/usr/include/CGAL/Counted_number.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 | // Copyright (c) 2001,2007
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Geert-Jan Giezeman,
// Michael Hemmer <hemmer@mpi-inf.mpg.de>
#ifndef CGAL_COUNTED_NUMBER_H
#define CGAL_COUNTED_NUMBER_H
#include <CGAL/number_type_basic.h>
#include <boost/iterator/transform_iterator.hpp> // for Root_of_selector
#include <iostream>
namespace CGAL {
template <class NT>
class Counted_number {
static unsigned long s_neg_count, s_add_count, s_sub_count,
s_mul_count, s_div_count,
s_eq_count, s_comp_count,
s_simplify_count,
s_unit_part_count,
s_is_zero_count,
s_is_one_count,
s_square_count,
s_integral_division_count,
s_is_square_count,
s_sqrt_count,
s_kth_root_count,
s_root_of_count,
s_gcd_count,
s_div_mod_count,
s_mod_count;
NT m_rep;
public:
typedef NT Rep_type;
static void reset()
{ s_neg_count=0; s_add_count=0; s_sub_count=0;
s_mul_count=0; s_div_count=0;
s_eq_count=0; s_comp_count = 0;
s_simplify_count = 0; s_unit_part_count = 0; s_is_zero_count = 0;
s_is_one_count = 0; s_square_count = 0;
s_integral_division_count = 0; s_is_square_count = 0;
s_sqrt_count = 0; s_kth_root_count = 0; s_root_of_count = 0;
s_gcd_count = 0; s_div_mod_count = 0; s_mod_count = 0;
}
static void inc_neg_count() {++s_neg_count;}
static void inc_add_count() {++s_add_count;}
static void inc_sub_count() {++s_sub_count;}
static void inc_mul_count() {++s_mul_count;}
static void inc_div_count() {++s_div_count;}
static void inc_eq_count() {++s_eq_count;}
static void inc_comp_count() {++s_comp_count;}
static void inc_simplify_count() {++s_simplify_count;}
static void inc_unit_part_count() {++s_unit_part_count;}
static void inc_is_zero_count() {++s_is_zero_count;}
static void inc_is_one_count() {++s_is_one_count;}
static void inc_square_count() {++s_square_count;}
static void inc_integral_division_count() {++s_integral_division_count;}
static void inc_is_square_count() {++s_is_square_count;}
static void inc_sqrt_count() {++s_sqrt_count;}
static void inc_kth_root_count() {++s_kth_root_count;}
static void inc_root_of_count() {++s_root_of_count;}
static void inc_gcd_count() {++s_gcd_count;}
static void inc_div_mod_count() {++s_div_mod_count;}
static void inc_mod_count() {++s_mod_count;}
static unsigned long neg_count() {return s_neg_count;}
static unsigned long add_count() {return s_add_count;}
static unsigned long sub_count() {return s_sub_count;}
static unsigned long mul_count() {return s_mul_count;}
static unsigned long div_count() {return s_div_count;}
static unsigned long eq_count() {return s_eq_count;}
static unsigned long comp_count() {return s_comp_count;}
static unsigned long simplify_count() {return s_simplify_count;}
static unsigned long unit_part_count() {return s_unit_part_count;}
static unsigned long is_zero_count() {return s_is_zero_count;}
static unsigned long is_one_count() {return s_is_one_count;}
static unsigned long square_count() {return s_square_count;}
static unsigned long integral_division_count() {
return s_integral_division_count;
}
static unsigned long is_square_count() {return s_is_square_count;}
static unsigned long sqrt_count() {return s_sqrt_count;}
static unsigned long kth_root_count() {return s_kth_root_count;}
static unsigned long root_of_count() {return s_root_of_count;}
static unsigned long gcd_count() {return s_gcd_count;}
static unsigned long div_mod_count() {return s_div_mod_count;}
static unsigned long mod_count() {return s_mod_count;}
static unsigned long count()
{ return s_neg_count + s_add_count + s_sub_count +
s_mul_count + s_div_count +
s_eq_count + s_comp_count +
s_simplify_count + s_unit_part_count + s_is_zero_count +
s_is_one_count + s_square_count +
s_integral_division_count + s_is_square_count +
s_sqrt_count + s_kth_root_count + s_root_of_count +
s_gcd_count + s_div_mod_count + s_mod_count;
}
static void report(std::ostream &os);
NT rep() const {return m_rep;}
Counted_number() {}
//explicit Counted_number(int n) :m_rep(n){}
explicit Counted_number(NT n) :m_rep(n){}
Counted_number operator-() const
{inc_neg_count();return Counted_number(-m_rep);}
Counted_number const & operator+=(Counted_number const &n)
{
inc_add_count();
m_rep += n.m_rep;
return *this;}
Counted_number const & operator-=(Counted_number const &n)
{inc_sub_count(); m_rep -= n.m_rep; return *this;}
Counted_number const & operator*=(Counted_number const &n)
{inc_mul_count(); m_rep *= n.m_rep; return *this;}
Counted_number const & operator/=(Counted_number const &n)
{inc_div_count(); m_rep /= n.m_rep; return *this;}
// Counted operations
void simplify() {
inc_simplify_count();
CGAL_NTS simplify( m_rep );
}
Counted_number unit_part() const {
inc_unit_part_count();
return Counted_number( CGAL_NTS unit_part( rep() ) );
}
bool is_zero() const {
inc_is_zero_count();
return CGAL_NTS is_zero( rep() );
}
bool is_one() const {
inc_is_one_count();
return CGAL_NTS is_one( rep() );
}
Counted_number square() const {
inc_square_count();
return Counted_number( CGAL_NTS square( rep() ) );
}
Counted_number integral_division( const Counted_number& n ) const {
inc_integral_division_count();
return Counted_number( CGAL_NTS integral_division( rep(), n.rep() ) );
}
bool is_square( Counted_number& result ) const {
inc_is_square_count();
NT result_as_nt;
bool is_integral = CGAL_NTS is_square( rep(), result_as_nt );
result = Counted_number( result_as_nt );
return is_integral;
}
Counted_number sqrt() const {
inc_sqrt_count();
return Counted_number( CGAL_NTS sqrt( rep() ) );
}
Counted_number kth_root( int k ) const {
inc_kth_root_count();
return Counted_number( CGAL_NTS kth_root( k, rep() ) );
}
Counted_number gcd( const Counted_number& n ) const {
inc_gcd_count();
return Counted_number( CGAL_NTS gcd( rep(), n.rep() ) );
}
Counted_number div( const Counted_number& n ) const {
inc_div_count();
return Counted_number( CGAL_NTS div( rep(), n.rep() ) );
}
Counted_number mod( const Counted_number& n ) const {
inc_mod_count();
return Counted_number( CGAL_NTS mod( rep(), n.rep() ) );
}
void div_mod( const Counted_number& n, Counted_number& q,
Counted_number& r ) const {
inc_div_mod_count();
NT q_as_nt, r_as_nt;
CGAL_NTS div_mod( rep(), n.rep(), q_as_nt, r_as_nt );
q = Counted_number( q_as_nt );
r = Counted_number( r_as_nt );
}
// Other operations
inline double to_double() const {
return CGAL_NTS to_double( rep() );
}
inline std::pair<double, double> to_interval() const {
return CGAL_NTS to_interval( rep() );
}
};
template <class NT>
unsigned long Counted_number<NT>::s_neg_count=0;
template <class NT>
unsigned long Counted_number<NT>::s_add_count=0;
template <class NT>
unsigned long Counted_number<NT>::s_sub_count=0;
template <class NT>
unsigned long Counted_number<NT>::s_mul_count=0;
template <class NT>
unsigned long Counted_number<NT>::s_div_count=0;
template <class NT>
unsigned long Counted_number<NT>::s_eq_count=0;
template <class NT>
unsigned long Counted_number<NT>::s_comp_count=0;
template< class NT >
unsigned long Counted_number<NT>::s_simplify_count = 0;
template< class NT >
unsigned long Counted_number<NT>::s_unit_part_count = 0;
template< class NT >
unsigned long Counted_number<NT>::s_is_zero_count = 0;
template< class NT >
unsigned long Counted_number<NT>::s_is_one_count = 0;
template< class NT >
unsigned long Counted_number<NT>::s_square_count = 0;
template< class NT >
unsigned long Counted_number<NT>::s_integral_division_count = 0;
template< class NT >
unsigned long Counted_number<NT>::s_is_square_count = 0;
template< class NT >
unsigned long Counted_number<NT>::s_sqrt_count = 0;
template< class NT >
unsigned long Counted_number<NT>::s_kth_root_count = 0;
template< class NT >
unsigned long Counted_number<NT>::s_root_of_count = 0;
template< class NT >
unsigned long Counted_number<NT>::s_gcd_count = 0;
template< class NT >
unsigned long Counted_number<NT>::s_div_mod_count = 0;
template< class NT >
unsigned long Counted_number<NT>::s_mod_count = 0;
//unary +
template <class NT> Counted_number<NT>
operator + (const Counted_number<NT>& n1){
return n1;
}
template <class NT>
Counted_number<NT>
operator+(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
Counted_number<NT>::inc_add_count();
return Counted_number<NT>(n1.rep() + n2.rep());
}
template <class NT>
Counted_number<NT>
operator-(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
Counted_number<NT>::inc_sub_count();
return Counted_number<NT>(n1.rep() - n2.rep());
}
template <class NT>
Counted_number<NT>
operator*(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
Counted_number<NT>::inc_mul_count();
return Counted_number<NT>(n1.rep() * n2.rep());
}
template <class NT>
Counted_number<NT>
operator/(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
Counted_number<NT>::inc_div_count();
return Counted_number<NT>(n1.rep() / n2.rep());
}
template< class NT >
Counted_number<NT>
operator%( const Counted_number<NT>& x, const Counted_number<NT>& y ) {
Counted_number<NT>::inc_mod_count();
return Counted_number<NT>( x.rep() % y.rep() );
}
template <class NT>
bool
operator==(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
Counted_number<NT>::inc_eq_count();
return (n1.rep() == n2.rep());
}
template <class NT>
bool
operator!=(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
Counted_number<NT>::inc_eq_count();
return (n1.rep() != n2.rep());
}
template <class NT>
bool
operator<(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
Counted_number<NT>::inc_comp_count();
return (n1.rep() < n2.rep());
}
template <class NT>
bool
operator>(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
Counted_number<NT>::inc_comp_count();
return (n1.rep() > n2.rep());
}
template <class NT>
bool
operator<=(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
Counted_number<NT>::inc_comp_count();
return (n1.rep() <= n2.rep());
}
template <class NT>
bool
operator>=(Counted_number<NT> const &n1, Counted_number<NT> const &n2)
{
Counted_number<NT>::inc_comp_count();
return (n1.rep() >= n2.rep());
}
template <class NT>
class Is_valid< Counted_number<NT> >
: public std::unary_function< Counted_number<NT>, bool > {
public:
bool operator()( const Counted_number<NT>& x ) {
return is_valid( x.rep() );
}
};
template <class NT>
void Counted_number<NT>::report(std::ostream &os)
{
os << count() << " operations\n";
if (neg_count() > 0)
os << " " << neg_count() << " negations\n";
if (add_count() > 0)
os << " " << add_count() << " additions\n";
if (sub_count() > 0)
os << " " << sub_count() << " subtractions\n";
if (mul_count() > 0)
os << " " << mul_count() << " multiplications\n";
if (div_count() > 0)
os << " " << div_count() << " divisions\n";
if (eq_count() > 0)
os << " " << eq_count() << " equality tests\n";
if (comp_count() > 0)
os << " " << comp_count() << " comparisons\n";
if (simplify_count() > 0)
os << " " << simplify_count() << " simplify-calls\n";
if (unit_part_count() > 0)
os << " " << unit_part_count() << " unit_part-calls\n";
if (is_zero_count() > 0)
os << " " << is_zero_count() << " is_zero-calls\n";
if (is_one_count() > 0)
os << " " << is_one_count() << " is_one-calls\n";
if (square_count() > 0)
os << " " << square_count() << " square-calls\n";
if (integral_division_count() > 0)
os << " " << integral_division_count() << " integral_division-calls\n";
if (is_square_count() > 0)
os << " " << is_square_count() << " is_square-calls\n";
if (kth_root_count() > 0)
os << " " << kth_root_count() << " kth_root-calls\n";
if (root_of_count() > 0)
os << " " << root_of_count() << " root_of-calls\n";
if (gcd_count() > 0)
os << " " << gcd_count() << " gcd-calls\n";
if (div_mod_count() > 0)
os << " " << div_mod_count() << " div_mod-calls\n";
if (mod_count() > 0)
os << " " << mod_count() << " mod-calls\n";
}
template <class NT>
std::ostream& operator<<(std::ostream &os, Counted_number<NT> const &n)
{
return os << ::CGAL::oformat( n.rep() )<< std::endl;
}
template <class NT>
std::istream& operator>>(std::istream &is, Counted_number<NT> &n)
{
NT num;
is >> ::CGAL::iformat(num);
if (is) n = Counted_number<NT>(num);
return is;
}
namespace INTERN_COUNTED_NUMBER{
template< class NT, class Functor >
struct Simplify_selector {
struct Simplify : public std::unary_function<NT&, void> {
void operator()( NT& x ) const {
x.simplify();
}
};
};
template< class NT >
struct Simplify_selector< NT, Null_functor > {
typedef Null_functor Simplify;
};
template< class NT, class Functor >
struct Unit_part_selector {
struct Unit_part : public std::unary_function<NT, NT > {
NT operator()( const NT& x ) const {
return x.unit_part();
}
};
};
template< class NT >
struct Unit_part_selector< NT, Null_functor > {
typedef Null_functor Unit_part;
};
template< class NT, class Functor >
struct Is_zero_selector {
struct Is_zero : public std::unary_function<NT, bool > {
bool operator()( const NT& x ) const {
return x.is_zero();
}
};
};
template< class NT >
struct Is_zero_selector< NT, Null_functor > {
typedef Null_functor Is_zero;
};
template< class NT, class Functor >
struct Is_one_selector {
struct Is_one : public std::unary_function<NT, bool > {
bool operator()( const NT& x ) const {
return x.is_one();
}
};
};
template< class NT >
struct Is_one_selector< NT, Null_functor > {
typedef Null_functor Is_one;
};
template< class NT, class Functor >
struct Square_selector {
struct Square : public std::unary_function<NT, NT > {
NT operator()( const NT& x ) const {
return x.square();
}
};
};
template< class NT >
struct Square_selector< NT, Null_functor > {
typedef Null_functor Square;
};
template< class NT, class Functor >
struct Integral_division_selector {
struct Integral_division : public std::binary_function<NT, NT, NT > {
NT operator()( const NT& x, const NT& y ) const {
return x.integral_division( y );
}
};
};
template< class NT >
struct Integral_division_selector< NT, Null_functor > {
typedef Null_functor Integral_division;
};
template< class NT, class Functor >
struct Is_square_selector {
struct Is_square : public std::binary_function<NT, NT&, bool > {
bool operator()( const NT& x, NT& y ) const {
return x.is_square( y );
}
bool operator()( const NT& x) const {
NT y;
return x.is_square( y );
}
};
};
template< class NT >
struct Is_square_selector< NT, Null_functor > {
typedef Null_functor Is_square;
};
template <class NT, class AlgebraicStructureTag>
struct Sqrt_selector{
struct Sqrt : public std::unary_function<NT,NT> {
NT operator ()(const NT& x) const {
return x.sqrt();
}
};
};
template <class NT>
struct Sqrt_selector<NT,Null_functor> {
typedef Null_functor Sqrt;
};
template< class NT, class Functor >
struct Kth_root_selector {
struct Kth_root : public std::binary_function<int, NT, NT > {
NT operator()( int k, const NT& x ) const {
return x.kth_root( k );
}
};
};
template< class NT >
struct Kth_root_selector< NT, Null_functor > {
typedef Null_functor Kth_root;
};
template< class NT, class Functor >
struct Root_of_selector {
private:
typedef typename NT::Rep_type Rep_type;
struct Cast{
typedef Rep_type result_type;
result_type operator()(const NT& counted_number) const {
return counted_number.rep();
}
};
public:
struct Root_of {
// typedef typename Functor::Boundary Boundary;
typedef NT result_type;
template< class Input_iterator >
NT operator()( int k, Input_iterator begin, Input_iterator end ) const {
NT::inc_root_of_count();
Cast cast;
return NT( Functor()( k,
::boost::make_transform_iterator( begin, cast ),
::boost::make_transform_iterator( end, cast ) ) );
}
// TODO: Why are the arguments not const-ref?
/* template< class Input_iterator >
NT operator()( Boundary lower, Boundary upper,
Input_iterator begin, Input_iterator end ) const {
NT::inc_root_of_count();
Cast cast;
return NT( Functor()( lower, upper,
::boost::make_transform_iterator( begin, cast ),
::boost::make_transform_iterator( end, cast ) ) );
}*/
};
};
template< class NT >
struct Root_of_selector< NT, Null_functor > {
typedef Null_functor Root_of;
};
template< class NT, class Functor >
struct Gcd_selector {
struct Gcd : public std::binary_function<NT, NT, NT > {
NT operator()( const NT& x, const NT& y ) const {
return x.gcd( y );
}
};
};
template< class NT >
struct Gcd_selector< NT, Null_functor > {
typedef Null_functor Gcd;
};
template< class NT, class Functor >
struct Div_selector {
struct Div : public std::binary_function<NT, NT, NT > {
NT operator()( const NT& x, const NT& y ) const {
return x.div( y );
}
};
};
template< class NT >
struct Div_selector< NT, Null_functor > {
typedef Null_functor Div;
};
template< class NT, class Functor >
struct Mod_selector {
struct Mod : public std::binary_function<NT, NT, NT > {
NT operator()( const NT& x, const NT& y ) const {
return x.mod( y );
}
};
};
template< class NT >
struct Mod_selector< NT, Null_functor > {
typedef Null_functor Mod;
};
template< class NT, class Functor >
struct Div_mod_selector {
struct Div_mod {
typedef void result_type;
typedef NT first_argument_type;
typedef NT second_argument_type;
typedef NT& third_argument_type;
typedef NT& fourth_argument_type;
void operator()( const NT& x, const NT& y, NT& q, NT& r ) const {
x.div_mod( y, q, r );
}
};
};
template< class NT >
struct Div_mod_selector< NT, Null_functor >{
typedef Null_functor Div_mod;
};
} // end namespace INTERN_COUNTED_NUMBER
template <class NT>
class Algebraic_structure_traits<Counted_number<NT> >
:public Algebraic_structure_traits_base
<Counted_number<NT>,
typename Algebraic_structure_traits<NT>::Algebraic_category >
{
private:
typedef Algebraic_structure_traits<NT> AST_NT;
typedef typename AST_NT::Algebraic_category NT_as_tag;
public:
typedef typename Algebraic_structure_traits<NT>::Is_exact Is_exact;
typedef typename AST_NT::Is_numerical_sensitive Is_numerical_sensitive;
typedef typename INTERN_COUNTED_NUMBER::Simplify_selector
<Counted_number<NT>, typename AST_NT::Simplify > ::Simplify Simplify;
typedef typename INTERN_COUNTED_NUMBER::Unit_part_selector
<Counted_number<NT>, typename AST_NT::Unit_part > ::Unit_part Unit_part;
typedef typename INTERN_COUNTED_NUMBER::Is_zero_selector
<Counted_number<NT>, typename AST_NT::Is_zero > ::Is_zero Is_zero;
typedef typename INTERN_COUNTED_NUMBER::Is_one_selector
<Counted_number<NT>, typename AST_NT::Is_one > ::Is_one Is_one;
typedef typename INTERN_COUNTED_NUMBER::Square_selector
<Counted_number<NT>, typename AST_NT::Square > ::Square Square;
typedef typename INTERN_COUNTED_NUMBER::Integral_division_selector
<Counted_number<NT>, typename AST_NT::Integral_division> ::Integral_division Integral_division;
typedef typename INTERN_COUNTED_NUMBER::Is_square_selector
<Counted_number<NT>, typename AST_NT::Is_square > ::Is_square Is_square;
typedef typename INTERN_COUNTED_NUMBER::Sqrt_selector
<Counted_number<NT>, typename AST_NT::Sqrt> ::Sqrt Sqrt;
typedef typename INTERN_COUNTED_NUMBER::Kth_root_selector
<Counted_number<NT>, typename AST_NT::Kth_root > ::Kth_root Kth_root;
typedef typename INTERN_COUNTED_NUMBER::Root_of_selector
<Counted_number<NT>, typename AST_NT::Root_of > ::Root_of Root_of;
typedef typename INTERN_COUNTED_NUMBER::Gcd_selector
<Counted_number<NT>, typename AST_NT::Gcd > ::Gcd Gcd;
typedef typename INTERN_COUNTED_NUMBER::Div_selector
<Counted_number<NT>, typename AST_NT::Div > ::Div Div;
typedef typename INTERN_COUNTED_NUMBER::Mod_selector
<Counted_number<NT>, typename AST_NT::Mod > ::Mod Mod;
typedef typename INTERN_COUNTED_NUMBER::Div_mod_selector
<Counted_number<NT>, typename AST_NT::Div_mod > ::Div_mod Div_mod;
};
template <class NT>
class Real_embeddable_traits<Counted_number<NT> >
: public INTERN_RET::Real_embeddable_traits_base <Counted_number<NT> ,
typename Real_embeddable_traits<NT>::Is_real_embeddable >
{
typedef Real_embeddable_traits<NT> RET_NT;
public:
typedef typename INTERN_COUNTED_NUMBER::Is_zero_selector
<Counted_number<NT>, typename RET_NT::Is_zero > ::Is_zero Is_zero;
class Is_finite
: public std::unary_function< Counted_number<NT>, bool > {
public:
bool operator()( const Counted_number<NT>& x ) const {
return CGAL_NTS is_finite( x.rep() );
}
};
struct To_double : public std::unary_function< Counted_number<NT>, double > {
double operator()(const Counted_number<NT>& x) const {
return x.to_double();
}
};
struct To_interval: public std::unary_function< Counted_number<NT>, std::pair<double,double> > {
std::pair<double,double>
operator()(const Counted_number<NT>& x) const {
return x.to_interval();
}
};
};
template<typename NT> inline
Counted_number<NT> min BOOST_PREVENT_MACRO_SUBSTITUTION(
const Counted_number<NT> & x,
const Counted_number<NT> & y){
return CGAL::Min<Counted_number<NT> > ()(x,y);
}
template<typename NT> inline
Counted_number<NT> max BOOST_PREVENT_MACRO_SUBSTITUTION(
const Counted_number<NT> & x,
const Counted_number<NT> & y){
return CGAL::Max<Counted_number<NT> > ()(x,y);
}
} //namespace CGAL
#endif
|