This file is indexed.

/usr/include/CGAL/Delaunay_triangulation_3.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
// Copyright (c) 1999-2004   INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Monique Teillaud <Monique.Teillaud@sophia.inria.fr>
//                 Sylvain Pion
//                 Andreas Fabri <Andreas.Fabri@sophia.inria.fr>

#ifndef CGAL_DELAUNAY_TRIANGULATION_3_H
#define CGAL_DELAUNAY_TRIANGULATION_3_H

#include <CGAL/basic.h>

#include <utility>
#include <vector>

#include <CGAL/Triangulation_3.h>
#include <CGAL/iterator.h>
#include <CGAL/Location_policy.h>

#ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
#include <CGAL/Spatial_sort_traits_adapter_3.h>
#include <CGAL/internal/info_check.h>

#include <boost/tuple/tuple.hpp>
#include <boost/iterator/zip_iterator.hpp>
#include <boost/mpl/and.hpp>
#endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO

#ifdef CGAL_DELAUNAY_3_OLD_REMOVE
#  error "The old remove() code has been removed.  Please report any issue you may have with the current one."
#endif

namespace CGAL {

// Here is the declaration of a class template with three arguments, one
// having a default value. There is no definition of that class template.
template < class Gt,
           class Tds_ = Default,
           class Location_policy = Default >
class Delaunay_triangulation_3;

// There is a specialization Delaunay_triangulation_3<Gt, Tds, Fast_location>
// defined in <CGAL/internal/Delaunay_triangulation_hierarchy_3.h>.

// Here is the specialization Delaunay_triangulation_3<Gt, Tds>, with two
// arguments, that is if Location_policy being the default value 'Default'.
template < class Gt, class Tds_ >
class Delaunay_triangulation_3<Gt, Tds_>
  : public Triangulation_3<Gt, Tds_>
{
  typedef Delaunay_triangulation_3<Gt, Tds_> Self;
  typedef Triangulation_3<Gt,Tds_>           Tr_Base;

public:

  typedef typename Tr_Base::Triangulation_data_structure
                                     Triangulation_data_structure;
  typedef Gt                         Geom_traits;
  typedef Compact_location           Location_policy;

  typedef typename Gt::Point_3       Point;
  typedef typename Gt::Segment_3     Segment;
  typedef typename Gt::Triangle_3    Triangle;
  typedef typename Gt::Tetrahedron_3 Tetrahedron;

  // types for dual:
  typedef typename Gt::Line_3        Line;
  typedef typename Gt::Ray_3         Ray;
  //typedef typename Gt::Plane_3       Plane;
  typedef typename Gt::Object_3      Object;

  typedef typename Tr_Base::Cell_handle   Cell_handle;
  typedef typename Tr_Base::Vertex_handle Vertex_handle;

  typedef typename Tr_Base::Cell   Cell;
  typedef typename Tr_Base::Vertex Vertex;
  typedef typename Tr_Base::Facet  Facet;
  typedef typename Tr_Base::Edge   Edge;

  typedef typename Tr_Base::Cell_circulator  Cell_circulator;
  typedef typename Tr_Base::Facet_circulator Facet_circulator;
  typedef typename Tr_Base::Cell_iterator    Cell_iterator;
  typedef typename Tr_Base::Facet_iterator   Facet_iterator;
  typedef typename Tr_Base::Edge_iterator    Edge_iterator;
  typedef typename Tr_Base::Vertex_iterator  Vertex_iterator;

  typedef typename Tr_Base::Finite_vertices_iterator Finite_vertices_iterator;
  typedef typename Tr_Base::Finite_cells_iterator    Finite_cells_iterator;
  typedef typename Tr_Base::Finite_facets_iterator   Finite_facets_iterator;
  typedef typename Tr_Base::Finite_edges_iterator    Finite_edges_iterator;

  typedef typename Tr_Base::All_cells_iterator       All_cells_iterator;

  typedef typename Tr_Base::size_type size_type;
  typedef typename Tr_Base::Locate_type Locate_type;


#ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2
  using Tr_Base::cw;
  using Tr_Base::ccw;
  using Tr_Base::geom_traits;
  using Tr_Base::number_of_vertices;
  using Tr_Base::dimension;
  using Tr_Base::finite_facets_begin;
  using Tr_Base::finite_facets_end;
  using Tr_Base::finite_vertices_begin;
  using Tr_Base::finite_vertices_end;
  using Tr_Base::finite_cells_begin;
  using Tr_Base::finite_cells_end;
  using Tr_Base::finite_edges_begin;
  using Tr_Base::finite_edges_end;
  using Tr_Base::tds;
  using Tr_Base::infinite_vertex;
  using Tr_Base::next_around_edge;
  using Tr_Base::vertex_triple_index;
  using Tr_Base::mirror_vertex;
  using Tr_Base::coplanar;
  using Tr_Base::coplanar_orientation;
  using Tr_Base::orientation;
  using Tr_Base::adjacent_vertices;
  using Tr_Base::construct_segment;
  using Tr_Base::incident_facets;
  using Tr_Base::insert_in_conflict;
  using Tr_Base::is_infinite;
  using Tr_Base::is_valid_finite;
  using Tr_Base::locate;
  using Tr_Base::side_of_edge;
  using Tr_Base::side_of_segment;
  using Tr_Base::find_conflicts;
#endif

protected:

  Oriented_side
  side_of_oriented_sphere(const Point &p0, const Point &p1, const Point &p2,
	 const Point &p3, const Point &t, bool perturb = false) const;

  Bounded_side
  coplanar_side_of_bounded_circle(const Point &p, const Point &q,
		  const Point &r, const Point &s, bool perturb = false) const;

  // for dual:
  Point
  construct_circumcenter(const Point &p, const Point &q, const Point &r) const
  {
      return geom_traits().construct_circumcenter_3_object()(p, q, r);
  }

  Line
  construct_equidistant_line(const Point &p1, const Point &p2,
                             const Point &p3) const
  {
      return geom_traits().construct_equidistant_line_3_object()(p1, p2, p3);
  }

  Ray
  construct_ray(const Point &p, const Line &l) const
  {
      return geom_traits().construct_ray_3_object()(p, l);
  }

  Object
  construct_object(const Point &p) const
  {
      return geom_traits().construct_object_3_object()(p);
  }

  Object
  construct_object(const Segment &s) const
  {
      return geom_traits().construct_object_3_object()(s);
  }

  Object
  construct_object(const Ray &r) const
  {
      return geom_traits().construct_object_3_object()(r);
  }

  bool
  less_distance(const Point &p, const Point &q, const Point &r) const
  {
      return geom_traits().compare_distance_3_object()(p, q, r) == SMALLER;
  }

public:

  Delaunay_triangulation_3(const Gt& gt = Gt())
    : Tr_Base(gt)
  {}

  // copy constructor duplicates vertices and cells
  Delaunay_triangulation_3(const Delaunay_triangulation_3 & tr)
    : Tr_Base(tr)
  {
    CGAL_triangulation_postcondition( is_valid() );
  }

  template < typename InputIterator >
  Delaunay_triangulation_3(InputIterator first, InputIterator last,
                           const Gt& gt = Gt())
    : Tr_Base(gt)
  {
      insert(first, last);
  }

#ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
  template < class InputIterator >
  std::ptrdiff_t
  insert( InputIterator first, InputIterator last,
          typename boost::enable_if<
            boost::is_convertible<
                typename std::iterator_traits<InputIterator>::value_type,
                Point
            >
          >::type* = NULL
  )
#else
  template < class InputIterator >
  std::ptrdiff_t
  insert( InputIterator first, InputIterator last)
#endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
  {
    size_type n = number_of_vertices();
    std::vector<Point> points (first, last);
    spatial_sort (points.begin(), points.end(), geom_traits());

    Vertex_handle hint;
    for (typename std::vector<Point>::const_iterator p = points.begin(), end = points.end();
            p != end; ++p)
        hint = insert(*p, hint);

    return number_of_vertices() - n;
  }
  
  
#ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
private:  
  //top stands for tuple-or-pair
  template <class Info>
  const Point& top_get_first(const std::pair<Point,Info>& pair) const { return pair.first; }
  template <class Info>
  const Info& top_get_second(const std::pair<Point,Info>& pair) const { return pair.second; }
  template <class Info>
  const Point& top_get_first(const boost::tuple<Point,Info>& tuple) const { return boost::get<0>(tuple); }
  template <class Info>
  const Info& top_get_second(const boost::tuple<Point,Info>& tuple) const { return boost::get<1>(tuple); }

  template <class Tuple_or_pair,class InputIterator>
  std::ptrdiff_t insert_with_info(InputIterator first,InputIterator last)
  {
    size_type n = number_of_vertices();
    std::vector<std::ptrdiff_t> indices;
    std::vector<Point> points;
    std::vector<typename Triangulation_data_structure::Vertex::Info> infos;
    std::ptrdiff_t index=0;
    for (InputIterator it=first;it!=last;++it){
      Tuple_or_pair value=*it;
      points.push_back( top_get_first(value)  );
      infos.push_back ( top_get_second(value) );
      indices.push_back(index++);
    }

    typedef Spatial_sort_traits_adapter_3<Geom_traits,Point*> Search_traits;
    
    spatial_sort(indices.begin(),indices.end(),Search_traits(&(points[0]),geom_traits()));

    Vertex_handle hint;
    for (typename std::vector<std::ptrdiff_t>::const_iterator
      it = indices.begin(), end = indices.end();
      it != end; ++it){
      hint = insert(points[*it], hint);
      if (hint!=Vertex_handle()) hint->info()=infos[*it];
    }

    return number_of_vertices() - n;
  }
  
public:

  template < class InputIterator >
  std::ptrdiff_t
  insert( InputIterator first,
          InputIterator last,
          typename boost::enable_if<
            boost::is_convertible<
              typename std::iterator_traits<InputIterator>::value_type,
              std::pair<Point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type>
            > >::type* =NULL
  )
  {
    return insert_with_info< std::pair<Point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type> >(first,last);
  }

  template <class  InputIterator_1,class InputIterator_2>
  std::ptrdiff_t
  insert( boost::zip_iterator< boost::tuple<InputIterator_1,InputIterator_2> > first,
          boost::zip_iterator< boost::tuple<InputIterator_1,InputIterator_2> > last,
          typename boost::enable_if<
            boost::mpl::and_<
              boost::is_convertible< typename std::iterator_traits<InputIterator_1>::value_type, Point >,
              boost::is_convertible< typename std::iterator_traits<InputIterator_2>::value_type, typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type >
            >
          >::type* =NULL
  )
  {
    return insert_with_info< boost::tuple<Point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type> >(first,last);
  }
#endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
  
  Vertex_handle insert(const Point & p, Vertex_handle hint)
  {
    return insert(p, hint == Vertex_handle() ? this->infinite_cell() : hint->cell());
  }

  Vertex_handle insert(const Point & p, Cell_handle start = Cell_handle());

  Vertex_handle insert(const Point & p, Locate_type lt,
	               Cell_handle c, int li, int);
	
public: // internal methods
	
  template <class OutputItCells>
  Vertex_handle insert_and_give_new_cells(const Point  &p, 
                                          OutputItCells fit,
                                          Cell_handle start = Cell_handle() );
		
  template <class OutputItCells>
  Vertex_handle insert_and_give_new_cells(const Point& p,
                                          OutputItCells fit,
                                          Vertex_handle hint);

  template <class OutputItCells>
  Vertex_handle insert_and_give_new_cells(const Point& p,
                                          Locate_type lt,
                                          Cell_handle c, int li, int lj, 
                                          OutputItCells fit); 

public:	
	
#ifndef CGAL_NO_DEPRECATED_CODE
  CGAL_DEPRECATED Vertex_handle move_point(Vertex_handle v, const Point & p);
#endif  

  template <class OutputIteratorBoundaryFacets,
            class OutputIteratorCells,
            class OutputIteratorInternalFacets>
  Triple<OutputIteratorBoundaryFacets,
         OutputIteratorCells,
         OutputIteratorInternalFacets>
  find_conflicts(const Point &p, Cell_handle c,
	         OutputIteratorBoundaryFacets bfit,
                 OutputIteratorCells cit,
		 OutputIteratorInternalFacets ifit) const
  {
      CGAL_triangulation_precondition(dimension() >= 2);

      std::vector<Cell_handle> cells;
      cells.reserve(32);
      std::vector<Facet> facets;
      facets.reserve(64);

      if (dimension() == 2) {
          Conflict_tester_2 tester(p, this);
	  ifit = Tr_Base::find_conflicts
	    (c, tester,
	     make_triple(std::back_inserter(facets),
			 std::back_inserter(cells),
			 ifit)).third;
      }
      else {
          Conflict_tester_3 tester(p, this);
	  ifit = Tr_Base::find_conflicts
	    (c, tester,
	     make_triple(std::back_inserter(facets),
			 std::back_inserter(cells),
			 ifit)).third;
      }

      // Reset the conflict flag on the boundary.
      for(typename std::vector<Facet>::iterator fit=facets.begin();
          fit != facets.end(); ++fit) {
        fit->first->neighbor(fit->second)->tds_data().clear();
	*bfit++ = *fit;
      }

      // Reset the conflict flag in the conflict cells.
      for(typename std::vector<Cell_handle>::iterator ccit=cells.begin();
        ccit != cells.end(); ++ccit) {
        (*ccit)->tds_data().clear();
	*cit++ = *ccit;
      }
      return make_triple(bfit, cit, ifit);
  }

  template <class OutputIteratorBoundaryFacets, class OutputIteratorCells>
  std::pair<OutputIteratorBoundaryFacets, OutputIteratorCells>
  find_conflicts(const Point &p, Cell_handle c,
	         OutputIteratorBoundaryFacets bfit,
                 OutputIteratorCells cit) const
  {
      Triple<OutputIteratorBoundaryFacets,
             OutputIteratorCells,
	     Emptyset_iterator> t = find_conflicts(p, c, bfit, cit,
		                                   Emptyset_iterator());
      return std::make_pair(t.first, t.second);
  }

#ifndef CGAL_NO_DEPRECATED_CODE
  // Returns the vertices on the boundary of the conflict hole.
  template <class OutputIterator>
  OutputIterator
  vertices_in_conflict(const Point&p, Cell_handle c, OutputIterator res) const
  {
    return vertices_on_conflict_zone_boundary(p, c, res);
  }
#endif // CGAL_NO_DEPRECATED_CODE

  // Returns the vertices on the boundary of the conflict hole.
  template <class OutputIterator>
  OutputIterator
  vertices_on_conflict_zone_boundary(const Point&p, Cell_handle c,
                                     OutputIterator res) const
  {
      CGAL_triangulation_precondition(dimension() >= 2);

      // Get the facets on the boundary of the hole.
      std::vector<Facet> facets;
      find_conflicts(p, c, std::back_inserter(facets),
	             Emptyset_iterator(), Emptyset_iterator());

      // Then extract uniquely the vertices.
      std::set<Vertex_handle> vertices;
      if (dimension() == 3) {
          for (typename std::vector<Facet>::const_iterator i = facets.begin();
	       i != facets.end(); ++i) {
	      vertices.insert(i->first->vertex((i->second+1)&3));
	      vertices.insert(i->first->vertex((i->second+2)&3));
	      vertices.insert(i->first->vertex((i->second+3)&3));
          }
      } else {
          for (typename std::vector<Facet>::const_iterator i = facets.begin();
	       i != facets.end(); ++i) {
	      vertices.insert(i->first->vertex(cw(i->second)));
	      vertices.insert(i->first->vertex(ccw(i->second)));
          }
      }

      return std::copy(vertices.begin(), vertices.end(), res);
  }

  // REMOVE
  void remove(Vertex_handle v);

  // return new cells (internal)
  template <class OutputItCells>
  void remove_and_give_new_cells(Vertex_handle v, 
                                 OutputItCells fit);

  template < typename InputIterator >
  size_type remove(InputIterator first, InputIterator beyond)
  {
    CGAL_triangulation_precondition(!this->does_repeat_in_range(first, beyond));
    size_type n = number_of_vertices();
    while (first != beyond) {
      remove(*first);
      ++first;
    }
    return n - number_of_vertices();
  }
	
  template < typename InputIterator >
  size_type remove_cluster(InputIterator first, InputIterator beyond)
  {
    Self tmp;
    Vertex_remover<Self> remover (tmp);
    return Tr_Base::remove(first, beyond, remover);
  }

  // MOVE
  Vertex_handle move_if_no_collision(Vertex_handle v, const Point &p);

  Vertex_handle move(Vertex_handle v, const Point &p);

  // return new cells (internal)
  template <class OutputItCells>
  Vertex_handle move_if_no_collision_and_give_new_cells(Vertex_handle v, 
                                                        const Point &p, 
                                                        OutputItCells fit);

private:

  Bounded_side
  side_of_sphere(Vertex_handle v0, Vertex_handle v1,
		 Vertex_handle v2, Vertex_handle v3,
		 const Point &p, bool perturb) const;
public:

  // Queries
  Bounded_side
  side_of_sphere(Cell_handle c, const Point & p,
	         bool perturb = false) const
  {
      return side_of_sphere(c->vertex(0), c->vertex(1),
                            c->vertex(2), c->vertex(3), p, perturb);
  }

  Bounded_side
  side_of_circle( const Facet & f, const Point & p, bool perturb = false) const
  {
      return side_of_circle(f.first, f.second, p, perturb);
  }

  Bounded_side
  side_of_circle( Cell_handle c, int i, const Point & p,
	          bool perturb = false) const;

  Vertex_handle
  nearest_vertex_in_cell(const Point& p, Cell_handle c) const;

  Vertex_handle
  nearest_vertex(const Point& p, Cell_handle c = Cell_handle()) const;

  bool is_Gabriel(Cell_handle c, int i) const;
  bool is_Gabriel(Cell_handle c, int i, int j) const;
  bool is_Gabriel(const Facet& f)const ;
  bool is_Gabriel(const Edge& e) const;

  bool is_delaunay_after_displacement(Vertex_handle v, 
                                      const Point &p) const;

// Dual functions
  Point dual(Cell_handle c) const;

  Object dual(const Facet & f) const
  { return dual( f.first, f.second ); }

  Object dual(Cell_handle c, int i) const;

  Line dual_support(Cell_handle c, int i) const;

  bool is_valid(bool verbose = false, int level = 0) const;

  bool is_valid(Cell_handle c, bool verbose = false, int level = 0) const;

  template < class Stream> 		
  Stream& draw_dual(Stream & os)
    {
      for (Finite_facets_iterator fit = finite_facets_begin(),
                                  end = finite_facets_end();
           fit != end; ++fit) {
	Object o = dual(*fit);
	if      (const Segment *s = object_cast<Segment>(&o)) os << *s;
	else if (const Ray *r     = object_cast<Ray>(&o))     os << *r;
	else if (const Point *p   = object_cast<Point>(&o))   os << *p;
      }
      return os;
    }

protected:

  Vertex_handle
  nearest_vertex(const Point &p, Vertex_handle v, Vertex_handle w) const
  {
      // In case of equality, v is returned.
      CGAL_triangulation_precondition(v != w);

      if (is_infinite(v))
	  return w;
      if (is_infinite(w))
	  return v;
      return less_distance(p, w->point(), v->point()) ? w : v;
  }

  class Conflict_tester_3
  {
      const Point &p;
      const Self *t;

  public:

    Conflict_tester_3(const Point &pt, const Self *tr)
      : p(pt), t(tr) {}

    bool operator()(const Cell_handle c) const
    {
      return t->side_of_sphere(c, p, true) == ON_BOUNDED_SIDE;
    }
    Oriented_side compare_weight(const Point &, const Point &) const
    {
      return ZERO;
    }
    bool test_initial_cell(Cell_handle) const
    {
      return true;
    }
  };

  class Conflict_tester_2
  {
      const Point &p;
      const Self *t;

  public:

    Conflict_tester_2(const Point &pt, const Self *tr)
      : p(pt), t(tr) {}

    bool operator()(const Cell_handle c) const
    {
      return t->side_of_circle(c, 3, p, true) == ON_BOUNDED_SIDE;
    }
    Oriented_side compare_weight(const Point &, const Point &) const
    {
      return ZERO;
    }
    bool test_initial_cell(Cell_handle) const
    {
      return true;
    }
  };
  class Hidden_point_visitor
  {
  public:

    Hidden_point_visitor() {}

    template <class InputIterator>
    void process_cells_in_conflict(InputIterator, InputIterator) const {}
    void reinsert_vertices(Vertex_handle ) {}
    Vertex_handle replace_vertex(Cell_handle c, int index,
				 const Point &) {
      return c->vertex(index);
    }
    void hide_point(Cell_handle, const Point &) {}
  };

  class Perturbation_order {
      const Self *t;

  public:
      Perturbation_order(const Self *tr)
	  : t(tr) {}

      bool operator()(const Point *p, const Point *q) const {
	  return t->compare_xyz(*p, *q) == SMALLER;
      }
  };

  template < class DelaunayTriangulation_3 >
  class Vertex_remover;

  template < class DelaunayTriangulation_3 >
  class Vertex_inserter;

  friend class Perturbation_order;
  friend class Conflict_tester_3;
  friend class Conflict_tester_2;

  Hidden_point_visitor hidden_point_visitor;
};

template < class Gt, class Tds >
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle
Delaunay_triangulation_3<Gt,Tds>::
insert(const Point & p, Cell_handle start)
{
    Locate_type lt;
    int li, lj;
    Cell_handle c = locate(p, lt, li, lj, start);
    return insert(p, lt, c, li, lj);
}

template < class Gt, class Tds >
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle
Delaunay_triangulation_3<Gt,Tds>::
insert(const Point & p, Locate_type lt, Cell_handle c, int li, int lj)
{
  switch (dimension()) {
  case 3:
    {
      Conflict_tester_3 tester(p, this);
      Vertex_handle v = insert_in_conflict(p, lt, c, li, lj,
					   tester, hidden_point_visitor);
      return v;
    }// dim 3
  case 2:
    {
      Conflict_tester_2 tester(p, this);
      return insert_in_conflict(p, lt, c, li, lj,
				tester, hidden_point_visitor);
    }//dim 2
  default :
    // dimension <= 1
    // Do not use the generic insert.
    return Tr_Base::insert(p, c);
  }
}

template < class Gt, class Tds >
template <class OutputItCells>
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle 
Delaunay_triangulation_3<Gt,Tds>::
insert_and_give_new_cells(const Point  &p, 
                          OutputItCells fit,
                          Cell_handle start)
{
  Vertex_handle v = insert(p, start);
  int dimension = this->dimension();
  if(dimension == 3) this->incident_cells(v, fit);
  else if(dimension == 2)
  {
    Cell_handle c = v->cell(), end = c;
    do {
      *fit++ = c;
      int i = c->index(v);
      c = c->neighbor((i+1)%3);
    } while(c != end);			
  } 
  else if(dimension == 1)
  {
    Cell_handle c = v->cell();
    *fit++ = c;
    *fit++ = c->neighbor((~(c->index(v)))&1);
  }
  else *fit++ = v->cell(); // dimension = 0
  return v;		
}

template < class Gt, class Tds >	
template <class OutputItCells>
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle 
Delaunay_triangulation_3<Gt,Tds>::
insert_and_give_new_cells(const Point& p,
                          OutputItCells fit,
                          Vertex_handle hint)
{
  Vertex_handle v = insert(p, hint);
  int dimension = this->dimension();
  if(dimension == 3) this->incident_cells(v, fit);
  else if(dimension == 2)
  {
    Cell_handle c = v->cell(), end = c;
    do {
      *fit++ = c;
      int i = c->index(v);
      c = c->neighbor((i+1)%3);
    } while(c != end);			
  } 
  else if(dimension == 1)
  {
    Cell_handle c = v->cell();
    *fit++ = c;
    *fit++ = c->neighbor((~(c->index(v)))&1);
  }
  else *fit++ = v->cell(); // dimension = 0
  return v;
}

template < class Gt, class Tds >
template <class OutputItCells>
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle 
Delaunay_triangulation_3<Gt,Tds>::
insert_and_give_new_cells(const Point& p,
                          Locate_type lt,
                          Cell_handle c, int li, int lj, 
                          OutputItCells fit)
{
  Vertex_handle v = insert(p, lt, c, li, lj);
  int dimension = this->dimension();
  if(dimension == 3) this->incident_cells(v, fit);
  else if(dimension == 2)
  {
    Cell_handle c = v->cell(), end = c;
    do {
      *fit++ = c;
      int i = c->index(v);
      c = c->neighbor((i+1)%3);
    } while(c != end);			
  } 
  else if(dimension == 1)
  {
    Cell_handle c = v->cell();
    *fit++ = c;
    *fit++ = c->neighbor((~(c->index(v)))&1);
  }
  else *fit++ = v->cell(); // dimension = 0		 
  return v;
}

#ifndef CGAL_NO_DEPRECATED_CODE
template < class Gt, class Tds >
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle
Delaunay_triangulation_3<Gt,Tds>::
move_point(Vertex_handle v, const Point & p)
{
    CGAL_triangulation_precondition(! is_infinite(v));
    CGAL_triangulation_expensive_precondition(is_vertex(v));

    // Dummy implementation for a start.

    // Remember an incident vertex to restart
    // the point location after the removal.
    Cell_handle c = v->cell();
    Vertex_handle old_neighbor = c->vertex(c->index(v) == 0 ? 1 : 0);
    CGAL_triangulation_assertion(old_neighbor != v);

    remove(v);

    if (dimension() <= 0)
	return insert(p);
    return insert(p, old_neighbor->cell());
}
#endif

template <class Gt, class Tds >
template <class DelaunayTriangulation_3>
class Delaunay_triangulation_3<Gt, Tds>::Vertex_remover {
  typedef DelaunayTriangulation_3 Delaunay;
public:
  typedef Nullptr_t Hidden_points_iterator;

  Vertex_remover(Delaunay &tmp_) : tmp(tmp_) {}

  Delaunay &tmp;

  void add_hidden_points(Cell_handle) {}
  Hidden_points_iterator hidden_points_begin() { return NULL; }
  Hidden_points_iterator hidden_points_end() { return NULL; }

  Bounded_side side_of_bounded_circle(const Point &p, const Point &q,
    const Point &r, const Point &s, bool perturb = false) const {
    return tmp.coplanar_side_of_bounded_circle(p,q,r,s,perturb);
  }
};

template <class Gt, class Tds >
template <class DelaunayTriangulation_3>
class Delaunay_triangulation_3<Gt, Tds>::Vertex_inserter {
  typedef DelaunayTriangulation_3 Delaunay;
public:
  typedef Nullptr_t Hidden_points_iterator;

  Vertex_inserter(Delaunay &tmp_) : tmp(tmp_) {}

  Delaunay &tmp;

  void add_hidden_points(Cell_handle) {}
  Hidden_points_iterator hidden_points_begin() { return NULL; }
  Hidden_points_iterator hidden_points_end() { return NULL; }

  Vertex_handle insert(const Point& p,
		       Locate_type lt, Cell_handle c, int li, int lj) {
    return tmp.insert(p, lt, c, li, lj);
  }

  Vertex_handle insert(const Point& p, Cell_handle c) {
    return tmp.insert(p, c);
  }

  Vertex_handle insert(const Point& p) {
    return tmp.insert(p);
  }
};

template < class Gt, class Tds >
void
Delaunay_triangulation_3<Gt,Tds>::
remove(Vertex_handle v)
{
  Self tmp;
  Vertex_remover<Self> remover (tmp);
  Tr_Base::remove(v,remover);

  CGAL_triangulation_expensive_postcondition(is_valid());
}

template < class Gt, class Tds >
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle
Delaunay_triangulation_3<Gt,Tds>::
move_if_no_collision(Vertex_handle v, const Point &p)
{
  Self tmp;
  Vertex_remover<Self> remover (tmp);
  Vertex_inserter<Self> inserter (*this);
  Vertex_handle res = Tr_Base::move_if_no_collision(v,p,remover,inserter);

  CGAL_triangulation_expensive_postcondition(is_valid());	
	return res;
}

template <class Gt, class Tds >
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle
Delaunay_triangulation_3<Gt,Tds>::
move(Vertex_handle v, const Point &p) {
  CGAL_triangulation_precondition(!is_infinite(v));
  if(v->point() == p) return v;
  Self tmp;
  Vertex_remover<Self> remover (tmp);
  Vertex_inserter<Self> inserter (*this);
	return Tr_Base::move(v,p,remover,inserter);
}

template < class Gt, class Tds >
template <class OutputItCells>
void
Delaunay_triangulation_3<Gt,Tds>::
remove_and_give_new_cells(Vertex_handle v, OutputItCells fit)
{
  Self tmp;
  Vertex_remover<Self> remover (tmp);
  Tr_Base::remove_and_give_new_cells(v,remover,fit);

  CGAL_triangulation_expensive_postcondition(is_valid());
}

template < class Gt, class Tds >
template <class OutputItCells>
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle
Delaunay_triangulation_3<Gt,Tds>::
move_if_no_collision_and_give_new_cells(Vertex_handle v, const Point &p,
  OutputItCells fit)
{
  Self tmp;
  Vertex_remover<Self> remover (tmp);
  Vertex_inserter<Self> inserter (*this);
  Vertex_handle res = 
    Tr_Base::move_if_no_collision_and_give_new_cells(v,p,
      remover,inserter,fit);

  CGAL_triangulation_expensive_postcondition(is_valid());	
	return res;
}

template < class Gt, class Tds >
Oriented_side
Delaunay_triangulation_3<Gt,Tds>::
side_of_oriented_sphere(const Point &p0, const Point &p1, const Point &p2,
	                const Point &p3, const Point &p, bool perturb) const
{
    CGAL_triangulation_precondition( orientation(p0, p1, p2, p3) == POSITIVE );

    Oriented_side os =
	geom_traits().side_of_oriented_sphere_3_object()(p0, p1, p2, p3, p);

    if (os != ON_ORIENTED_BOUNDARY || !perturb)
	return os;

    // We are now in a degenerate case => we do a symbolic perturbation.

    // We sort the points lexicographically.
    const Point * points[5] = {&p0, &p1, &p2, &p3, &p};
    std::sort(points, points+5, Perturbation_order(this) );

    // We successively look whether the leading monomial, then 2nd monomial
    // of the determinant has non null coefficient.
    // 2 iterations are enough (cf paper)
    for (int i=4; i>2; --i) {
        if (points[i] == &p)
            return ON_NEGATIVE_SIDE; // since p0 p1 p2 p3 are non coplanar
	                             // and positively oriented
        Orientation o;
        if (points[i] == &p3 && (o = orientation(p0,p1,p2,p)) != COPLANAR )
            return o;
        if (points[i] == &p2 && (o = orientation(p0,p1,p,p3)) != COPLANAR )
            return o;
        if (points[i] == &p1 && (o = orientation(p0,p,p2,p3)) != COPLANAR )
            return o;
        if (points[i] == &p0 && (o = orientation(p,p1,p2,p3)) != COPLANAR )
            return o;
    }

    CGAL_triangulation_assertion(false);
    return ON_NEGATIVE_SIDE;
}

template < class Gt, class Tds >
Bounded_side
Delaunay_triangulation_3<Gt,Tds>::
coplanar_side_of_bounded_circle(const Point &p0, const Point &p1,
	       const Point &p2, const Point &p, bool perturb) const
{
    // In dim==2, we should even be able to assert orient == POSITIVE.
    CGAL_triangulation_precondition( coplanar_orientation(p0, p1, p2)
	                             != COLLINEAR );

    Bounded_side bs =
      geom_traits().coplanar_side_of_bounded_circle_3_object()(p0, p1, p2, p);

    if (bs != ON_BOUNDARY || !perturb)
	return bs;

    // We are now in a degenerate case => we do a symbolic perturbation.

    // We sort the points lexicographically.
    const Point * points[4] = {&p0, &p1, &p2, &p};
    std::sort(points, points+4, Perturbation_order(this) );

    Orientation local = coplanar_orientation(p0, p1, p2);

    // we successively look whether the leading monomial, then 2nd monimial,
    // then 3rd monomial, of the determinant which has non null coefficient
    // [syl] : TODO : Probably it can be stopped earlier like the 3D version
    for (int i=3; i>0; --i) {
        if (points[i] == &p)
            return Bounded_side(NEGATIVE); // since p0 p1 p2 are non collinear
	                           // but not necessarily positively oriented
        Orientation o;
        if (points[i] == &p2
		&& (o = coplanar_orientation(p0,p1,p)) != COLLINEAR )
	    // [syl] : TODO : I'm not sure of the signs here (nor the rest :)
            return Bounded_side(o*local);
        if (points[i] == &p1
		&& (o = coplanar_orientation(p0,p,p2)) != COLLINEAR )
            return Bounded_side(o*local);
        if (points[i] == &p0
		&& (o = coplanar_orientation(p,p1,p2)) != COLLINEAR )
            return Bounded_side(o*local);
    }

    // case when the first non null coefficient is the coefficient of
    // the 4th monomial
    // moreover, the tests (points[] == &p) were false up to here, so the
    // monomial corresponding to p is the only monomial with non-zero
    // coefficient, it is equal to coplanar_orient(p0,p1,p2) == positive
    // so, no further test is required
    return Bounded_side(-local); //ON_UNBOUNDED_SIDE;
}

template < class Gt, class Tds >
Bounded_side
Delaunay_triangulation_3<Gt,Tds>::
side_of_sphere(Vertex_handle v0, Vertex_handle v1,
	       Vertex_handle v2, Vertex_handle v3,
	       const Point &p, bool perturb) const
{
    CGAL_triangulation_precondition( dimension() == 3 );

    if (is_infinite(v0)) {
	Orientation o = orientation(v2->point(), v1->point(), v3->point(), p);
	if (o != COPLANAR)
	    return Bounded_side(o);
	return coplanar_side_of_bounded_circle(v2->point(), v1->point(), v3->point(), p, perturb);
    }

    if (is_infinite(v1)) {
	Orientation o = orientation(v2->point(), v3->point(), v0->point(), p);
	if (o != COPLANAR)
	    return Bounded_side(o);
	return coplanar_side_of_bounded_circle(v2->point(), v3->point(), v0->point(), p, perturb);
    }

    if (is_infinite(v2)) {
	Orientation o = orientation(v1->point(), v0->point(), v3->point(), p);
	if (o != COPLANAR)
	    return Bounded_side(o);
	return coplanar_side_of_bounded_circle(v1->point(), v0->point(), v3->point(), p, perturb);
    }

    if (is_infinite(v3)) {
	Orientation o = orientation(v0->point(), v1->point(), v2->point(), p);
	if (o != COPLANAR)
	    return Bounded_side(o);
	return coplanar_side_of_bounded_circle(v0->point(), v1->point(), v2->point(), p, perturb);
    }

    return (Bounded_side) side_of_oriented_sphere(v0->point(), v1->point(), v2->point(), v3->point(), p, perturb);
}

template < class Gt, class Tds >
Bounded_side
Delaunay_triangulation_3<Gt,Tds>::
side_of_circle(Cell_handle c, int i,
	       const Point & p, bool perturb) const
  // precondition : dimension >=2
  // in dimension 3, - for a finite facet
  // returns ON_BOUNDARY if the point lies on the circle,
  // ON_UNBOUNDED_SIDE when exterior, ON_BOUNDED_SIDE
  // interior
  // for an infinite facet, considers the plane defined by the
  // adjacent finite facet of the same cell, and does the same as in
  // dimension 2 in this plane
  // in dimension 2, for an infinite facet
  // in this case, returns ON_BOUNDARY if the point lies on the
  // finite edge (endpoints included)
  // ON_BOUNDED_SIDE for a point in the open half-plane
  // ON_UNBOUNDED_SIDE elsewhere
{
  CGAL_triangulation_precondition( dimension() >= 2 );
  int i3 = 5;

  if ( dimension() == 2 ) {
    CGAL_triangulation_precondition( i == 3 );
    // the triangulation is supposed to be valid, ie the facet
    // with vertices 0 1 2 in this order is positively oriented
    if ( ! c->has_vertex( infinite_vertex(), i3 ) )
      return coplanar_side_of_bounded_circle( c->vertex(0)->point(),
					      c->vertex(1)->point(),
					      c->vertex(2)->point(),
					      p, perturb);
    // else infinite facet
    // v1, v2 finite vertices of the facet such that v1,v2,infinite
    // is positively oriented
    Vertex_handle v1 = c->vertex( ccw(i3) ),
                  v2 = c->vertex( cw(i3) );
    CGAL_triangulation_assertion(coplanar_orientation(v1->point(), v2->point(),
			         mirror_vertex(c, i3)->point()) == NEGATIVE);
    Orientation o = coplanar_orientation(v1->point(), v2->point(), p);
    if ( o != COLLINEAR )
	return Bounded_side( o );
    // because p is in f iff
    // it does not lie on the same side of v1v2 as vn
    int i_e;
    Locate_type lt;
    // case when p collinear with v1v2
    return side_of_segment( p,
			    v1->point(), v2->point(),
			    lt, i_e );
  }

  // else dimension == 3
  CGAL_triangulation_precondition( i >= 0 && i < 4 );
  if ( ( ! c->has_vertex(infinite_vertex(),i3) ) || ( i3 != i ) ) {
    // finite facet
    // initialization of i0 i1 i2, vertices of the facet positively
    // oriented (if the triangulation is valid)
    int i0 = (i>0) ? 0 : 1;
    int i1 = (i>1) ? 1 : 2;
    int i2 = (i>2) ? 2 : 3;
    CGAL_triangulation_precondition( coplanar( c->vertex(i0)->point(),
				               c->vertex(i1)->point(),
				               c->vertex(i2)->point(),
					       p ) );
    return coplanar_side_of_bounded_circle( c->vertex(i0)->point(),
					    c->vertex(i1)->point(),
					    c->vertex(i2)->point(),
					    p, perturb);
  }

  //else infinite facet
  // v1, v2 finite vertices of the facet such that v1,v2,infinite
  // is positively oriented
  Vertex_handle v1 = c->vertex( next_around_edge(i3,i) ),
                v2 = c->vertex( next_around_edge(i,i3) );
  Orientation o = (Orientation)
                  (coplanar_orientation( v1->point(), v2->point(),
			                 c->vertex(i)->point()) *
                  coplanar_orientation( v1->point(), v2->point(), p ));
  // then the code is duplicated from 2d case
  if ( o != COLLINEAR )
      return Bounded_side( -o );
  // because p is in f iff
  // it is not on the same side of v1v2 as c->vertex(i)
  int i_e;
  Locate_type lt;
  // case when p collinear with v1v2
  return side_of_segment( p,
			  v1->point(), v2->point(),
			  lt, i_e );
}

template < class Gt, class Tds >
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle
Delaunay_triangulation_3<Gt,Tds>::
nearest_vertex_in_cell(const Point& p, Cell_handle c) const
// Returns the finite vertex of the cell c which is the closest to p.
{
    CGAL_triangulation_precondition(dimension() >= 0);

    Vertex_handle nearest = nearest_vertex(p, c->vertex(0), c->vertex(1));
    if (dimension() >= 2) {
	nearest = nearest_vertex(p, nearest, c->vertex(2));
        if (dimension() == 3)
	    nearest = nearest_vertex(p, nearest, c->vertex(3));
    }
    return nearest;
}

template < class Gt, class Tds >
typename Delaunay_triangulation_3<Gt,Tds>::Vertex_handle
Delaunay_triangulation_3<Gt,Tds>::
nearest_vertex(const Point& p, Cell_handle start) const
{
    if (number_of_vertices() == 0)
	return Vertex_handle();

    // Use a brute-force algorithm if dimension < 3.
    if (dimension() < 3) {
	Finite_vertices_iterator vit = finite_vertices_begin();
	Vertex_handle res = vit;
	++vit;
	for (Finite_vertices_iterator end = finite_vertices_end(); vit != end; ++vit)
	    res = nearest_vertex(p, res, vit);
	return res;
    }

    Locate_type lt;
    int li, lj;
    Cell_handle c = locate(p, lt, li, lj, start);
    if (lt == Tr_Base::VERTEX)
	return c->vertex(li);

    // - start with the closest vertex from the located cell.
    // - repeatedly take the nearest of its incident vertices if any
    // - if not, we're done.
    Vertex_handle nearest = nearest_vertex_in_cell(p, c);
    std::vector<Vertex_handle> vs;
    vs.reserve(32);
    while (true) {
	Vertex_handle tmp = nearest;
        adjacent_vertices(nearest, std::back_inserter(vs));
        for (typename std::vector<Vertex_handle>::const_iterator
		vsit = vs.begin(); vsit != vs.end(); ++vsit)
	    tmp = nearest_vertex(p, tmp, *vsit);
	if (tmp == nearest)
	    break;
	vs.clear();
	nearest = tmp;
    }

    return nearest;
}

// This is not a fast version.
// The optimized version needs an int for book-keeping in 
// tds() so as to avoiding the need to clear
// the tds marker in each cell (which is an unsigned char)
// Also the visitor in TDS could be more clever.
// The Delaunay triangulation which filters displacements
// will do these optimizations. 
template <class Gt, class Tds >
bool 
Delaunay_triangulation_3<Gt,Tds>::
is_delaunay_after_displacement(Vertex_handle v, const Point &p) const
{
  CGAL_triangulation_precondition(!this->is_infinite(v));	
  CGAL_triangulation_precondition(this->dimension() == 2);	
  CGAL_triangulation_precondition(!this->test_dim_down(v));
	if(v->point() == p) return true;
  Point ant = v->point();
  v->set_point(p);

  std::size_t size;

  // are incident cells well-oriented
  std::vector<Cell_handle> cells;
  cells.reserve(64);
  this->incident_cells(v, std::back_inserter(cells));
  size = cells.size();
  for(std::size_t i=0; i<size; i++)
  {
    Cell_handle c = cells[i];
    if(this->is_infinite(c)) continue;
    if(this->orientation(c->vertex(0)->point(), c->vertex(1)->point(), 
                         c->vertex(2)->point(), c->vertex(3)->point()) 
       != POSITIVE)
    {
      v->set_point(ant);
      return false;
    } 
  }

  // are incident bi-cells Delaunay?	
  std::vector<Facet> facets;
  facets.reserve(128);	
  this->incident_facets(v, std::back_inserter(facets));
  size = facets.size();
  for(std::size_t i=0; i<size; i++)
  {
    const Facet &f = facets[i];
    Cell_handle c = f.first;
    int j = f.second;
    Cell_handle cj = c->neighbor(j);
    int mj = this->mirror_index(c, j);
    Vertex_handle h1 = c->vertex(j);
    if(this->is_infinite(h1)) {
      if(this->side_of_sphere(c, cj->vertex(mj)->point(), true) 
         != ON_UNBOUNDED_SIDE) {
        v->set_point(ant);
        return false;
      }
    } else {
      if(this->side_of_sphere(cj, h1->point(), true) != ON_UNBOUNDED_SIDE) {
        v->set_point(ant);
        return false;
      }
    }
  }
		
  v->set_point(ant);
  return true;
}

template < class Gt, class Tds >
bool
Delaunay_triangulation_3<Gt,Tds>::
is_Gabriel(const Facet& f) const
{
  return is_Gabriel(f.first, f.second);
}

template < class Gt, class Tds >
bool
Delaunay_triangulation_3<Gt,Tds>::
is_Gabriel(Cell_handle c, int i) const
{
  CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i));
  typename Geom_traits::Side_of_bounded_sphere_3
    side_of_bounded_sphere =
    geom_traits().side_of_bounded_sphere_3_object();

  if ((!is_infinite(c->vertex(i))) &&
      side_of_bounded_sphere (
	c->vertex(vertex_triple_index(i,0))->point(),
	c->vertex(vertex_triple_index(i,1))->point(),
	c->vertex(vertex_triple_index(i,2))->point(),
	c->vertex(i)->point()) == ON_BOUNDED_SIDE ) return false;
    Cell_handle neighbor = c->neighbor(i);
  int in = neighbor->index(c);

  if ((!is_infinite(neighbor->vertex(in))) &&
      side_of_bounded_sphere(
	 c->vertex(vertex_triple_index(i,0))->point(),
	 c->vertex(vertex_triple_index(i,1))->point(),
	 c->vertex(vertex_triple_index(i,2))->point(),	
	 neighbor->vertex(in)->point()) == ON_BOUNDED_SIDE ) return false;

  return true;
}

template < class Gt, class Tds >
bool
Delaunay_triangulation_3<Gt,Tds>::
is_Gabriel(const Edge& e) const
{
  return is_Gabriel(e.first, e.second, e.third);
}

template < class Gt, class Tds >
bool
Delaunay_triangulation_3<Gt,Tds>::
is_Gabriel(Cell_handle c, int i, int j) const
{
  CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i,j));
  typename Geom_traits::Side_of_bounded_sphere_3
    side_of_bounded_sphere =
    geom_traits().side_of_bounded_sphere_3_object();

  Facet_circulator fcirc = incident_facets(c,i,j),
                   fdone(fcirc);
  Vertex_handle v1 = c->vertex(i);
  Vertex_handle v2 = c->vertex(j);
  do {
      // test whether the vertex of cc opposite to *fcirc
      // is inside the sphere defined by the edge e = (s, i,j)
      Cell_handle cc = (*fcirc).first;
      int ii = (*fcirc).second;
      if (!is_infinite(cc->vertex(ii)) &&
	   side_of_bounded_sphere( v1->point(),
				   v2->point(),
				   cc->vertex(ii)->point())
	  == ON_BOUNDED_SIDE ) return false;
  } while(++fcirc != fdone);
  return true;
}

template < class Gt, class Tds >
typename Delaunay_triangulation_3<Gt,Tds>::Point
Delaunay_triangulation_3<Gt,Tds>::
dual(Cell_handle c) const
{
  CGAL_triangulation_precondition(dimension()==3);
  CGAL_triangulation_precondition( ! is_infinite(c) );
  return c->circumcenter(geom_traits());
}


template < class Gt, class Tds >
typename Delaunay_triangulation_3<Gt,Tds>::Object
Delaunay_triangulation_3<Gt,Tds>::
dual(Cell_handle c, int i) const
{
  CGAL_triangulation_precondition(dimension()>=2);
  CGAL_triangulation_precondition( ! is_infinite(c,i) );

  if ( dimension() == 2 ) {
    CGAL_triangulation_precondition( i == 3 );
    return construct_object( construct_circumcenter(c->vertex(0)->point(),
		                                    c->vertex(1)->point(),
					            c->vertex(2)->point()) );
  }

  // dimension() == 3
  Cell_handle n = c->neighbor(i);
  if ( ! is_infinite(c) && ! is_infinite(n) )
    return construct_object(construct_segment( dual(c), dual(n) ));

  // either n or c is infinite
  int in;
  if ( is_infinite(c) )
    in = n->index(c);
  else {
    n = c;
    in = i;
  }
  // n now denotes a finite cell, either c or c->neighbor(i)
  int ind[3] = {(in+1)&3,(in+2)&3,(in+3)&3};
  if ( (in&1) == 1 )
      std::swap(ind[0], ind[1]);
  // in=0: 1 2 3
  // in=1: 3 2 0
  // in=2: 3 0 1
  // in=3: 1 0 2
  const Point& p = n->vertex(ind[0])->point();
  const Point& q = n->vertex(ind[1])->point();
  const Point& r = n->vertex(ind[2])->point();

  Line l = construct_equidistant_line( p, q, r );
  return construct_object(construct_ray( dual(n), l));
}



template < class Gt, class Tds >
typename Delaunay_triangulation_3<Gt,Tds>::Line
Delaunay_triangulation_3<Gt,Tds>::
dual_support(Cell_handle c, int i) const
{
  CGAL_triangulation_precondition(dimension()>=2);
  CGAL_triangulation_precondition( ! is_infinite(c,i) );

  if ( dimension() == 2 ) {
    CGAL_triangulation_precondition( i == 3 );
    return construct_equidistant_line( c->vertex(0)->point(),
		                       c->vertex(1)->point(),
			               c->vertex(2)->point() );
  }

  return construct_equidistant_line( c->vertex((i+1)&3)->point(),
		                     c->vertex((i+2)&3)->point(),
				     c->vertex((i+3)&3)->point() );
}


template < class Gt, class Tds >
bool
Delaunay_triangulation_3<Gt,Tds>::
is_valid(bool verbose, int level) const
{
  if ( ! tds().is_valid(verbose,level) ) {
    if (verbose)
	std::cerr << "invalid data structure" << std::endl;
    CGAL_triangulation_assertion(false);
    return false;
  }

  if ( infinite_vertex() == Vertex_handle() ) {
    if (verbose)
	std::cerr << "no infinite vertex" << std::endl;
    CGAL_triangulation_assertion(false);
    return false;
  }

  switch ( dimension() ) {
  case 3:
    {
      for(Finite_cells_iterator it = finite_cells_begin(), end = finite_cells_end(); it != end; ++it) {
	is_valid_finite(it);
	for(int i=0; i<4; i++ ) {
	  if ( !is_infinite
	       (it->neighbor(i)->vertex(it->neighbor(i)->index(it))) ) {
	    if ( side_of_sphere
		 (it,
		  it->neighbor(i)->vertex(it->neighbor(i)->index(it))->point())
		 == ON_BOUNDED_SIDE ) {
	      if (verbose)
		std::cerr << "non-empty sphere " << std::endl;
	      CGAL_triangulation_assertion(false);
	      return false;
	    }
	  }
	}
      }
      break;
    }
  case 2:
    {
      for(Finite_facets_iterator it = finite_facets_begin(), end = finite_facets_end(); it != end; ++it) {
	is_valid_finite((*it).first);
	for(int i=0; i<3; i++ ) {
	  if( !is_infinite
	      ((*it).first->neighbor(i)->vertex( (((*it).first)->neighbor(i))
						 ->index((*it).first))) ) {
	    if ( side_of_circle ( (*it).first, 3,
				  (*it).first->neighbor(i)->
				  vertex( (((*it).first)->neighbor(i))
					  ->index((*it).first) )->point() )
		 == ON_BOUNDED_SIDE ) {
	      if (verbose)
		std::cerr << "non-empty circle " << std::endl;
	      CGAL_triangulation_assertion(false);
	      return false;
	    }
	  }
	}
      }
      break;
    }
  case 1:
    {
      for(Finite_edges_iterator it = finite_edges_begin(), end = finite_edges_end(); it != end; ++it)
	is_valid_finite((*it).first);
      break;
    }
  }
  if (verbose)
      std::cerr << "Delaunay valid triangulation" << std::endl;
  return true;
}

template < class Gt, class Tds >
bool
Delaunay_triangulation_3<Gt,Tds>::
is_valid(Cell_handle c, bool verbose, int level) const
{
  if ( ! Tr_Base::is_valid(c,verbose,level) ) {
    if (verbose) {
      std::cerr << "combinatorically invalid cell" ;
      for (int i=0; i <= dimension(); i++ )
	std::cerr << c->vertex(i)->point() << ", " ;
      std::cerr << std::endl;
    }
    CGAL_triangulation_assertion(false);
    return false;
  }
  switch ( dimension() ) {
  case 3:
    {
      if ( ! is_infinite(c) ) {
	is_valid_finite(c,verbose,level);
	for (int i=0; i<4; i++ ) {
	  if (side_of_sphere(c, c->vertex((c->neighbor(i))->index(c))->point())
	      == ON_BOUNDED_SIDE ) {
	    if (verbose)
		std::cerr << "non-empty sphere " << std::endl;
	    CGAL_triangulation_assertion(false);
	    return false;
	  }
	}
      }
      break;
    }
  case 2:
    {
      if ( ! is_infinite(c,3) ) {
	for (int i=0; i<2; i++ ) {
	  if (side_of_circle(c, 3, c->vertex(c->neighbor(i)->index(c))->point())
	       == ON_BOUNDED_SIDE ) {
	    if (verbose)
		std::cerr << "non-empty circle " << std::endl;
	    CGAL_triangulation_assertion(false);
	    return false;
	  }
	}
      }
      break;
    }
  }
  if (verbose)
      std::cerr << "Delaunay valid cell" << std::endl;
  return true;
}

} //namespace CGAL

#include <CGAL/internal/Delaunay_triangulation_hierarchy_3.h>

#endif // CGAL_DELAUNAY_TRIANGULATION_3_H