This file is indexed.

/usr/include/CGAL/LSCM_parameterizer_3.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
// Copyright (c) 2005  INRIA (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Laurent Saboret, Pierre Alliez, Bruno Levy


#ifndef CGAL_LSCM_PARAMETERIZER_3_H
#define CGAL_LSCM_PARAMETERIZER_3_H

#include <CGAL/circulator.h>
#include <CGAL/Timer.h>
#include <CGAL/OpenNL/linear_solver.h>

#include <CGAL/Parameterizer_traits_3.h>
#include <CGAL/Two_vertices_parameterizer_3.h>
#include <CGAL/surface_mesh_parameterization_assertions.h>

#include <iostream>

/// \file LSCM_parameterizer_3.h

namespace CGAL {


// ------------------------------------------------------------------------------------
// Declaration
// ------------------------------------------------------------------------------------

/// \ingroup  PkgSurfaceParameterizationMethods
///
/// The class LSCM_parameterizer_3 implements the
/// *Least Squares Conformal Maps (LSCM)* parameterization  \cite cgal:lprm-lscm-02.
///
/// This is a conformal parameterization, i.e. it attempts to preserve angles.
///
/// This is a free border parameterization. No need to map the surface's border
/// onto a convex polygon (only two pinned vertices are needed to ensure a
/// unique solution), but one-to-one mapping is *not* guaranteed.
///
/// \cgalModels `ParameterizerTraits_3`
///
///
/// \sa `CGAL::Parameterizer_traits_3<ParameterizationMesh_3>`
/// \sa `CGAL::Fixed_border_parameterizer_3<ParameterizationMesh_3, BorderParameterizer_3, SparseLinearAlgebraTraits_d>`
/// \sa `CGAL::Barycentric_mapping_parameterizer_3<ParameterizationMesh_3, BorderParameterizer_3, SparseLinearAlgebraTraits_d>`
/// \sa `CGAL::Discrete_authalic_parameterizer_3<ParameterizationMesh_3, BorderParameterizer_3, SparseLinearAlgebraTraits_d>`
/// \sa `CGAL::Discrete_conformal_map_parameterizer_3<ParameterizationMesh_3, BorderParameterizer_3, SparseLinearAlgebraTraits_d>`
/// \sa `CGAL::Mean_value_coordinates_parameterizer_3<ParameterizationMesh_3, BorderParameterizer_3, SparseLinearAlgebraTraits_d>`

template
<
    class ParameterizationMesh_3,     ///< 3D surface mesh.
    class BorderParameterizer_3
                = Two_vertices_parameterizer_3<ParameterizationMesh_3>,
                                      ///< Strategy to parameterize the surface border.
                                      ///< The minimum is to parameterize two vertices.
    class SparseLinearAlgebraTraits_d
                = OpenNL::SymmetricLinearSolverTraits<typename ParameterizationMesh_3::NT>
                                      ///< Traits class to solve a sparse linear system.
                                      ///< We may use a symmetric definite positive solver because LSCM
                                      ///< solves the system in the least squares sense.
>
class LSCM_parameterizer_3
    : public Parameterizer_traits_3<ParameterizationMesh_3>
{
// Private types
private:
    // Superclass
    typedef Parameterizer_traits_3<ParameterizationMesh_3>
                                            Base;

// Public types
public:
    // We have to repeat the types exported by superclass
    /// @cond SKIP_IN_MANUAL
    typedef typename Base::Error_code       Error_code;
    typedef ParameterizationMesh_3          Adaptor;
    /// @endcond

    /// Export BorderParameterizer_3 template parameter.
    typedef BorderParameterizer_3           Border_param;
    /// Export SparseLinearAlgebraTraits_d template parameter.
    typedef SparseLinearAlgebraTraits_d     Sparse_LA;

// Private types
private:
    // Mesh_Adaptor_3 subtypes:
    typedef typename Adaptor::NT            NT;
    typedef typename Adaptor::Point_2       Point_2;
    typedef typename Adaptor::Point_3       Point_3;
    typedef typename Adaptor::Vector_2      Vector_2;
    typedef typename Adaptor::Vector_3      Vector_3;
    typedef typename Adaptor::Facet         Facet;
    typedef typename Adaptor::Facet_handle  Facet_handle;
    typedef typename Adaptor::Facet_const_handle
                                            Facet_const_handle;
    typedef typename Adaptor::Facet_iterator Facet_iterator;
    typedef typename Adaptor::Facet_const_iterator
                                            Facet_const_iterator;
    typedef typename Adaptor::Vertex        Vertex;
    typedef typename Adaptor::Vertex_handle Vertex_handle;
    typedef typename Adaptor::Vertex_const_handle
                                            Vertex_const_handle;
    typedef typename Adaptor::Vertex_iterator Vertex_iterator;
    typedef typename Adaptor::Vertex_const_iterator
                                            Vertex_const_iterator;
    typedef typename Adaptor::Border_vertex_iterator
                                            Border_vertex_iterator;
    typedef typename Adaptor::Border_vertex_const_iterator
                                            Border_vertex_const_iterator;
    typedef typename Adaptor::Vertex_around_facet_circulator
                                            Vertex_around_facet_circulator;
    typedef typename Adaptor::Vertex_around_facet_const_circulator
                                            Vertex_around_facet_const_circulator;
    typedef typename Adaptor::Vertex_around_vertex_circulator
                                            Vertex_around_vertex_circulator;
    typedef typename Adaptor::Vertex_around_vertex_const_circulator
                                            Vertex_around_vertex_const_circulator;

    // SparseLinearAlgebraTraits_d subtypes:
    typedef typename Sparse_LA::Vector      Vector;
    typedef typename Sparse_LA::Matrix      Matrix;

    typedef typename OpenNL::LinearSolver<Sparse_LA>
                                            LeastSquaresSolver ;

// Public operations
public:
    /// Constructor
    LSCM_parameterizer_3(Border_param border_param = Border_param(),
                            ///< Object that maps the surface's border to 2D space
                       Sparse_LA sparse_la = Sparse_LA())
                            ///< Traits object to access a sparse linear system
        : m_borderParameterizer(border_param), m_linearAlgebra(sparse_la)
    {}

    // Default copy constructor and operator =() are fine

    /// Compute a one-to-one mapping from a triangular 3D surface mesh
    /// to a piece of the 2D space.
    /// The mapping is linear by pieces (linear in each triangle).
    /// The result is the (u,v) pair image of each vertex of the 3D surface.
    ///
    /// \pre `mesh` must be a surface with one connected component.
    /// \pre `mesh` must be a triangular mesh.
    virtual Error_code  parameterize(Adaptor& mesh);

// Private operations
private:
    /// Check parameterize() preconditions:
    /// - `mesh` must be a surface with one connected component.
    /// - `mesh` must be a triangular mesh.
    virtual Error_code  check_parameterize_preconditions(Adaptor& mesh);

    /// Initialize "A*X = B" linear system after
    /// (at least two) border vertices are parameterized.
    ///
    /// \pre Vertices must be indexed.
    /// \pre X and B must be allocated and empty.
    /// \pre At least 2 border vertices must be parameterized.
    void initialize_system_from_mesh_border(LeastSquaresSolver& solver,
                                            const Adaptor& mesh) ;

    /// Utility for setup_triangle_relations():
    /// Computes the coordinates of the vertices of a triangle
    /// in a local 2D orthonormal basis of the triangle's plane.
    void project_triangle(const Point_3& p0, const Point_3& p1, const Point_3& p2,  // in
                          Point_2& z0, Point_2& z1, Point_2& z2);                   // out

    /// Create two lines in the linear system per triangle (one for u, one for v).
    ///
    /// \pre vertices must be indexed.
    Error_code setup_triangle_relations(LeastSquaresSolver& solver,
                                        const Adaptor& mesh,
                                        Facet_const_handle facet) ;

    /// Copy X coordinates into the (u,v) pair of each vertex
    void set_mesh_uv_from_system(Adaptor& mesh,
                                 const LeastSquaresSolver& solver) ;

    /// Check parameterize() postconditions:
    /// - 3D -> 2D mapping is one-to-one.
    virtual Error_code check_parameterize_postconditions(const Adaptor& mesh,
                                                         const LeastSquaresSolver& solver);

    /// Check if 3D -> 2D mapping is one-to-one
    bool  is_one_to_one_mapping(const Adaptor& mesh,
                                 const LeastSquaresSolver& solver);

// Private accessors
private:
    /// Get the object that maps the surface's border onto a 2D space.
    Border_param&   get_border_parameterizer()    { return m_borderParameterizer; }

    /// Get the sparse linear algebra (traits object to access the linear system).
    Sparse_LA&      get_linear_algebra_traits() { return m_linearAlgebra; }

// Fields
private:
    /// Object that maps (at least two) border vertices onto a 2D space
    Border_param    m_borderParameterizer;

    /// Traits object to solve a sparse linear system
    Sparse_LA       m_linearAlgebra;
};


// ------------------------------------------------------------------------------------
// Implementation
// ------------------------------------------------------------------------------------

// Compute a one-to-one mapping from a triangular 3D surface mesh
// to a piece of the 2D space.
// The mapping is linear by pieces (linear in each triangle).
// The result is the (u,v) pair image of each vertex of the 3D surface.
//
// Preconditions:
// - `mesh` must be a surface with one connected component.
// - `mesh` must be a triangular mesh.
//
// Implementation note: Outline of the algorithm:
// 1) Find an initial solution by projecting on a plane.
// 2) Lock two vertices of the mesh.
// 3) Copy the initial u,v coordinates to OpenNL.
// 3) Construct the LSCM equation with OpenNL.
// 4) Solve the equation with OpenNL.
// 5) Copy OpenNL solution to the u,v coordinates.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
typename LSCM_parameterizer_3<Adaptor, Border_param, Sparse_LA>::Error_code
LSCM_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
parameterize(Adaptor& mesh)
{
#ifdef DEBUG_TRACE
    // Create timer for traces
    CGAL::Timer timer;
    timer.start();
#endif

    // Check preconditions
    Error_code status = check_parameterize_preconditions(mesh);
#ifdef DEBUG_TRACE
    std::cerr << "  parameterization preconditions: " << timer.time() << " seconds." << std::endl;
    timer.reset();
#endif
    if (status != Base::OK)
        return status;

    // Count vertices
    int nbVertices = mesh.count_mesh_vertices();

    // Index vertices from 0 to nbVertices-1
    mesh.index_mesh_vertices();

    // Mark all vertices as *not* "parameterized"
    Vertex_iterator vertexIt;
    for (vertexIt = mesh.mesh_vertices_begin();
        vertexIt != mesh.mesh_vertices_end();
        vertexIt++)
    {
        mesh.set_vertex_parameterized(vertexIt, false);
    }

    // Compute (u,v) for (at least two) border vertices
    // and mark them as "parameterized"
    status = get_border_parameterizer().parameterize_border(mesh);
#ifdef DEBUG_TRACE
    std::cerr << "  border vertices parameterization: " << timer.time() << " seconds." << std::endl;
    timer.reset();
#endif
    if (status != Base::OK)
        return status;

    // Create sparse linear system "A*X = B" of size 2*nbVertices x 2*nbVertices
    // (in fact, we need only 2 lines per triangle x 1 column per vertex)
    LeastSquaresSolver solver(2*nbVertices);
    solver.set_least_squares(true) ;

    // Initialize the "A*X = B" linear system after
    // (at least two) border vertices parameterization
    initialize_system_from_mesh_border(solver, mesh);

    // Fill the matrix for the other vertices
    solver.begin_system() ;
    for (Facet_iterator facetIt = mesh.mesh_facets_begin();
         facetIt != mesh.mesh_facets_end();
         facetIt++)
    {
        // Create two lines in the linear system per triangle (one for u, one for v)
        status = setup_triangle_relations(solver, mesh, facetIt);
            if (status != Base::OK)
            return status;
    }
    solver.end_system() ;
#ifdef DEBUG_TRACE
    std::cerr << "  matrix filling (" << 2*mesh.count_mesh_facets() << " x " << nbVertices << "): "
              << timer.time() << " seconds." << std::endl;
    timer.reset();
#endif

    // Solve the "A*X = B" linear system in the least squares sense
    if ( ! solver.solve() )
        status = Base::ERROR_CANNOT_SOLVE_LINEAR_SYSTEM;
#ifdef DEBUG_TRACE
    std::cerr << "  solving linear system: "
              << timer.time() << " seconds." << std::endl;
    timer.reset();
#endif
    if (status != Base::OK)
        return status;

    // Copy X coordinates into the (u,v) pair of each vertex
    set_mesh_uv_from_system(mesh, solver);
#ifdef DEBUG_TRACE
    std::cerr << "  copy computed UVs to mesh :"
              << timer.time() << " seconds." << std::endl;
    timer.reset();
#endif

    // Check postconditions
    status = check_parameterize_postconditions(mesh, solver);
#ifdef DEBUG_TRACE
    std::cerr << "  parameterization postconditions: " << timer.time() << " seconds." << std::endl;
#endif
    if (status != Base::OK)
        return status;

    return status;
}


// Check parameterize() preconditions:
// - `mesh` must be a surface with one connected component
// - `mesh` must be a triangular mesh
template<class Adaptor, class Border_param, class Sparse_LA>
inline
typename LSCM_parameterizer_3<Adaptor, Border_param, Sparse_LA>::Error_code
LSCM_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
check_parameterize_preconditions(Adaptor& mesh)
{
    Error_code status = Base::OK;	    // returned value

    // Helper class to compute genus or count borders, vertices, ...
    typedef Parameterization_mesh_feature_extractor<Adaptor>
                                            Mesh_feature_extractor;
    Mesh_feature_extractor feature_extractor(mesh);

    // Check that mesh is not empty
    if (mesh.mesh_vertices_begin() == mesh.mesh_vertices_end())
        status = Base::ERROR_EMPTY_MESH;
    if (status != Base::OK)
        return status;

    // The whole surface parameterization package is restricted to triangular meshes
    status = mesh.is_mesh_triangular() ? Base::OK
                                       : Base::ERROR_NON_TRIANGULAR_MESH;
    if (status != Base::OK)
        return status;

    // The whole package is restricted to surfaces: genus = 0,
    // one connected component and at least one border
    int genus = feature_extractor.get_genus();
    int nb_borders = feature_extractor.get_nb_borders();
    int nb_components = feature_extractor.get_nb_connex_components();
    status = (genus == 0 && nb_borders >= 1 && nb_components == 1)
           ? Base::OK
           : Base::ERROR_NO_TOPOLOGICAL_DISC;
    if (status != Base::OK)
        return status;

    return status;
}

// Initialize "A*X = B" linear system after
// (at least two) border vertices are parameterized
//
// Preconditions:
// - Vertices must be indexed
// - X and B must be allocated and empty
// - At least 2 border vertices must be parameterized
template<class Adaptor, class Border_param, class Sparse_LA>
inline
void LSCM_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
initialize_system_from_mesh_border(LeastSquaresSolver& solver,
                                   const Adaptor& mesh)
{
    for (Vertex_const_iterator it = mesh.mesh_vertices_begin();
        it != mesh.mesh_vertices_end();
        it++)
    {
        // Get vertex index in sparse linear system
        int index = mesh.get_vertex_index(it);

        // Get vertex (u,v) (meaningless if vertex is not parameterized)
        Point_2 uv = mesh.get_vertex_uv(it);

        // Write (u,v) in X (meaningless if vertex is not parameterized)
        // Note  : 2*index     --> u
        //         2*index + 1 --> v
        solver.variable(2*index    ).set_value(uv.x()) ;
        solver.variable(2*index + 1).set_value(uv.y()) ;

        // Copy (u,v) in B if vertex is parameterized
        if (mesh.is_vertex_parameterized(it)) {
            solver.variable(2*index    ).lock() ;
            solver.variable(2*index + 1).lock() ;
        }
    }
}

// Utility for setup_triangle_relations():
// Computes the coordinates of the vertices of a triangle
// in a local 2D orthonormal basis of the triangle's plane.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
void
LSCM_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
project_triangle(const Point_3& p0, const Point_3& p1, const Point_3& p2,   // in
                 Point_2& z0, Point_2& z1, Point_2& z2)                     // out
{
    Vector_3 X = p1 - p0 ;
    NT X_norm = std::sqrt(X*X);
    if (X_norm != 0.0)
        X = X / X_norm;

    Vector_3 Z = CGAL::cross_product(X, p2 - p0) ;
    NT Z_norm = std::sqrt(Z*Z);
    if (Z_norm != 0.0)
        Z = Z / Z_norm;

    Vector_3 Y = CGAL::cross_product(Z, X) ;

    const Point_3& O = p0 ;

    NT x0 = 0 ;
    NT y0 = 0 ;
    NT x1 = std::sqrt( (p1 - O)*(p1 - O) ) ;
    NT y1 = 0 ;
    NT x2 = (p2 - O) * X ;
    NT y2 = (p2 - O) * Y ;

    z0 = Point_2(x0,y0) ;
    z1 = Point_2(x1,y1) ;
    z2 = Point_2(x2,y2) ;
}


// Create two lines in the linear system per triangle (one for u, one for v)
//
// Precondition: vertices must be indexed
//
// Implementation note: LSCM equation is:
//       (Z1 - Z0)(U2 - U0) = (Z2 - Z0)(U1 - U0)
// where Uk = uk + i.v_k is the complex number corresponding to (u,v) coords
//       Zk = xk + i.yk is the complex number corresponding to local (x,y) coords
// cool: no divide with this expression; makes it more numerically stable
// in presence of degenerate triangles
template<class Adaptor, class Border_param, class Sparse_LA>
inline
typename LSCM_parameterizer_3<Adaptor, Border_param, Sparse_LA>::Error_code
LSCM_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
setup_triangle_relations(LeastSquaresSolver& solver,
                         const Adaptor& mesh,
                         Facet_const_handle facet)
{
    // Get the 3 vertices of the triangle
    Vertex_const_handle v0, v1, v2;
    int vertexIndex = 0;
    Vertex_around_facet_const_circulator cir = mesh.facet_vertices_begin(facet),
                                         end = cir;
    CGAL_For_all(cir, end)
    {
        if (vertexIndex == 0)
            v0 = cir;
        else if (vertexIndex == 1)
            v1 = cir;
        else if (vertexIndex == 2)
            v2 = cir;

        vertexIndex++;
    }
    if (vertexIndex != 3)
        return Base::ERROR_NON_TRIANGULAR_MESH;

    // Get the vertices index
    int id0 = mesh.get_vertex_index(v0) ;
    int id1 = mesh.get_vertex_index(v1) ;
    int id2 = mesh.get_vertex_index(v2) ;

    // Get the vertices position
    const Point_3& p0 = mesh.get_vertex_position(v0) ;
    const Point_3& p1 = mesh.get_vertex_position(v1) ;
    const Point_3& p2 = mesh.get_vertex_position(v2) ;

    // Computes the coordinates of the vertices of a triangle
    // in a local 2D orthonormal basis of the triangle's plane.
    Point_2 z0,z1,z2 ;
    project_triangle(p0,p1,p2,  //in
                     z0,z1,z2); // out
    Vector_2 z01 = z1 - z0 ;
    Vector_2 z02 = z2 - z0 ;
    NT a = z01.x() ;
    NT b = z01.y() ;
    NT c = z02.x() ;
    NT d = z02.y() ;
    CGAL_surface_mesh_parameterization_assertion(b == 0.0) ;

    // Create two lines in the linear system per triangle (one for u, one for v)
    // LSCM equation is:
    //       (Z1 - Z0)(U2 - U0) = (Z2 - Z0)(U1 - U0)
    // where Uk = uk + i.v_k is the complex number corresponding to (u,v) coords
    //       Zk = xk + i.yk is the complex number corresponding to local (x,y) coords
    //
    // Note  : 2*index     --> u
    //         2*index + 1 --> v
    int u0_id = 2*id0     ;
    int v0_id = 2*id0 + 1 ;
    int u1_id = 2*id1     ;
    int v1_id = 2*id1 + 1 ;
    int u2_id = 2*id2     ;
    int v2_id = 2*id2 + 1 ;
    //
    // Real part
    // Note: b = 0
    solver.begin_row() ;
    solver.add_coefficient(u0_id, -a+c)  ;
    solver.add_coefficient(v0_id,  b-d)  ;
    solver.add_coefficient(u1_id,   -c)  ;
    solver.add_coefficient(v1_id,    d)  ;
    solver.add_coefficient(u2_id,    a) ;
    solver.end_row() ;
    //
    // Imaginary part
    // Note: b = 0
    solver.begin_row() ;
    solver.add_coefficient(u0_id, -b+d) ;
    solver.add_coefficient(v0_id, -a+c) ;
    solver.add_coefficient(u1_id,   -d) ;
    solver.add_coefficient(v1_id,   -c) ;
    solver.add_coefficient(v2_id,    a) ;
    solver.end_row() ;

    return Base::OK;
}

// Copy X coordinates into the (u,v) pair of each vertex
template<class Adaptor, class Border_param, class Sparse_LA>
inline
void LSCM_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
set_mesh_uv_from_system(Adaptor& mesh,
                        const LeastSquaresSolver& solver)
{
    Vertex_iterator vertexIt;
    for (vertexIt = mesh.mesh_vertices_begin();
         vertexIt != mesh.mesh_vertices_end();
         vertexIt++)
    {
        int index = mesh.get_vertex_index(vertexIt);

        // Note  : 2*index     --> u
        //         2*index + 1 --> v
        NT u = solver.variable(2*index    ).value() ;
        NT v = solver.variable(2*index + 1).value() ;

        // Fill vertex (u,v) and mark it as "parameterized"
        mesh.set_vertex_uv(vertexIt, Point_2(u,v));
        mesh.set_vertex_parameterized(vertexIt, true);
    }
}

// Check parameterize() postconditions:
// - 3D -> 2D mapping is one-to-one.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
typename LSCM_parameterizer_3<Adaptor, Border_param, Sparse_LA>::Error_code
LSCM_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
check_parameterize_postconditions(const Adaptor& mesh,
                                  const LeastSquaresSolver& solver)
{
    Error_code status = Base::OK;

    // Check if 3D -> 2D mapping is one-to-one
    status = is_one_to_one_mapping(mesh, solver)
           ? Base::OK
           : Base::ERROR_NO_1_TO_1_MAPPING;
    if (status != Base::OK)
        return status;

    return status;
}

// Check if 3D -> 2D mapping is one-to-one.
template<class Adaptor, class Border_param, class Sparse_LA>
inline
bool LSCM_parameterizer_3<Adaptor, Border_param, Sparse_LA>::
is_one_to_one_mapping(const Adaptor& mesh,
                      const LeastSquaresSolver& )
{
    Vector_3    first_triangle_normal;

    for (Facet_const_iterator facetIt = mesh.mesh_facets_begin();
         facetIt != mesh.mesh_facets_end();
         facetIt++)
    {
        // Get 3 vertices of the facet
        Vertex_const_handle v0, v1, v2;
        int vertexIndex = 0;
        Vertex_around_facet_const_circulator cir = mesh.facet_vertices_begin(facetIt),
                                             end = cir;
        CGAL_For_all(cir, end)
        {
            if (vertexIndex == 0)
                v0 = cir;
            else if (vertexIndex == 1)
                v1 = cir;
            else if (vertexIndex == 2)
                v2 = cir;

            vertexIndex++;
        }
        CGAL_surface_mesh_parameterization_assertion(vertexIndex >= 3);

        // Get the 3 vertices position IN 2D
        Point_2 p0 = mesh.get_vertex_uv(v0) ;
        Point_2 p1 = mesh.get_vertex_uv(v1) ;
        Point_2 p2 = mesh.get_vertex_uv(v2) ;

        // Compute the facet normal
        Point_3 p0_3D(p0.x(), p0.y(), 0);
        Point_3 p1_3D(p1.x(), p1.y(), 0);
        Point_3 p2_3D(p2.x(), p2.y(), 0);
        Vector_3 v01_3D = p1_3D - p0_3D;
        Vector_3 v02_3D = p2_3D - p0_3D;
        Vector_3 normal = CGAL::cross_product(v01_3D, v02_3D);

        // Check that all normals are oriented the same way
        // => no 2D triangle is flipped
        if (cir == mesh.facet_vertices_begin(facetIt))
        {
            first_triangle_normal = normal;
        }
        else
        {
            if (first_triangle_normal * normal < 0)
                return false;
        }
    }

    return true;            // OK if we reach this point
}


} //namespace CGAL

#endif //CGAL_LSCM_PARAMETERIZER_3_H