/usr/include/CGAL/Eigen_solver_traits.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | // Copyright (c) 2012 INRIA Bordeaux Sud-Ouest (France), All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Gael Guennebaud
#ifndef CGAL_EIGEN_SOLVER_TRAITS_H
#define CGAL_EIGEN_SOLVER_TRAITS_H
#include <CGAL/basic.h> // include basic.h before testing #defines
#include <Eigen/Sparse>
#include <CGAL/Eigen_matrix.h>
#include <CGAL/Eigen_vector.h>
#include <boost/shared_ptr.hpp>
namespace CGAL {
namespace internal {
template <class EigenSolver,class FT>
struct Get_eigen_matrix{
typedef Eigen_sparse_matrix<FT> type;
};
template <class FT,class EigenMatrix>
struct Get_eigen_matrix< ::Eigen::ConjugateGradient<EigenMatrix>,FT>{
typedef Eigen_sparse_symmetric_matrix<FT> type;
};
template <class FT,class EigenMatrix>
struct Get_eigen_matrix< ::Eigen::SimplicialCholesky<EigenMatrix>,FT>{
typedef Eigen_sparse_symmetric_matrix<FT> type;
};
} //internal
/// The class Eigen_solver_traits
/// is a generic traits class for solving asymmetric or symmetric positive definite (SPD)
/// sparse linear systems using one of the Eigen solvers.
/// The default solver is the iterative bi-congugate gradient stabilized solver
/// Eigen::BiCGSTAB for double.
///
/// @heading Is Model for the Concepts: Model of the SparseLinearAlgebraTraits_d concept.
template<class EigenSolverT = Eigen::BiCGSTAB<Eigen_sparse_matrix<double>::EigenType> >
class Eigen_solver_traits
{
typedef typename EigenSolverT::Scalar Scalar;
// Public types
public:
typedef Scalar NT;
typedef typename internal::Get_eigen_matrix<EigenSolverT,NT>::type Matrix;
typedef Eigen_vector<Scalar> Vector;
// Public operations
public:
Eigen_solver_traits(): m_solver_sptr(new EigenSolverT)
{
}
EigenSolverT& solver() { return *m_solver_sptr; }
/// Solve the sparse linear system "A*X = B".
/// Return true on success. The solution is then (1/D) * X.
///
/// @commentheading Preconditions:
/// - A.row_dimension() == B.dimension().
/// - A.column_dimension() == X.dimension().
bool linear_solver(const Matrix& A, const Vector& B, Vector& X, NT& D)
{
D = 1; // Eigen does not support homogeneous coordinates
m_solver_sptr->compute(A.eigen_object());
if(m_solver_sptr->info() != Eigen::Success)
return false;
X = m_solver_sptr->solve(B);
return m_solver_sptr->info() == Eigen::Success;
}
protected:
boost::shared_ptr<EigenSolverT> m_solver_sptr;
};
//specilization of the solver for BiCGSTAB as for surface parameterization, the
//intializer should be a vector of one's (this was the case in 3.1-alpha but not in the official 3.1).
template<>
class Eigen_solver_traits< Eigen::BiCGSTAB<Eigen_sparse_matrix<double>::EigenType> >
{
typedef Eigen::BiCGSTAB<Eigen_sparse_matrix<double>::EigenType> EigenSolverT;
typedef EigenSolverT::Scalar Scalar;
// Public types
public:
typedef Scalar NT;
typedef internal::Get_eigen_matrix<EigenSolverT,NT>::type Matrix;
typedef Eigen_vector<Scalar> Vector;
// Public operations
public:
Eigen_solver_traits(): m_solver_sptr(new EigenSolverT)
{
}
EigenSolverT& solver() { return *m_solver_sptr; }
/// Solve the sparse linear system "A*X = B".
/// Return true on success. The solution is then (1/D) * X.
///
/// @commentheading Preconditions:
/// - A.row_dimension() == B.dimension().
/// - A.column_dimension() == X.dimension().
bool linear_solver(const Matrix& A, const Vector& B, Vector& X, NT& D)
{
D = 1; // Eigen does not support homogeneous coordinates
m_solver_sptr->compute(A.eigen_object());
if(m_solver_sptr->info() != Eigen::Success)
return false;
X.setOnes(B.rows());
X = m_solver_sptr->solveWithGuess(B,X);
return m_solver_sptr->info() == Eigen::Success;
}
protected:
boost::shared_ptr<EigenSolverT> m_solver_sptr;
};
} //namespace CGAL
#endif // CGAL_EIGEN_SOLVER_TRAITS_H
|