/usr/include/CGAL/Handle_with_policy.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 | // Copyright (c) 2001-2007 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Michael Seel <seel@mpi-inf.mpg.de>
// Arno Eigenwillig <arno@mpi-inf.mpg.de>
// Lutz Kettner <kettner@mpi-inf.mpg.de>
#ifndef CGAL_HANDLE_WITH_POLICY_H
#define CGAL_HANDLE_WITH_POLICY_H
#include <CGAL/basic.h>
#include <CGAL/memory.h>
#include <CGAL/type_traits.h>
#include <CGAL/assertions.h>
#include <CGAL/use.h>
#include <boost/mpl/if.hpp>
#include <cstddef>
#ifdef CGAL_USE_LEDA
# if CGAL_LEDA_VERSION < 500
# include <LEDA/memory.h>
# else
# include <LEDA/system/memory.h>
# endif
#endif
namespace CGAL {
/*! \brief <tt>\#include <CGAL/Handle_with_policy.h></tt> for handles with policy
parameter for reference counting and union-find strategy. Uses
\c LEDA_MEMORY if available.
There are two fundamentally different usages of this base class:
- with a single representation class. In this case the handle
manages allocation and deallocation and the type \c T can
be an arbitrary type---the handle adds the necessary reference
counter internally.
- with a hierarchy of representation classes. Type \c T will be
the common base class of this hierarchy and it has to be derived
itself from a specific base class, which can be accessed directly
or generically from the policy class. The allocator in the
handle will not be used in this scenario, since the handle class
does not allocate any representations. Instead, the handle class
derived from this handle base class is allocating the different
representations with the \c new operator. In this case,
the allocator in the base class of \c T is used.
We give an example for each usage. See also the documentation
of \c Handle_with_policy.
\b Example
We use a single representation class to store an integer. The second
constructor makes use of one of the forwarding template constructors
that simply forward their parameter list to the representation
constructors. They exist for up to ten parameters. The third
constructor illustrates how the \c USE_WITH_INITIALIZE_WITH can be
used. It is useful if extensive computations are necessary before the
representation can be created.
\code
struct Int_rep {
int val;
Int_rep( int i = 0) : val(i) {}
Int_rep( int i, int j) : val(i+j) {}
Int_rep( int i, int j, int k) : val(i+j+k) {}
};
template < class Unify>
struct Int_t : public Handle_with_policy< Int_rep, Unify > {
typedef Handle_with_policy< Int_rep, Unify > Base;
Int_t( int i = 0) : Base( i) {}
Int_t( int i, int j) : Base( i, j) {} // template constructors
Int_t( int i, int j, int k) : Base( Base::USE_WITH_INITIALIZE_WITH) {
initialize_with( i, j + k);
}
int value() const { return ptr()->val; }
void set_value( int i) {
copy_on_write();
ptr()->val = i;
}
bool operator==( const Int_t<Unify>& i) const {
bool equal = (value() == i.value());
if ( equal)
Base::unify(i);
return equal;
}
};
\endcode
\b Example
We use a class hierarchy of two representation classes: one base class
for representing one integer, and a derived class to represent an
additional integer. To also added virtual get and set functions to
make this example similar to the one above.
We use the generic solution to pick the base class for \c Int_vrep
from the policy class. So all representations are class templates with
a policy and an allocator as parameter and the handle class
instantiates them. If this flexibility is not needed, one could derive
directly from the appropriate base class, i.e., \c
::CGAL::Reference_counted_hierarchy<Alloc> or \c
::CGAL::Reference_counted_hierarchy_with_union<Alloc>. \c Alloc is an
allocator of \c char's here.
\code
template <class Policy, class Alloc>
struct Int_vrep : public Policy::Hierarchy_base< Alloc>::Type {
int val;
virtual ::CGAL::Reference_counted_hierarchy<Alloc>* clone() {
return new Int_vrep( *this);
}
virtual int get_val() const { return val; }
virtual void set_val( int i) { val = i; }
Int_vrep( int i = 0) : val(i) {}
};
template <class Policy, class Alloc>
struct Int_vrep2 : public Int_vrep<Policy,Alloc> {
int val2;
virtual ::CGAL::Reference_counted_hierarchy<Alloc>* clone() {
return new Int_vrep2( *this);
}
virtual int get_val() const { return val + val2; }
virtual void set_val( int i) { val = i - val2; }
Int_vrep2( int i, int j) : Int_vrep<Policy,Alloc>(i), val2(j) {}
};
template < class Unify, class Alloc = CGAL_ALLOCATOR(char) >
struct Int_vt : public Handle_with_policy< Int_vrep<Unify,Alloc>, Unify > {
typedef Handle_with_policy< Int_vrep<Unify,Alloc>, Unify > Base;
Int_vt( int i = 0) : Base( new Int_vrep<Unify,Alloc>(i)) {}
Int_vt( int i, int j) : Base( new Int_vrep2<Unify,Alloc>(i,j)) {}
int value() const { return ptr()->get_val(); }
void set_value( int i) {
copy_on_write();
ptr()->set_val(i);
}
bool operator==( const Int_vt<Unify>& i) const {
bool equal = (value() == i.value());
if ( equal)
Base::unify(i);
return equal;
}
};
\endcode
*/
//@{
// Forward declarations of HandlePolicy classes
class Handle_policy_in_place;
class Handle_policy_no_union;
class Handle_policy_union;
class Handle_policy_union_and_reset;
// Reference counted representation
// ================================
//! the base class for bodies of reference counted representations \c T.
template <class T_>
class Reference_counted {
public:
typedef T_ rep_type;
typedef Reference_counted<rep_type> Self;
typedef rep_type* Rep_pointer;
private:
mutable unsigned int count; // reference counter
rep_type rep;
public:
Reference_counted() : count(1) {}
Reference_counted( const rep_type& t) : count(1), rep(t) {}
Reference_counted( const Self& r) : count(1), rep(r.rep) {}
void clear() { rep = rep_type(); }
Rep_pointer base_ptr() { return &rep; }
void add_reference() { ++count; }
void remove_reference() { --count; }
bool is_shared() const { return count > 1; }
int union_size() const { return 1+count; }
void add_union_size(int) {}
};
/*!\brief
* Base class for bodies of reference counted representations \c T
* with a forwarding pointer for identical representations.
*/
template <class T_>
class Reference_counted_with_forwarding {
public:
typedef T_ rep_type;
typedef Reference_counted_with_forwarding<rep_type> Self;
typedef rep_type* Rep_pointer;
friend class Handle_policy_union;
friend class Handle_policy_union_and_reset;
private:
mutable unsigned int count; // reference counter
mutable Self* next; // forwarding pointer to valid rep or 0
mutable int u_size; // union set size incl this rep and its handle
mutable rep_type rep;
public:
Reference_counted_with_forwarding()
: count(1), next(0), u_size(2) {}
Reference_counted_with_forwarding( const rep_type& t)
: count(1), next(0), u_size(2), rep(t) {}
Reference_counted_with_forwarding( const Self& r)
: count(1), next(0), u_size(2), rep(r.rep) {}
void clear() { rep = rep_type(); }
Rep_pointer base_ptr() { return &rep; }
void add_reference() { ++count; }
void remove_reference() { --count; }
bool is_shared() const { return count > 1; }
bool is_forwarding() const { return next != 0; }
int union_size() const { return u_size; }
void add_union_size(int a) {
CGAL_precondition( u_size + a > 0);
u_size += a;
}
};
struct Reference_counted_hierarchy_base {};
/*!\brief Base class for reference counted representations with a class
* hierarchy of different representations. Needs an allocator for \c char's
* as parameter.
*/
template <class Allocator_ = CGAL_ALLOCATOR(char)>
class Reference_counted_hierarchy : public Reference_counted_hierarchy_base {
// make sure it's always a char allocator
typedef typename Allocator_::template rebind< char> Char_alloc_rebind;
typedef typename Char_alloc_rebind::other Char_allocator;
static Char_allocator alloc;
public:
void* operator new(size_t bytes) { return alloc.allocate( bytes); }
void operator delete(void* p, size_t bytes) {
alloc.deallocate((char*)p, bytes);
}
public:
typedef Allocator_ Allocator;
typedef Reference_counted_hierarchy<Allocator> Self;
typedef Self* Rep_pointer;
private:
mutable unsigned int count; // reference counter
public:
Reference_counted_hierarchy() : count(1) {}
Reference_counted_hierarchy( const Self&) : count(1) {}
Rep_pointer base_ptr() { return this; }
void add_reference() { ++count; }
void remove_reference() { --count; }
bool is_shared() const { return count > 1; }
int union_size() const { return 1+count; }
void add_union_size(int) {}
//! returns a copy of \c this. Can be implemented like
//! <tt>return new Derived_type( *this);</tt>
virtual Self* clone() = 0;
//! the virtual destructor is essential for proper memory management here.
virtual ~Reference_counted_hierarchy() {}
//! can be used to minimize memory consumption once it is known that this
//! representation is not used anymore and only needed to keep a fowarding
//! pointer. One example would be cleaning up dynamically allocated
//! data, or another example would be overwriting a \c leda::real with
//! a default constructed value to free its old expression tree. However,
//! this function can also be savely ignored and kept empty.
virtual void clear() {}
};
template <class Alloc>
typename Reference_counted_hierarchy<Alloc>::Char_allocator
Reference_counted_hierarchy<Alloc>::alloc;
/*!\brief Base class for reference counted representations with a class
* hierarchy of different representations. Needs an allocator for \c char's
* as parameter.
*/
template <class Allocator_ = CGAL_ALLOCATOR(char)>
class Reference_counted_hierarchy_with_union
: public Reference_counted_hierarchy<Allocator_>
{
friend class Handle_policy_union;
friend class Handle_policy_union_and_reset;
public:
typedef Allocator_ Allocator;
typedef Reference_counted_hierarchy_with_union<Allocator> Self;
private:
mutable Self* next; // forwarding pointer to valid rep or 0
mutable int u_size; // union set size incl this rep and its handle
public:
Reference_counted_hierarchy_with_union() :
Reference_counted_hierarchy<Allocator_>(), next(0), u_size(2) {}
bool is_forwarding() const { return next != 0; }
int union_size() const { return u_size; }
void add_union_size(int a) {
CGAL_precondition( u_size + a > 0);
u_size += a;
}
};
// Handle for reference counted representation
// ===========================================
namespace Intern {
// Some helper classes to select representation between single class
// representations and class hierarchy representations.
// the representation type including a reference counter.
// The handle allocates objects of this type. This is the version
// for the single representation type.
template <class T, int HandleHierarchyPolicy>
struct Rep_bind_reference_counted {
typedef Reference_counted<T> Rep;
};
// the representation type including a reference counter.
// The handle allocates objects of this type. This is the version
// for the class hierarchy of representation types.
template <class T>
struct Rep_bind_reference_counted<T, true> {
typedef T Rep;
};
// the two versions for Reference_counted_with_forwarding
template <class T, int HandleHierarchyPolicy>
struct Rep_bind_reference_counted_with_forwarding {
typedef Reference_counted_with_forwarding<T> Rep;
};
// the representation type including a reference counter.
// The handle allocates objects of this type. This is the version
// for the class hierarchy of representation types.
template <class T>
struct Rep_bind_reference_counted_with_forwarding<T, true> {
Rep_bind_reference_counted_with_forwarding() {
// make sure we derived from the right type
typedef typename T::Allocator Alloc;
typedef ::CGAL::Reference_counted_hierarchy_with_union<Alloc>
Reference_counted_hierarchy_with_union;
CGAL_USE_TYPE(Reference_counted_hierarchy_with_union);
CGAL_static_assertion((
::CGAL::is_same_or_derived< Reference_counted_hierarchy_with_union, T >::value ));
}
typedef T Rep;
};
}
/*! \brief Policy class for \c Handle_with_policy that stores the
representation directly without reference counting and without dynamic
memory allocation, is actually \e not a model of the \c HandlePolicy
concept, but can be used instead of one. It selects a different
specialized implementation of \c Handle_with_policy. It works only with
the single representation type, not with a class hierarchy of
representation types since they need the pointer in the handle
for the polymorphy.
*/
class Handle_policy_in_place {};
/*!\brief
* Policy class for \c Handle_with_policy<T> that ignores unifying of
* identical representations \c T, is a model of the \c HandlePolicy concept.
*/
class Handle_policy_no_union {
public:
/*!\brief
* A rebind mechanism to create the representation type.
*/
template <class T, int hierarchy>
struct Rep_bind {
//! the representation type including a reference counter.
//! The handle allocates objects of this type.
typedef typename
Intern::Rep_bind_reference_counted<T,hierarchy>::Rep Rep;
};
/*!\brief
* A rebind mechanism to access the base class for class hierarchies
* of representations.
*
* The base classes can be used directly, but this
* rebind mechamism allows the implementation of handle-rep classes
* that are parameterized with the policy class only and adapt to
* the necessary base class.
*/
template <class Alloc>
struct Hierarchy_base {
//! type that can be used as base class for the representation type.
typedef Reference_counted_hierarchy<Alloc> Type;
};
/*! \brief unifies the representations of the two handles \a h and \a g.
* The effect is void here.
*
* \pre The representations represent the same value and one could be
* replaced by the other.
*/
template <class H>
static void unify( const H& h, const H& g) {
(void)h; // avoid warnings for unused parameters
(void)g; // but keep the names in the definition for the doc.
}
//! finds the currently valid representation for the handle \a h
//! and returns a pointer to its stored value of type \a T.
template <class H>
static typename H::Rep_pointer find( const H& h) {
return h.ptr_->base_ptr();
}
};
/*!\brief
* Policy class for \c Handle_with_policy that implements unifying of
* identical representations \c T with trees and path compression, is a
* model of the \c HandlePolicy concept.
*/
class Handle_policy_union {
public:
/*!\brief
* A rebind mechanism to create the representation type.
*/
template <class T, int hierarchy>
struct Rep_bind {
//! this default constructor contains some compile-time checks.
Rep_bind() {
//Intern::Rep_bind_reference_counted_with_forwarding<T, hierarchy>
// check;
// (void)check;
(void)Intern::Rep_bind_reference_counted_with_forwarding<T, hierarchy>();
}
//! the representation type including a reference counter.
//! The handle allocates objects of this type.
typedef typename Intern::Rep_bind_reference_counted_with_forwarding<T,
hierarchy>::Rep Rep;
};
/*!\brief
* A rebind mechanism to access the base class for class hierarchies
* of representations.
*
* The base classes can be used directly, but this
* rebind mechamism allows the implementation of handle-rep classes
* that are parameterized with the policy class only and adapt to
* the necessary base class.
*/
template <class Alloc>
struct Hierarchy_base {
//! type that can be used as base class for the representation type.
typedef Reference_counted_hierarchy_with_union<Alloc> Type;
};
/*! \brief unifies the representations of the two handles \a h and \a g.
Performs union.
\pre The representations represent the same value and one can be
replaced by the other. The handles \a h and \a g are already
the representatives found by the find operation and \a h is not
equal to \a g. The tree representing the union of \a h has size
not smaller than the corresponding tree size of \a g.
*/
template <class H>
static void unify_large_small( const H& h, const H& g) {
typename H::Rep* hrep = h.ptr_;
typename H::Rep* grep = g.ptr_;
CGAL_precondition( ! grep->is_forwarding());
CGAL_precondition( hrep->union_size() >= grep->union_size());
grep->add_union_size(-1);
// make g point to h's rep.
if ( grep->is_shared()) {
// grep survises the loss of one reference
// and hrep gets one more reference
grep->remove_reference();
hrep->add_reference();
hrep->add_union_size( grep->union_size());
grep->next = hrep;
} else {
g.delete_rep( grep); // did not survive loss of handle g
}
// redirect handle g and incr. hrep's counter
g.ptr_ = hrep;
hrep->add_reference();
hrep->add_union_size(1);
}
/*! \brief unifies the representations of the two handles \a h and \a g.
Performs union with path compression.
\pre The representations represent the same value and one can be
replaced by the other.
*/
template <class H>
static void unify( const H& h, const H& g) {
if ( find(h) != find(g)) {
if ( h.ptr_->union_size() > g.ptr_->union_size())
unify_large_small( h, g); // make g point to h's rep.
else
unify_large_small( g, h); // make h point to g's rep.
}
}
/*! \brief finds the currently valid representation for the handle \a h
and returns a pointer to its stored value of type \a T. Performs
path-compression to speed-up later union operations.
*/
template <class H>
static typename H::Rep_pointer find( const H& h) {
typedef typename H::Rep Rep;
if ( h.ptr_->is_forwarding()) {
// find new valid representation
Rep* new_rep = h.ptr_;
while ( new_rep->next != 0)
new_rep = static_cast<Rep*>(new_rep->next);
// path compression: assign new rep to all reps seen on the path
// update reference count properly: all reps on the path loose
// one reference, and the new_rep gains all of them unless
// the rep on the path get actually deleted.
Rep* rep = h.ptr_;
while ( rep != new_rep) {
Rep* tmp = static_cast<Rep*>(rep->next);
if ( rep->is_shared()) {
// rep survives the loss of one reference
// and new_rep gets one more reference
rep->remove_reference();
if ( tmp != new_rep) {
// re-link rep to the new_rep
rep->next = new_rep;
new_rep->add_reference();
}
} else {
h.delete_rep( rep); // we have to delete the current rep
}
rep = tmp;
}
// hook h to new_rep
h.ptr_ = new_rep;
new_rep->add_reference();
}
return h.ptr_->base_ptr();
}
};
/*!\brief Policy class for \c Handle_with_policy that implements unifying of
* identical representations \c T with trees and path compression.
*
* It also
* sets the unused representation immediately to the default constructed
* representation \c T(), which can help to free memory if the
* representation is dynamically allocated and potentially large, e.g.,
* \c leda::real. This class is a model of the \c HandlePolicy concept.
*/
class Handle_policy_union_and_reset {
public:
/*!\brief
* A rebind mechanism to create the representation type.
*/
template <class T, int hierarchy>
struct Rep_bind {
//! this default constructor contains some compile-time checks.
Rep_bind() {
//Intern::Rep_bind_reference_counted_with_forwarding<T, hierarchy>
// check;
// (void)check;
(void)Intern::Rep_bind_reference_counted_with_forwarding<T, hierarchy>();
}
//! the representation type including a reference counter.
//! The handle allocates objects of this type.
typedef typename Intern::Rep_bind_reference_counted_with_forwarding<T,
hierarchy>::Rep Rep;
};
/*!\brief
* A rebind mechanism to access the base class for class hierarchies
* of representations.
*
* The base classes can be used directly, but this
* rebind mechamism allows the implementation of handle-rep classes
* that are parameterized with the policy class only and adapt to
* the necessary base class.
*/
template <class Alloc>
struct Hierarchy_base {
//! type that can be used as base class for the representation type.
typedef Reference_counted_hierarchy_with_union<Alloc> Type;
};
// abbreviation to re-use its implementation below.
typedef Handle_policy_union U;
/*! \brief unifies the representations of the two handles \a h and \a g.
Performs union with path compression and assigns a default
constructed value of the representation type \c Rep to the
superfluous representation.
\pre The representations represent the same value and one can be
replaced by the other.
*/
template <class H>
static void unify( const H& h, const H& g) {
if ( find(h) != find(g)) {
if ( h.ptr_->union_size() > g.ptr_->union_size()) {
// reset representation in g to default construction of T
if ( g.ptr_->is_shared())
g.ptr_->clear();
U::unify_large_small( h, g); // make g point to h's rep.
} else {
// reset representation in h to default construction of T
if ( h.ptr_->is_shared())
h.ptr_->clear();
U::unify_large_small( g, h); // make h point to g's rep.
}
}
}
/*! \brief finds the currently valid representation for the handle \a h
and returns a pointer to its stored value of type \a T. Performs
path-compression to speed-up later union operations.
*/
template <class H>
static typename H::Rep_pointer find( const H& h) { return U::find(h); }
};
/*! \brief the base class for handles of reference counted representations of
\c T.
There are two fundamentally different usages of this base class:
- with a single representation class. In this case the handle
manages allocation and deallocation and the type \c T can
be an arbitrary type---the handle adds the necessary reference
counter internally.
- with a hierarchy of representation classes. Type \c T will be
the common base class of this hierarchy and it has to be derived
itself from either \c ::CGAL::Reference_counted_hierarchy or
\c ::CGAL::Reference_counted_hierarchy_with_union, both parameterized
with an allocator. The allocator in the handle will not be used in
this scenario, since the handle class does not allocate any
representations. Instead, the handle class derived from this handle
base class is allocating the different representations with the
\c new operator. In this case, the allocator in the base class
of \c T is used.
The handle class distinguishes between these two alternative
usages by checking if \c T is derived from one of the two base
classes mentioned for the second alternative. If not, it picks the
first alternative.
In the second alternative, the correct base class, \c
::CGAL::Reference_counted_hierarchy_with_union, has to be used
if the policy class is one of \c class Handle_policy_union r \c
Handle_policy_union_and_reset. Otherwise, the other base class can
be used to save space.
The policy class \c Handle_policy_in_place is incompatible with the class
hierarchy for representation classes since the pointer in the
handle class would be missing.
The dependency of the base classes for \c T and the policy classes
is also encoded in the policy classes and can be used to write
generic handle-rep scheme classes. To do that one can derive \c T
from the expressions \c Policy::Hierarchy_base<Alloc>::Type
assuming that \c Policy is the handle policy and \c Alloc is the
allocator. Btw, the allocator is used as an allocator of character
arrays here.
\see \link Handle Handle for Reference Counting\endlink for
an example for each of the two alternative usages.
The template parameters are:
- \b T: is one of the two following:
- an arbitrary type but it must be a model of the
\c DefaultConstructible concept if the default constructor
of the handle is used.
- a type derived from \c Reference_counted_hierarchy<Alloc> or
\c Reference_counted_hierarchy_with_union<Alloc> implementing
their virtual member function interface, namely a \c clone()
function.
- \b HandlePolicy: a model of the \c HandlePolicy concept or the
\c Handle_policy_in_place class template that selects a specialized
implementation without reference counting. Has the
default \c Handle_policy_no_union.
- \b Allocator_: a model of the \c Allocator concept,
has the default \c CGAL_ALLOCATOR(T).
*/
template <class T_,
class HandlePolicy = Handle_policy_no_union,
class Allocator_ = CGAL_ALLOCATOR(T_)>
class Handle_with_policy {
public:
//! first template parameter
typedef T_ Handled_type;
//! the handle type itself.
typedef Handle_with_policy< Handled_type, HandlePolicy, Allocator_> Self;
//! the instantiated model of the \c HandlePolicy concept.
typedef HandlePolicy Handle_policy;
//! the allocator type.
typedef Allocator_ Allocator;
enum { is_class_hierarchy =
::CGAL::is_same_or_derived< Reference_counted_hierarchy_base, Handled_type>::value };
typedef typename Handle_policy::template Rep_bind< Handled_type, is_class_hierarchy > Bind;
// instantiate Rep_bind to activate compile time check in there
static Bind bind;
// Define type that is used for function matching
typedef typename ::boost::mpl::if_c<
is_class_hierarchy,
::CGAL::Tag_true,
::CGAL::Tag_false >::type
Class_hierarchy;
//! the internal representation, i.e., \c T plus a reference count
//! (if needed), or just \c T if we derived from the base class to
//! support a class hierarchy for the representations.
typedef typename Bind::Rep Rep;
typedef typename Rep::Rep_pointer Rep_pointer;
typedef typename Allocator_::template rebind<Rep>::other Rep_allocator;
//! integer type for identifying a representation.
typedef std::ptrdiff_t Id_type;
friend class Handle_policy_no_union;
friend class Handle_policy_union;
friend class Handle_policy_union_and_reset;
private:
mutable Rep* ptr_;
// We have to distinguish between allocating single representations
// and where we have a class hierarchy of representations, where the
// user is responsible for allocating the first representations
// and we can just \c clone and delete them.
static Rep_allocator allocator;
static Rep* new_rep( const Rep& rep) {
CGAL_static_assertion( !(
::CGAL::is_same_or_derived< Reference_counted_hierarchy_base, Handled_type >::value ));
Rep* p = allocator.allocate(1);
allocator.construct(p, rep);
return p;
}
static void delete_rep( Rep* p, ::CGAL::Tag_false ) {
allocator.destroy( p);
allocator.deallocate( p, 1);
}
static void delete_rep( Rep* p, ::CGAL::Tag_true ) {
delete p;
}
static void delete_rep( Rep* p) { delete_rep(p, Class_hierarchy()); }
static Rep* clone_rep( Rep* p, ::CGAL::Tag_false ) {
return new_rep( *p);
}
static Rep* clone_rep( Rep* p, ::CGAL::Tag_true ) {
return static_cast<Rep*>(p->clone());
}
static Rep* clone_rep( Rep* p) { return clone_rep( p, Class_hierarchy()); }
void remove_reference() {
// cleans up the possible chain of forwarding reps
Handle_policy::find( *this);
if ( ! is_shared()) {
delete_rep( ptr_);
} else {
ptr_->remove_reference();
ptr_->add_union_size( -1);
}
}
template <class TT>
Rep* make_from_single_arg( const TT& t, ::CGAL::Tag_false ) {
return new_rep( Rep( Handled_type(t)));
}
template <class TT>
Rep* make_from_single_arg( TT t, ::CGAL::Tag_true ) {
//Bind bind_; // trigger compile-time check
// (void)bind_;
(void)Bind(); // shouldn't this be enough to trigger?
return t; // has to be a pointer convertible to Rep*
}
protected:
//! protected access to the stored representation
Handled_type* ptr() { return static_cast<Handled_type*>(Handle_policy::find(*this));}
//! protected access to the stored representation
const Handled_type* ptr() const {
return static_cast<const Handled_type*>(Handle_policy::find( *this));
}
//! unify two representations. \pre The two representations describe
//! the same value and one can be replaced by the other, i.e., the
//! values are immutable, or protected from changes with \c copy_on_write()
//! calls!
void unify( const Self& h) const { Handle_policy::unify( *this, h); }
//! can be called before modifying a shared representation
//! to get an own copy of the representation which avoids effecting the
//! other sharing handles. Does nothing if representation is actually
//! not shared.
void copy_on_write() {
Handle_policy::find( *this);
if ( is_shared() ) {
Rep* tmp_ptr = clone_rep( ptr_);
ptr_->remove_reference();
ptr_->add_union_size( -1);
ptr_ = tmp_ptr;
}
}
//! used with special protected constructor
enum Use_with_initialize_with {
USE_WITH_INITIALIZE_WITH //!< used with special protected constructor
//!< of \c Handle_with_policy.
};
//! special constructor, postpones the construction of the representation
//! to one of the \c initialize_with() functions. An object is in an
//! invalid state (and will report a failed precondition later) if
//! it is not initialized with an \c initialize_with() function call
//! after this constructor. Applicable for single representation but
//! also for a class hierarchy of representations.
Handle_with_policy( Use_with_initialize_with) : ptr_( 0) {}
//! constructor used for class hierarchies of representations, where
//! the handle class derived from this handle creates the different
//! representations itself with the \c new operator. Except for this
//! constructor, the the one with the \c Use_with_initialize_with
//! argument, and the single argument template constructor no other
//! constructor will work for class hierarchies of representations.
Handle_with_policy( Rep* p) : ptr_( p) {
CGAL_static_assertion((
::CGAL::is_same_or_derived< Reference_counted_hierarchy_base, Handled_type >::value ));
//Bind bind_; // trigger compile-time check
//(void)bind_;
(void)Bind();
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used. Applicable for a
//! class hierarchy of representations only, where the derived handle class
//! created the representation \c p with the \c new operator. No other
//! version of \c initialize_with is applicable in this case except
//! the template version with one argument.
void initialize_with( Rep* p) {
CGAL_static_assertion((
::CGAL::is_same_or_derived< Reference_counted_hierarchy_base, Handled_type >::value ));
//Bind bind_; // trigger compile-time check
//(void)bind_;
(void)Bind();
CGAL_precondition_msg( ptr_ == 0, "Handle_with_policy::initialize_with(): the "
"representation has already been initialized.");
ptr_ = p;
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
//! In case of the class hierarchy of representation classes,
//! this function is also chosen for pointers to newly allocated
//! representations that are types derived from \c T. In that case,
//! the pointer is just assigned to the internal pointer.
template <class T1>
void initialize_with( const T1& t1) {
CGAL_precondition_msg( ptr_ == 0, "Handle_with_policy::initialize_with(): the "
"representation has already been initialized.");
ptr_ = make_from_single_arg( t1, Class_hierarchy());
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2>
void initialize_with( const T1& t1, const T2& t2) {
CGAL_precondition_msg( ptr_ == 0, "Handle_with_policy::initialize_with(): the "
"representation has already been initialized.");
ptr_ = new_rep( Rep( Handled_type(t1,t2)));
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2, class T3>
void initialize_with( const T1& t1, const T2& t2, const T3& t3) {
CGAL_precondition_msg( ptr_ == 0, "Handle_with_policy::initialize_with(): the "
"representation has already been initialized.");
ptr_ = new_rep( Rep( Handled_type(t1,t2,t3)));
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2, class T3, class T4>
void initialize_with( const T1& t1, const T2& t2, const T3& t3,
const T4& t4) {
CGAL_precondition_msg( ptr_ == 0, "Handle_with_policy::initialize_with(): the "
"representation has already been initialized.");
ptr_ = new_rep( Rep( Handled_type(t1,t2,t3,t4)));
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2, class T3, class T4, class T5>
void initialize_with( const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5) {
CGAL_precondition_msg( ptr_ == 0, "Handle_with_policy::initialize_with(): the "
"representation has already been initialized.");
ptr_ = new_rep( Rep( Handled_type(t1,t2,t3,t4,t5)));
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2, class T3, class T4, class T5, class T6>
void initialize_with( const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6) {
CGAL_precondition_msg( ptr_ == 0, "Handle_with_policy::initialize_with(): the "
"representation has already been initialized.");
ptr_ = new_rep( Rep( Handled_type(t1,t2,t3,t4,t5,t6)));
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2, class T3, class T4, class T5, class T6,
class T7>
void initialize_with( const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6,
const T7& t7) {
CGAL_precondition_msg( ptr_ == 0, "Handle_with_policy::initialize_with(): the "
"representation has already been initialized.");
ptr_ = new_rep( Rep( Handled_type(t1,t2,t3,t4,t5,t6,t7)));
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2, class T3, class T4, class T5, class T6,
class T7, class T8>
void initialize_with( const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6,
const T7& t7, const T8& t8) {
CGAL_precondition_msg( ptr_ == 0, "Handle_with_policy::initialize_with(): the "
"representation has already been initialized.");
ptr_ = new_rep( Rep( Handled_type(t1,t2,t3,t4,t5,t6,t7,t8)));
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2, class T3, class T4, class T5, class T6,
class T7, class T8, class T9>
void initialize_with( const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6,
const T7& t7, const T8& t8, const T9& t9) {
CGAL_precondition_msg( ptr_ == 0, "Handle_with_policy::initialize_with(): the "
"representation has already been initialized.");
ptr_ = new_rep( Rep( Handled_type(t1,t2,t3,t4,t5,t6,t7,t8,t9)));
}
public:
//! default constructor.
Handle_with_policy() : ptr_( new_rep( Rep())) {}
//! copy constructor, increments reference count.
Handle_with_policy(const Self& h) {
CGAL_precondition_msg( h.ptr_ != 0, "Handle_with_policy::Handle_with_policy( Self): probably "
"used special protected constructor and not the "
"'initialize_with()' function.");
Handle_policy::find( h);
ptr_ = h.ptr_;
ptr_->add_reference();
ptr_->add_union_size( 1);
}
//! forwarding constructor passing its parameter to the representation
//! constructor. In case of the class hierarchy of representation classes,
//! this constructor is also chosen for pointers to newly allocated
//! representations that are types derived from \c T. In that case,
//! the pointer is just assigned to the internal pointer.
template <class T1>
explicit Handle_with_policy( const T1& t)
: ptr_( make_from_single_arg( t, Class_hierarchy())) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2>
Handle_with_policy( const T1& t1, const T2& t2) : ptr_( new_rep( Rep( Handled_type( t1, t2)))) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2, class T3>
Handle_with_policy( const T1& t1, const T2& t2, const T3& t3)
: ptr_( new_rep( Rep( Handled_type( t1, t2, t3)))) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2, class T3, class T4>
Handle_with_policy( const T1& t1, const T2& t2, const T3& t3, const T4& t4)
: ptr_( new_rep( Rep( Handled_type( t1, t2, t3, t4)))) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2, class T3, class T4, class T5>
Handle_with_policy( const T1& t1, const T2& t2, const T3& t3, const T4& t4,
const T5& t5)
: ptr_( new_rep( Rep( Handled_type( t1, t2, t3, t4, t5)))) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2, class T3, class T4, class T5, class T6>
Handle_with_policy( const T1& t1, const T2& t2, const T3& t3, const T4& t4,
const T5& t5, const T6& t6)
: ptr_( new_rep( Rep( Handled_type( t1, t2, t3, t4, t5, t6)))) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2, class T3, class T4, class T5, class T6,
class T7>
Handle_with_policy( const T1& t1, const T2& t2, const T3& t3, const T4& t4,
const T5& t5, const T6& t6, const T7& t7)
: ptr_( new_rep( Rep( Handled_type( t1, t2, t3, t4, t5, t6, t7)))) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2, class T3, class T4, class T5, class T6,
class T7, class T8>
Handle_with_policy( const T1& t1, const T2& t2, const T3& t3, const T4& t4,
const T5& t5, const T6& t6, const T7& t7, const T8& t8)
: ptr_( new_rep( Rep( Handled_type( t1, t2, t3, t4, t5, t6, t7, t8)))) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2, class T3, class T4, class T5, class T6,
class T7, class T8, class T9>
Handle_with_policy( const T1& t1, const T2& t2, const T3& t3, const T4& t4,
const T5& t5, const T6& t6, const T7& t7, const T8& t8,
const T9& t9)
: ptr_( new_rep( Rep( Handled_type( t1, t2, t3, t4, t5, t6, t7, t8, t9)))) {}
//! destructor, decrements reference count.
~Handle_with_policy() {
//Bind bind_; // trigger compile-time check
//(void)bind_;
(void)Bind();
CGAL_precondition_msg( ptr_ != 0, "Handle_with_policy::~Handle_with_policy(): probably used "
"special protected constructor and not the "
"'initialize_with()' function.");
remove_reference();
}
//! assignment, updates reference count correspondingly.
Self& operator=( const Self& h) {
CGAL_precondition_msg( h.ptr_ != 0, "Handle_with_policy::operator=(): probably "
"used special protected constructor and not the "
"'initialize_with()' function.");
Handle_policy::find( h);
h.ptr_->add_reference();
h.ptr_->add_union_size( 1);
remove_reference();
ptr_ = h.ptr_;
return *this;
}
//! returns \c true if both share the same representation.
bool is_identical( const Self& h) const { return ptr() == h.ptr(); }
//! returns a unique id value. Two handles share their representation
//! is their id values are identical.
Id_type id() const { return reinterpret_cast<Id_type>(&*ptr()); }
//! returns true if the representation is shared, i.e., the reference
//! counter is greater than one.
bool is_shared() const { return ptr_->is_shared(); }
//! returns \c true if the representation is actually forwarding to
//! another equivalent representation (happens only with the
//! union-find policies).
bool is_forwarding() const { return ptr_->is_forwarding(); }
//! returns the size of the union set including all reference counts that
//! have been accumulated so far for this representation.
int union_size() const { return ptr_->union_size(); }
// backwards compatible
bool identical( const Self& h) const { return is_identical(h); }
#ifdef CGAL_HANDLE_WITH_POLICY_INTERNAL_TEST
// provide access to pointer for testing only!!
const Rep* test_ptr() const { return ptr_; }
// provide access to pointer for testing only!!
bool test_identical_ptr( const Self& h) const { return ptr_ == h.ptr_; }
#endif // CGAL_HANDLE_WITH_POLICY_INTERNAL_TEST
};
// instantiate Rep_bind to activate compile time check in there
template <class T, class Policy, class Alloc>
typename Handle_with_policy<T,Policy,Alloc>::Bind Handle_with_policy<T,Policy,Alloc>::bind;
//! alternative syntax for \c h.id() to allow use with LEDA
/*! This is only provided for \c Handle_policy_no_union because
* ID numbers have to be fixed throughout an object's lifetime.
*/
template <class T, class A>
typename Handle_with_policy<T, Handle_policy_no_union, A>::Id_type
ID_Number(const Handle_with_policy<T, Handle_policy_no_union, A>& h)
{ return h.id(); }
template <class T, class Policy, class Alloc>
typename Handle_with_policy<T, Policy, Alloc>::Rep_allocator
Handle_with_policy<T, Policy, Alloc>::allocator;
/*! \brief specialization of the base class for handles for non-reference
counted representations.
Uses \c LEDA_MEMORY if available.
*/
template <class T_, class Allocator_>
class Handle_with_policy<T_, Handle_policy_in_place, Allocator_> {
public:
//! first template paramter
typedef T_ Handled_type;
//! the handle type itself.
typedef Handle_with_policy< Handled_type, Handle_policy_in_place, Allocator_> Self;
//! the model of the \c HandlePolicy concept.
typedef Handle_policy_in_place Handle_policy;
//! the allocator type.
typedef Allocator_ Allocator;
//! identify \c T with the internal representation \c Rep.
typedef Handled_type Rep;
//! integer type for identifying a representation.
typedef std::ptrdiff_t Id_type;
private:
// store the rep in place
Rep rep;
protected:
//! protected access to the stored representation
Handled_type* ptr() { return &rep; }
//! protected access to the stored representation
const Handled_type* ptr() const { return &rep; }
//! unify two representations, a null op here.
void unify( const Self&) const {}
//! can be called before modifying a shared representation
//! to get an own copy of the representation, a null op here.
void copy_on_write() {}
//! used with special protected constructor
enum Use_with_initialize_with {
USE_WITH_INITIALIZE_WITH //!< used with special protected constructor
};
//! special constructor, postpones the construction of the representation
//! to one of the \c initialize_with() functions. Requires default
//! constructor for \c T.
Handle_with_policy( Use_with_initialize_with) {}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1>
void initialize_with( const T1& t1) { rep = Rep(t1); }
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2>
void initialize_with( const T1& t1, const T2& t2) { rep = Rep(t1,t2); }
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2, class T3>
void initialize_with( const T1& t1, const T2& t2, const T3& t3) {
rep = Rep(t1,t2,t3);
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2, class T3, class T4>
void initialize_with( const T1& t1, const T2& t2, const T3& t3,
const T4& t4) {
rep = Rep(t1,t2,t3,t4);
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2, class T3, class T4, class T5>
void initialize_with( const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5) {
rep = Rep(t1,t2,t3,t4,t5);
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2, class T3, class T4, class T5, class T6>
void initialize_with( const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6) {
rep = Rep(t1,t2,t3,t4,t5,t6);
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2, class T3, class T4, class T5, class T6,
class T7>
void initialize_with( const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6,
const T7& t7) {
rep = Rep(t1,t2,t3,t4,t5,t6,t7);
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2, class T3, class T4, class T5, class T6,
class T7, class T8>
void initialize_with( const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6,
const T7& t7, const T8& t8) {
rep = Rep(t1,t2,t3,t4,t5,t6,t7,t8);
}
//! initializes the representation after the constructor from
//! \c USE_WITH_INITIALIZE_WITH has been used.
template <class T1, class T2, class T3, class T4, class T5, class T6,
class T7, class T8, class T9>
void initialize_with( const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6,
const T7& t7, const T8& t8, const T9& t9) {
rep = Rep(t1,t2,t3,t4,t5,t6,t7,t8,t9);
}
public:
//! default constructor.
Handle_with_policy() {}
//! copy constructor.
Handle_with_policy(const Self& h) : rep( h.rep) {}
//! forwarding constructor passing its parameter to the representation
//! constructor.
template <class T1>
explicit Handle_with_policy( const T1& t) : rep( Rep(t)) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2>
Handle_with_policy( const T1& t1, const T2& t2) : rep( Rep(t1,t2)) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2, class T3>
Handle_with_policy( const T1& t1, const T2& t2, const T3& t3) : rep( Rep(t1,t2,t3)) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2, class T3, class T4>
Handle_with_policy( const T1& t1, const T2& t2, const T3& t3, const T4& t4)
: rep( Rep( t1, t2, t3, t4)) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2, class T3, class T4, class T5>
Handle_with_policy( const T1& t1, const T2& t2, const T3& t3, const T4& t4,
const T5& t5)
: rep( Rep( t1, t2, t3, t4, t5)) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2, class T3, class T4, class T5, class T6>
Handle_with_policy( const T1& t1, const T2& t2, const T3& t3, const T4& t4,
const T5& t5, const T6& t6)
: rep( Rep( t1, t2, t3, t4, t5, t6)) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2, class T3, class T4, class T5, class T6,
class T7>
Handle_with_policy( const T1& t1, const T2& t2, const T3& t3, const T4& t4,
const T5& t5, const T6& t6, const T7& t7)
: rep( Rep( t1, t2, t3, t4, t5, t6, t7)) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2, class T3, class T4, class T5, class T6,
class T7, class T8>
Handle_with_policy( const T1& t1, const T2& t2, const T3& t3, const T4& t4,
const T5& t5, const T6& t6, const T7& t7, const T8& t8)
: rep( Rep( t1, t2, t3, t4, t5, t6, t7, t8)) {}
//! forwarding constructor passing its parameters to the representation
//! constructor.
template <class T1, class T2, class T3, class T4, class T5, class T6,
class T7, class T8, class T9>
Handle_with_policy( const T1& t1, const T2& t2, const T3& t3, const T4& t4,
const T5& t5, const T6& t6, const T7& t7, const T8& t8,
const T9& t9)
: rep( Rep( t1, t2, t3, t4, t5, t6, t7, t8, t9)) {}
//! returns \c true if both share the same representation.
bool is_identical( const Self& h) const { return this == &h; }
//! returns a unique id value. Two handles share their representation
//! is their id values are identical.
Id_type id() const { return ptr() - static_cast<Handled_type const*>(0); }
//! returns \c false since the representation is not shared for
//! this specialization.
bool is_shared() const { return false; }
//! returns \c false since the representation is not forwarding for
//! this specialization.
bool is_forwarding() const { return false; }
//! returns \c 1 as the union size for this specialization.
int union_size() const { return 1; }
// backwards compatible
bool identical( const Self& h) const { return is_identical(h); }
#ifdef CGAL_HANDLE_WITH_POLICY_INTERNAL_TEST
// provide access to pointer for testing only!!
const Rep* test_ptr() const { return *rep; }
// provide access to pointer for testing only!!
bool test_identical_ptr( const Self& h) const { return this == &h; }
#endif // CGAL_HANDLE_WITH_POLICY_INTERNAL_TEST
#ifdef CGAL_USE_LEDA
LEDA_MEMORY( Self)
#endif
};
template <class T, class HandlePolicy, class Allocator>
inline bool identical(const Handle_with_policy<T,HandlePolicy,Allocator> &h1, const Handle_with_policy<T,HandlePolicy,Allocator> &h2) { return h1.is_identical(h2); }
/*\brief
* This class' function call operator test whether one handle's \c id is
* less than the \c id of the other handle.
*
* "Less" is defined in terms of the second template argument,
* which defaults to \c std::less<Handle::Id_type>
*/
template <class Handle, class Less = std::less<typename Handle::Id_type> >
class Handle_id_less_than {
public:
//! result_type
typedef bool result_type;
//! type of first argument
typedef Handle first_argument_type;
//! type of second argument
typedef Handle second_argument_type;
//! returns \c true iff \c h1.id() < \c h2.id()
bool operator () (Handle h1, Handle h2) {
Less is_less;
return is_less(h1.id(), h2.id());
}
//! returns \c true iff \c h1.id() < \c h2.id()
bool operator () (Handle h1, Handle h2) const {
Less is_less;
return is_less(h1.id(), h2.id());
}
};
//@}
} //namespace CGAL
#endif // CGAL_HANDLE_WITH_POLICY_H
|