAL_DEBUG_ALPHA_SHAPE_2
if (number_of_solid_components(*middle) > nb_components)
{
first = middle + 1;
len = len - half - 1;
}
else
{ // number_of_solid_components(*middle) <= nb_components
len = half;
}
}
if ((first+1) < alpha_end())
return (first+1);
else
return first;
}
//-------------------------------------------------------------------------
template < class Dt, class EACT >
typename Alpha_shape_2<Dt,EACT>::Type_of_alpha
Alpha_shape_2<Dt,EACT>::find_alpha_solid() const
{
// compute the minumum alpha such that all data points
// are either on the boundary or in the interior
// not necessarily connected
// starting point for searching
// takes O(#alpha_shape) time
Type_of_alpha alpha_solid = 0;
if (number_of_vertices()<3) return alpha_solid;
Finite_vertices_iterator vertex_it;
// only finite vertices
for( vertex_it = finite_vertices_begin();
vertex_it != finite_vertices_end();
++vertex_it)
{
Type_of_alpha alpha_min_v = (--_interval_face_map.end())->first;
Face_circulator face_circ = this->incident_faces(vertex_it);
Face_circulator done = face_circ;
do
{
Face_handle f = face_circ;
if (! is_infinite(f))
alpha_min_v = (CGAL::min)(find_interval(f),
alpha_min_v);
}
while (++face_circ != done);
alpha_solid = (CGAL::max)(alpha_min_v, alpha_solid);
}
return alpha_solid;
}
//-------------------------------------------------------------------------
template < class Dt, class EACT >
std::ostream&
Alpha_shape_2<Dt,EACT>::op_ostream(std::ostream& os) const
{
typedef typename Alpha_shape_2<Dt,EACT>::Interval_vertex_map
Interval_vertex_map ;
typename Interval_vertex_map::const_iterator vertex_alpha_it;
const typename Alpha_shape_2<Dt,EACT>::Interval2* pInterval2;
Unique_hash_map< Vertex_handle , size_type > V;
size_type number_of_vertices = 0;
typedef typename Alpha_shape_2<Dt,EACT>::Interval_edge_map
Interval_edge_map;
typename Interval_edge_map::const_iterator edge_alpha_it;
const typename Alpha_shape_2<Dt,EACT>::Interval3* pInterval;
if (get_mode() == Alpha_shape_2<Dt,EACT>::REGULARIZED)
{
typename Alpha_shape_2<Dt,EACT>::Vertex_handle v;
for (vertex_alpha_it = _interval_vertex_map.begin();
vertex_alpha_it != _interval_vertex_map.end() &&
(*vertex_alpha_it).first.first <= get_alpha();
++vertex_alpha_it)
{
pInterval2 = &(*vertex_alpha_it).first;
#ifdef CGAL_DEBUG_ALPHA_SHAPE_2
typename Alpha_shape_2<Dt,EACT>::Type_of_alpha alpha =
get_alpha();
typename Alpha_shape_2<Dt,EACT>::Type_of_alpha alpha_mid =
pInterval2->first;
typename Alpha_shape_2<Dt,EACT>::Type_of_alpha alpha_max =
pInterval2->second;
#endif // CGAL_DEBUG_ALPHA_SHAPE_2
if((pInterval2->second > get_alpha()
|| pInterval2->second == Infinity))
{
// alpha must be larger than the min boundary
// and alpha is smaller than the upper boundary
// which might be infinity
// write the vertex
v = (*vertex_alpha_it).second;
CGAL_triangulation_assertion((classify(v) ==
Alpha_shape_2<Dt,EACT>::REGULAR));
// if we used Edelsbrunner and Muecke's definition
// regular means incident to a higher-dimensional face
// we would write too many vertices
V[v] = number_of_vertices++;
os << v->point() << std::endl;
}
}
// the vertices are oriented counterclockwise
typename Alpha_shape_2<Dt,EACT>::Face_handle f;
int i;
for (edge_alpha_it = _interval_edge_map.begin();
edge_alpha_it != _interval_edge_map.end() &&
(*edge_alpha_it).first.first <= get_alpha();
++edge_alpha_it)
{
pInterval = &(*edge_alpha_it).first;
CGAL_triangulation_assertion(pInterval->second != Infinity);
// since this happens only for convex hull of dimension 1
// thus singular
if(pInterval->second <= get_alpha() &&
(pInterval->third > get_alpha()
|| pInterval->third == Infinity))
{
// alpha must be larger than the mid boundary
// and alpha is smaller than the upper boundary
// which might be infinity
// visualize the boundary
f = (*edge_alpha_it).second.first;
i = (*edge_alpha_it).second.second;
// assure that all vertices are in ccw order
if (classify(f) == Alpha_shape_2<Dt,EACT>::EXTERIOR)
{
// take the reverse face
typename Alpha_shape_2<Dt,EACT>::Face_handle
pNeighbor = f->neighbor(i);
i = pNeighbor->index(f);
f = pNeighbor;
}
CGAL_triangulation_assertion((classify(f) ==
Alpha_shape_2<Dt,EACT>::INTERIOR));
CGAL_triangulation_assertion((classify(f, i) ==
Alpha_shape_2<Dt,EACT>::REGULAR));
os << V[f->vertex(f->ccw(i))] << ' '
<< V[f->vertex(f->cw(i))] << std::endl;
}
}
}
else
{ // get_mode() == GENERAL -----------------------------------------
typename Alpha_shape_2<Dt,EACT>::Vertex_handle v;
// write the regular vertices
for (vertex_alpha_it = _interval_vertex_map.begin();
vertex_alpha_it != _interval_vertex_map.end() &&
(*vertex_alpha_it).first.first <= get_alpha();
++vertex_alpha_it)
{
pInterval2 = &(*vertex_alpha_it).first;
if((pInterval2->second > get_alpha()
|| pInterval2->second == Infinity))
{
// alpha must be larger than the min boundary
// and alpha is smaller than the upper boundary
// which might be infinity
// write the vertex
v = (*vertex_alpha_it).second;
CGAL_triangulation_assertion((classify(v) ==
Alpha_shape_2<Dt,EACT>::REGULAR));
V[v] = number_of_vertices++;
os << v->point() << std::endl;
}
}
// write the singular vertices
for (;
vertex_alpha_it != _interval_vertex_map.end();
++vertex_alpha_it)
{
v = (*vertex_alpha_it).second;
CGAL_triangulation_assertion((classify(v) ==
Alpha_shape_2<Dt,EACT>::SINGULAR));
V[v] = number_of_vertices++;
os << v->point() << std::endl;
}
// the vertices are oriented counterclockwise
typename Alpha_shape_2<Dt,EACT>::Face_handle f;
int i;
for (edge_alpha_it = _interval_edge_map.begin();
edge_alpha_it != _interval_edge_map.end() &&
(*edge_alpha_it).first.first <= get_alpha();
++edge_alpha_it)
{
pInterval = &(*edge_alpha_it).first;
#ifdef CGAL_DEBUG_ALPHA_SHAPE_2
typename Alpha_shape_2<Dt,EACT>::Type_of_alpha alpha =
get_alpha();
typename Alpha_shape_2<Dt,EACT>::Type_of_alpha alpha_min =
pInterval->first;
typename Alpha_shape_2<Dt,EACT>::Type_of_alpha alpha_mid =
pInterval->second;
typename Alpha_shape_2<Dt,EACT>::Type_of_alpha alpha_max =
pInterval->third;
#endif // CGAL_DEBUG_ALPHA_SHAPE_2
if(pInterval->third > get_alpha()
|| pInterval->third == Infinity)
{
// if alpha is smaller than the upper boundary
// which might be infinity
// visualize the boundary
f = (*edge_alpha_it).second.first;
i = (*edge_alpha_it).second.second;
// write the regular edges
if (pInterval->second != Infinity &&
pInterval->second <= get_alpha())
{
CGAL_triangulation_assertion((classify(f, i) ==
Alpha_shape_2<Dt,EACT>::REGULAR));
// assure that all vertices are in ccw order
if (classify(f) == Alpha_shape_2<Dt,EACT>::EXTERIOR)
{
// take the reverse face
typename Alpha_shape_2<Dt,EACT>::Face_handle
pNeighbor = f->neighbor(i);
i = pNeighbor->index(f);
f = pNeighbor;
}
CGAL_triangulation_assertion((classify(f) ==
Alpha_shape_2<Dt,EACT>::INTERIOR));
os << V[f->vertex(f->ccw(i))] << ' '
<< V[f->vertex(f->cw(i))] << std::endl;
}
else
{ // pInterval->second == Infinity ||
// pInterval->second >= get_alpha())
// pInterval->second == Infinity happens only for convex hull
// of dimension 1 thus singular
// write the singular edges
if (pInterval->first != UNDEFINED)
{
CGAL_triangulation_assertion((classify(f, i) ==
Alpha_shape_2<Dt,EACT>::SINGULAR));
os << V[f->vertex(f->ccw(i))] << ' '
<< V[f->vertex(f->cw(i))] << std::endl;
}
}
}
}
}
return os;
}
//-------------------------------------------------------------------
template < class Dt, class EACT >
std::ostream&
operator<<(std::ostream& os, const Alpha_shape_2<Dt>& A)
{
return A.op_ostream(os);
}
//-------------------------------------------------------------------
template < class Dt, class EACT >
std::list<typename Alpha_shape_2<Dt,EACT>::Point>
Alpha_shape_2<Dt,EACT>::Output ()
{
typename Interval_edge_map::const_iterator edge_alpha_it;
const Interval3* pInterval;
std::list<Point> L;
if (get_mode() == REGULARIZED)
{
// it is much faster looking at the sorted intervals
// than looking at all sorted faces
// alpha must be larger than the mid boundary
// and alpha is smaller than the upper boundary
for (edge_alpha_it = _interval_edge_map.begin();
edge_alpha_it != _interval_edge_map.end() &&
(*edge_alpha_it).first.first <= get_alpha();
++edge_alpha_it)
{
pInterval = &(*edge_alpha_it).first;
if (pInterval->second != Infinity)
{
// since this happens only for convex hull of dimension 1
// thus singular
if(pInterval->second <= get_alpha() &&
(pInterval->third > get_alpha()
|| pInterval->third == Infinity))
{
// alpha must be larger than the mid boundary
// and alpha is smaller than the upper boundary
// which might be infinity
// visualize the boundary
CGAL_triangulation_assertion((classify((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second) ==
REGULAR));
// if we used Edelsbrunner and Muecke's definition
// regular means incident to a higher-dimensional face
// thus we would write to many vertices
L.push_back((segment((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second))
.source());
L.push_back((segment((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second))
.target());
}
}
}
}
else
{ // get_mode() == GENERAL
// draw the edges
for (edge_alpha_it = _interval_edge_map.begin();
edge_alpha_it != _interval_edge_map.end() &&
(*edge_alpha_it).first.first <= get_alpha();
++edge_alpha_it)
{
pInterval = &(*edge_alpha_it).first;
if (pInterval->first == UNDEFINED)
{
CGAL_triangulation_assertion(pInterval->second != Infinity);
// since this happens only for convex hull of dimension 1
// thus singular
if(pInterval->second <= get_alpha() &&
(pInterval->third > get_alpha()
|| pInterval->third == Infinity))
{
// alpha must be larger than the mid boundary
// and alpha is smaller than the upper boundary
// which might be infinity
// visualize the boundary
CGAL_triangulation_assertion((classify((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second) ==
REGULAR));
L.push_back((segment((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second))
.source());
L.push_back((segment((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second))
.target());
}
}
else
{
if(pInterval->third > get_alpha()
|| pInterval->third == Infinity)
{
// if alpha is smaller than the upper boundary
// which might be infinity
// visualize the boundary
CGAL_triangulation_assertion(((classify((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second) ==
REGULAR) ||
(classify((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second) ==
SINGULAR)));
L.push_back((segment((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second))
.source());
L.push_back((segment((*edge_alpha_it).second.first,
(*edge_alpha_it).second.second))
.target());
}
}
}
}
return L;
}
template < class Dt, class EACT >
void
Alpha_shape_2<Dt,EACT>::print_edge_map() {
for (typename Interval_edge_map::iterator iemapit= _interval_edge_map.begin();
iemapit != _interval_edge_map.end(); ++iemapit) {
Interval3 interval = (*iemapit).first;
Edge edge = (*iemapit).second;
Point p1 = edge.first->vertex(cw(edge.second))->point();
Point p2 = edge.first->vertex(ccw(edge.second))->point();
std::cout << "[ (" << p1 << ") - (" << p2 << ") ] : "
<< interval.first << " "
<< interval.second << " " << interval.third << std::endl;
}
}
} //namespace CGAL
#endif //CGAL_ALPHA_SHAPE_2_H
|