This file is indexed.

/usr/include/CGAL/Cartesian/Tetrahedron_3.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// Copyright (c) 2000  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Andreas Fabri

#ifndef CGAL_CARTESIAN_TETRAHEDRON_3_H
#define CGAL_CARTESIAN_TETRAHEDRON_3_H

#include <CGAL/array.h>
#include <CGAL/Handle_for.h>
#include <CGAL/enum.h>
#include <vector>
#include <functional>

namespace CGAL {

template <class R_>
class TetrahedronC3
{
  typedef typename R_::FT                   FT;
  typedef typename R_::Point_3              Point_3;
  typedef typename R_::Plane_3              Plane_3;
  typedef typename R_::Tetrahedron_3        Tetrahedron_3;

  typedef cpp11::array<Point_3, 4>          Rep;
  typedef typename R_::template Handle<Rep>::type  Base;

  Base base;

public:
  typedef R_                                     R;

  TetrahedronC3() {}

  TetrahedronC3(const Point_3 &p, const Point_3 &q, const Point_3 &r,
                const Point_3 &s)
    : base(CGAL::make_array(p, q, r, s)) {}

  const Point_3 &    vertex(int i) const;
  const Point_3 &    operator[](int i) const;

  typename R::Boolean         operator==(const TetrahedronC3 &t) const;
  typename R::Boolean         operator!=(const TetrahedronC3 &t) const;

  typename R::Orientation    orientation() const;
  typename R::Oriented_side  oriented_side(const Point_3 &p) const;
  typename R::Bounded_side   bounded_side(const Point_3 &p) const;

  typename R::Boolean         has_on_boundary(const Point_3 &p) const;
  typename R::Boolean         has_on_positive_side(const Point_3 &p) const;
  typename R::Boolean         has_on_negative_side(const Point_3 &p) const;
  typename R::Boolean         has_on_bounded_side(const Point_3 &p) const;
  typename R::Boolean         has_on_unbounded_side(const Point_3 &p) const;

  typename R::Boolean         is_degenerate() const;
};

template < class R >
typename R::Boolean
TetrahedronC3<R>::
operator==(const TetrahedronC3<R> &t) const
{
  if (CGAL::identical(base, t.base))
      return true;
  if (orientation() != t.orientation())
      return false;

  std::vector< Point_3 > V1;
  std::vector< Point_3 > V2;
  typename std::vector< Point_3 >::iterator uniq_end1;
  typename std::vector< Point_3 >::iterator uniq_end2;
  int k;
  for ( k=0; k < 4; k++) V1.push_back( vertex(k));
  for ( k=0; k < 4; k++) V2.push_back( t.vertex(k));
  typename R::Less_xyz_3 Less_object = R().less_xyz_3_object();
  std::sort(V1.begin(), V1.end(), Less_object);
  std::sort(V2.begin(), V2.end(), Less_object);
  uniq_end1 = std::unique( V1.begin(), V1.end());
  uniq_end2 = std::unique( V2.begin(), V2.end());
  V1.erase( uniq_end1, V1.end());
  V2.erase( uniq_end2, V2.end());
  return V1 == V2;
}

template < class R >
inline
typename R::Boolean
TetrahedronC3<R>::
operator!=(const TetrahedronC3<R> &t) const
{
  return !(*this == t);
}

template < class R >
const typename TetrahedronC3<R>::Point_3 &
TetrahedronC3<R>::
vertex(int i) const
{
  if (i<0) i=(i%4)+4;
  else if (i>3) i=i%4;
  switch (i)
    {
    case 0: return get(base)[0];
    case 1: return get(base)[1];
    case 2: return get(base)[2];
    default: return get(base)[3];
    }
}

template < class R >
inline
const typename TetrahedronC3<R>::Point_3 &
TetrahedronC3<R>::
operator[](int i) const
{
  return vertex(i);
}

template < class R >
typename R::Orientation
TetrahedronC3<R>::
orientation() const
{
  return R().orientation_3_object()(vertex(0), vertex(1),
                                    vertex(2), vertex(3));
}

template < class R >
typename R::Oriented_side
TetrahedronC3<R>::
oriented_side(const typename TetrahedronC3<R>::Point_3 &p) const
{
  typename R::Orientation o = orientation();
  if (o != ZERO)
    return enum_cast<Oriented_side>(bounded_side(p)) * o;

  CGAL_kernel_assertion (!is_degenerate());
  return ON_ORIENTED_BOUNDARY;
}

template < class R >
typename R::Bounded_side
TetrahedronC3<R>::
bounded_side(const typename TetrahedronC3<R>::Point_3 &p) const
{
  return R().bounded_side_3_object()
               (static_cast<const typename R::Tetrahedron_3&>(*this), p);
}

template < class R >
inline
typename R::Boolean
TetrahedronC3<R>::has_on_boundary
  (const typename TetrahedronC3<R>::Point_3 &p) const
{
  return oriented_side(p) == ON_ORIENTED_BOUNDARY;
}

template < class R >
inline
typename R::Boolean
TetrahedronC3<R>::has_on_positive_side
  (const typename TetrahedronC3<R>::Point_3 &p) const
{
  return oriented_side(p) == ON_POSITIVE_SIDE;
}

template < class R >
inline
typename R::Boolean
TetrahedronC3<R>::has_on_negative_side
  (const typename TetrahedronC3<R>::Point_3 &p) const
{
  return oriented_side(p) == ON_NEGATIVE_SIDE;
}

template < class R >
inline
typename R::Boolean
TetrahedronC3<R>::has_on_bounded_side
  (const typename TetrahedronC3<R>::Point_3 &p) const
{
  return bounded_side(p) == ON_BOUNDED_SIDE;
}

template < class R >
inline
typename R::Boolean
TetrahedronC3<R>::has_on_unbounded_side
  (const typename TetrahedronC3<R>::Point_3 &p) const
{
  return bounded_side(p) == ON_UNBOUNDED_SIDE;
}

template < class R >
inline
typename R::Boolean
TetrahedronC3<R>::is_degenerate() const
{
  return orientation() == COPLANAR;
}

} //namespace CGAL

#endif // CGAL_CARTESIAN_TETRAHEDRON_3_H