/usr/include/CGAL/Lazy_exact_nt.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 | // Copyright (c) 1999-2007 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Sylvain Pion
#ifndef CGAL_LAZY_EXACT_NT_H
#define CGAL_LAZY_EXACT_NT_H
#define CGAL_int(T) typename First_if_different<int, T>::Type
#define CGAL_double(T) typename First_if_different<double, T>::Type
#define CGAL_To_interval(T) To_interval<T>
#include <CGAL/number_type_basic.h>
#include <CGAL/assertions.h>
#include <boost/iterator/transform_iterator.hpp> // for Root_of functor
#include <boost/operators.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/type_traits/is_arithmetic.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/mpl/if.hpp>
#include <boost/mpl/logical.hpp>
#include <CGAL/Interval_nt.h>
#include <CGAL/Handle.h>
#include <CGAL/NT_converter.h>
#include <CGAL/Profile_counter.h>
#include <CGAL/Lazy.h>
#include <CGAL/Sqrt_extension_fwd.h>
/*
* This file contains the definition of the number type Lazy_exact_nt<ET>,
* where ET is an exact number type (must provide the exact operations needed).
*
* Lazy_exact_nt<ET> provides a DAG-based lazy evaluation, like LEDA's real,
* Core's Expr, LEA's lazy rationals...
*
* The values are first approximated using Interval_base.
* The exactness is provided when needed by ET.
*
* Lazy_exact_nt<ET> is just a handle to the abstract base class
* Lazy_exact_nt_rep which has pure virtual methods .approx() and .exact().
* From this class derives one class per operation, with one constructor.
*
* The DAG is managed by :
* - Handle and Rep.
* - virtual functions to denote the various operators (instead of an enum).
*
* Other packages with vaguely similar design : APU, MetaCGAL, LOOK.
*/
/*
* TODO :
* - Generalize it for constructions at the kernel level.
* - Add mixed operations with ET too ?
* - Interval refinement functionnality ?
* - Separate the handle and the representation(s) in 2 files (?)
* maybe not a good idea, better if everything related to one operation is
* close together.
* - Add a CT template parameter ?
* - Add a string constant to provide an expression string (a la MetaCGAL) ?
* // virtual ostream operator<<() const = 0; // or string, like Core ?
* - Have a template-expression (?) thing that evaluates a temporary element,
* and allocates stuff in memory only when really needs to convert to the
* NT. (cf gmp++, and maybe other things, Blitz++, Synaps...)
*/
/*
* Interface of the rep classes:
* - .approx() returns Interval_nt<> (assumes rounding=nearest).
* [ only called from the handle, and declared in the base ]
* - .exact() returns ET, if not already done, computes recursively
*
* - .rafine_approx() ??
*/
namespace CGAL {
template <class NT> class Lazy_exact_nt;
// Abstract base representation class for lazy numbers
template <typename ET>
struct Lazy_exact_nt_rep : public Lazy_exact_nt<ET>::Self_rep
{
typedef typename Lazy_exact_nt<ET>::Self_rep Base;
Lazy_exact_nt_rep (const Interval_nt<false> & i)
: Base(i) {}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
}
#endif
};
// int constant
template <typename ET>
struct Lazy_exact_Int_Cst : public Lazy_exact_nt_rep<ET>
{
Lazy_exact_Int_Cst (int i)
: Lazy_exact_nt_rep<ET>(double(i)) {}
void update_exact() const { this->et = new ET((int)this->approx().inf()); }
};
// double constant
template <typename ET, typename X>
struct Lazy_exact_Cst : public Lazy_exact_nt_rep<ET>
{
Lazy_exact_Cst (X x)
: Lazy_exact_nt_rep<ET>(x), cste(x) {}
void update_exact() const { this->et = new ET(cste); }
private:
X cste;
};
// Exact constant
template <typename ET>
struct Lazy_exact_Ex_Cst : public Lazy_exact_nt_rep<ET>
{
Lazy_exact_Ex_Cst (const ET & e)
: Lazy_exact_nt_rep<ET>(CGAL_NTS to_interval(e))
{
this->et = new ET(e);
}
void update_exact() const { CGAL_error(); }
};
// Construction from a Lazy_exact_nt<ET1> (which keeps the lazyness).
template <typename ET, typename ET1>
class Lazy_lazy_exact_Cst : public Lazy_exact_nt_rep<ET>
{
mutable Lazy_exact_nt<ET1> l;
public:
Lazy_lazy_exact_Cst (const Lazy_exact_nt<ET1> &x)
: Lazy_exact_nt_rep<ET>(x.approx()), l(x)
{
this->set_depth(l.depth() + 1);
}
void update_exact() const
{
this->et = new ET(l.exact());
this->at = l.approx();
prune_dag();
}
void prune_dag() const { l = Lazy_exact_nt<ET1>(); }
};
// Unary operations: abs, sqrt, square.
// Binary operations: +, -, *, /, min, max.
// Base unary operation
template <typename ET>
struct Lazy_exact_unary : public Lazy_exact_nt_rep<ET>
{
mutable Lazy_exact_nt<ET> op1;
Lazy_exact_unary (const Interval_nt<false> &i, const Lazy_exact_nt<ET> &a)
: Lazy_exact_nt_rep<ET>(i), op1(a)
{
this->set_depth(op1.depth() + 1);
}
void prune_dag() const { op1 = Lazy_exact_nt<ET>(); }
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
if(this->is_lazy()){
msg(os, level, "Unary number operator:");
print_dag(op1, os, level+1);
}
}
#endif
};
// Base binary operation
template <typename ET, typename ET1 = ET, typename ET2 = ET>
struct Lazy_exact_binary : public Lazy_exact_nt_rep<ET>
{
mutable Lazy_exact_nt<ET1> op1;
mutable Lazy_exact_nt<ET2> op2;
Lazy_exact_binary (const Interval_nt<false> &i,
const Lazy_exact_nt<ET1> &a, const Lazy_exact_nt<ET2> &b)
: Lazy_exact_nt_rep<ET>(i), op1(a), op2(b)
{
this->set_depth((std::max)(op1.depth(), op2.depth()) + 1);
}
void prune_dag() const
{
op1 = Lazy_exact_nt<ET1>();
op2 = Lazy_exact_nt<ET2>();
}
#ifdef CGAL_LAZY_KERNEL_DEBUG
void
print_dag(std::ostream& os, int level) const
{
this->print_at_et(os, level);
if(this->is_lazy()){
msg(os, level, "Binary number operator:");
print_dag(op1, os, level+1);
print_dag(op2, os, level+1);
}
}
#endif
};
// Here we could use a template class for all operations (STL provides
// function objects plus, minus, multiplies, divides...). But it would require
// a template template parameter, and GCC 2.95 seems to crash easily with them.
// Macro for unary operations
#define CGAL_LAZY_UNARY_OP(OP, NAME) \
template <typename ET> \
struct NAME : public Lazy_exact_unary<ET> \
{ \
typedef typename Lazy_exact_unary<ET>::AT::Protector P; \
NAME (const Lazy_exact_nt<ET> &a) \
: Lazy_exact_unary<ET>((P(), OP(a.approx())), a) {} \
\
void update_exact() const \
{ \
this->et = new ET(OP(this->op1.exact())); \
if (!this->approx().is_point()) \
this->at = CGAL_NTS to_interval(*(this->et)); \
this->prune_dag(); \
} \
};
CGAL_LAZY_UNARY_OP(opposite, Lazy_exact_Opp)
CGAL_LAZY_UNARY_OP(CGAL_NTS abs, Lazy_exact_Abs)
CGAL_LAZY_UNARY_OP(CGAL_NTS square, Lazy_exact_Square)
CGAL_LAZY_UNARY_OP(CGAL_NTS sqrt, Lazy_exact_Sqrt)
// A macro for +, -, * and /
#define CGAL_LAZY_BINARY_OP(OP, NAME) \
template <typename ET, typename ET1 = ET, typename ET2 = ET> \
struct NAME : public Lazy_exact_binary<ET, ET1, ET2> \
{ \
typedef typename Lazy_exact_binary<ET,ET1,ET2>::AT::Protector P; \
NAME (const Lazy_exact_nt<ET1> &a, const Lazy_exact_nt<ET2> &b) \
: Lazy_exact_binary<ET, ET1, ET2>((P(), a.approx() OP b.approx()), a, b) {} \
\
void update_exact() const \
{ \
this->et = new ET(this->op1.exact() OP this->op2.exact()); \
if (!this->approx().is_point()) \
this->at = CGAL_NTS to_interval(*(this->et)); \
this->prune_dag(); \
} \
};
CGAL_LAZY_BINARY_OP(+, Lazy_exact_Add)
CGAL_LAZY_BINARY_OP(-, Lazy_exact_Sub)
CGAL_LAZY_BINARY_OP(*, Lazy_exact_Mul)
CGAL_LAZY_BINARY_OP(/, Lazy_exact_Div)
// Minimum
template <typename ET>
struct Lazy_exact_Min : public Lazy_exact_binary<ET>
{
Lazy_exact_Min (const Lazy_exact_nt<ET> &a, const Lazy_exact_nt<ET> &b)
: Lazy_exact_binary<ET>((CGAL::min)(a.approx(), b.approx()), a, b) {}
void update_exact() const
{
this->et = new ET((CGAL::min)(this->op1.exact(), this->op2.exact()));
if (!this->approx().is_point())
this->at = CGAL_NTS to_interval(*(this->et));
this->prune_dag();
}
};
// Maximum
template <typename ET>
struct Lazy_exact_Max : public Lazy_exact_binary<ET>
{
Lazy_exact_Max (const Lazy_exact_nt<ET> &a, const Lazy_exact_nt<ET> &b)
: Lazy_exact_binary<ET>((CGAL::max)(a.approx(), b.approx()), a, b) {}
void update_exact() const
{
this->et = new ET((CGAL::max)(this->op1.exact(), this->op2.exact()));
if (!this->approx().is_point())
this->at = CGAL_NTS to_interval(*(this->et));
this->prune_dag();
}
};
// The real number type, handle class
template <typename ET_>
class Lazy_exact_nt
: public Lazy<Interval_nt<false>, ET_, Lazy_exact_nt<ET_>, To_interval<ET_> >
, boost::ordered_euclidian_ring_operators2< Lazy_exact_nt<ET_>, int >
, boost::ordered_euclidian_ring_operators2< Lazy_exact_nt<ET_>, double >
{
public:
typedef Lazy_exact_nt<ET_> Self;
typedef Lazy<Interval_nt<false>, ET_, Self, To_interval<ET_> > Base;
typedef typename Base::Self_rep Self_rep;
typedef typename Base::ET ET; // undocumented
typedef typename Base::AT AT; // undocumented
typedef typename Base::Exact_type Exact_type;
typedef typename Base::Approximate_type Approximate_type;
public :
Lazy_exact_nt () {}
Lazy_exact_nt (Self_rep *r)
: Base(r) {}
// Also check that ET and AT are constructible from T?
template<class T>
Lazy_exact_nt (T i, typename boost::enable_if<boost::mpl::and_<
boost::mpl::or_<boost::is_arithmetic<T>, boost::is_enum<T> >,
boost::mpl::not_<boost::is_same<T,ET> > >,void*>::type=0)
: Base(new Lazy_exact_Cst<ET,T>(i)) {}
Lazy_exact_nt (const ET & e)
: Base(new Lazy_exact_Ex_Cst<ET>(e)){}
template <class ET1>
Lazy_exact_nt (const Lazy_exact_nt<ET1> &x,
typename boost::enable_if<is_implicit_convertible<ET1,ET>,int>::type=0)
: Base(new Lazy_lazy_exact_Cst<ET, ET1>(x)){}
template <class ET1>
explicit Lazy_exact_nt (const Lazy_exact_nt<ET1> &x,
typename boost::disable_if<is_implicit_convertible<ET1,ET>,int>::type=0)
: Base(new Lazy_lazy_exact_Cst<ET, ET1>(x)){}
Self operator+ () const
{ return *this; }
Self operator- () const
{ return new Lazy_exact_Opp<ET>(*this); }
Self & operator+=(const Self& b)
{ return *this = new Lazy_exact_Add<ET>(*this, b); }
Self & operator-=(const Self& b)
{ return *this = new Lazy_exact_Sub<ET>(*this, b); }
Self & operator*=(const Self& b)
{ return *this = new Lazy_exact_Mul<ET>(*this, b); }
Self & operator/=(const Self& b)
{
CGAL_precondition(b != 0);
return *this = new Lazy_exact_Div<ET>(*this, b);
}
// Mixed operators. (could be optimized ?)
Self & operator+=(CGAL_int(ET) b)
{ return *this = new Lazy_exact_Add<ET>(*this, b); }
Self & operator-=(CGAL_int(ET) b)
{ return *this = new Lazy_exact_Sub<ET>(*this, b); }
Self & operator*=(CGAL_int(ET) b)
{ return *this = new Lazy_exact_Mul<ET>(*this, b); }
Self & operator/=(CGAL_int(ET) b)
{
CGAL_precondition(b != 0);
return *this = new Lazy_exact_Div<ET>(*this, b);
}
Self & operator+=(CGAL_double(ET) b)
{ return *this = new Lazy_exact_Add<ET>(*this, b); }
Self & operator-=(CGAL_double(ET) b)
{ return *this = new Lazy_exact_Sub<ET>(*this, b); }
Self & operator*=(CGAL_double(ET) b)
{ return *this = new Lazy_exact_Mul<ET>(*this, b); }
Self & operator/=(CGAL_double(ET) b)
{
CGAL_precondition(b != 0);
return *this = new Lazy_exact_Div<ET>(*this, b);
}
// % kills filtering
Self & operator%=(const Self& b)
{
CGAL_precondition(b != 0);
ET res = this->exact();
res %= b.exact();
return *this = Lazy_exact_nt<ET>(res);
}
Self & operator%=(int b)
{
CGAL_precondition(b != 0);
ET res = this->exact();
res %= b;
return *this = Lazy_exact_nt<ET>(res);
}
Interval_nt<true> interval() const
{
const Interval_nt<false>& i = this->approx();
return Interval_nt<true>(i.inf(), i.sup());
}
Interval_nt_advanced approx_adv() const
{ return this->ptr()->approx(); }
static const double & get_relative_precision_of_to_double()
{
return relative_precision_of_to_double;
}
static void set_relative_precision_of_to_double(const double & d)
{
CGAL_assertion((0 < d) & (d < 1));
relative_precision_of_to_double = d;
}
bool identical(const Self& b) const
{
return ::CGAL::identical(
static_cast<const Handle &>(*this),
static_cast<const Handle &>(b));
}
template < typename T >
bool identical(const T&) const
{ return false; }
private:
static double relative_precision_of_to_double;
};
template <typename ET>
double Lazy_exact_nt<ET>::relative_precision_of_to_double = 0.00001;
template <typename ET1, typename ET2>
bool
operator<(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
if (a.identical(b))
return false;
Uncertain<bool> res = a.approx() < b.approx();
if (is_certain(res))
return get_certain(res);
CGAL_BRANCH_PROFILER_BRANCH(tmp);
return a.exact() < b.exact();
}
template <typename ET1, typename ET2>
bool
operator==(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
if (a.identical(b))
return true;
Uncertain<bool> res = a.approx() == b.approx();
if (is_certain(res))
return get_certain(res);
CGAL_BRANCH_PROFILER_BRANCH(tmp);
return a.exact() == b.exact();
}
template <typename ET1, typename ET2>
inline
bool
operator>(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return b < a; }
template <typename ET1, typename ET2>
inline
bool
operator>=(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return ! (a < b); }
template <typename ET1, typename ET2>
inline
bool
operator<=(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return b >= a; }
template <typename ET1, typename ET2>
inline
bool
operator!=(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{ return ! (a == b); }
template <typename ET>
inline
Lazy_exact_nt<ET>
operator%(const Lazy_exact_nt<ET>& a, const Lazy_exact_nt<ET>& b)
{
CGAL_PROFILER(std::string("calls to : ") + std::string(CGAL_PRETTY_FUNCTION));
CGAL_precondition(b != 0);
return Lazy_exact_nt<ET>(a) %= b;
}
// Mixed operators with int.
template <typename ET>
bool
operator<(const Lazy_exact_nt<ET>& a, int b)
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Uncertain<bool> res = a.approx() < b;
if (is_certain(res))
return res;
CGAL_BRANCH_PROFILER_BRANCH(tmp);
return a.exact() < b;
}
template <typename ET>
bool
operator>(const Lazy_exact_nt<ET>& a, int b)
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Uncertain<bool> res = b < a.approx();
if (is_certain(res))
return get_certain(res);
CGAL_BRANCH_PROFILER_BRANCH(tmp);
return b < a.exact();
}
template <typename ET>
bool
operator==(const Lazy_exact_nt<ET>& a, int b)
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Uncertain<bool> res = b == a.approx();
if (is_certain(res))
return get_certain(res);
CGAL_BRANCH_PROFILER_BRANCH(tmp);
return b == a.exact();
}
// Mixed operators with double.
template <typename ET>
bool
operator<(const Lazy_exact_nt<ET>& a, double b)
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Uncertain<bool> res = a.approx() < b;
if (is_certain(res))
return res;
CGAL_BRANCH_PROFILER_BRANCH(tmp);
return a.exact() < b;
}
template <typename ET>
bool
operator>(const Lazy_exact_nt<ET>& a, double b)
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Uncertain<bool> res = b < a.approx();
if (is_certain(res))
return res;
CGAL_BRANCH_PROFILER_BRANCH(tmp);
return b < a.exact();
}
template <typename ET>
bool
operator==(const Lazy_exact_nt<ET>& a, double b)
{
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Uncertain<bool> res = b == a.approx();
if (is_certain(res))
return res;
CGAL_BRANCH_PROFILER_BRANCH(tmp);
return b == a.exact();
}
template <typename ET1, typename ET2>
Lazy_exact_nt< typename Coercion_traits<ET1, ET2>::Type >
operator+(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
CGAL_PROFILER(std::string("calls to : ") + std::string(CGAL_PRETTY_FUNCTION));
return new Lazy_exact_Add<typename Coercion_traits<ET1, ET2>::Type,
ET1, ET2>(a, b);
}
template <typename ET1, typename ET2>
Lazy_exact_nt< typename Coercion_traits<ET1, ET2>::Type >
operator-(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
CGAL_PROFILER(std::string("calls to : ") + std::string(CGAL_PRETTY_FUNCTION));
return new Lazy_exact_Sub<typename Coercion_traits<ET1, ET2>::Type,
ET1, ET2>(a, b);
}
template <typename ET1, typename ET2>
Lazy_exact_nt< typename Coercion_traits<ET1, ET2>::Type >
operator*(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
CGAL_PROFILER(std::string("calls to : ") + std::string(CGAL_PRETTY_FUNCTION));
return new Lazy_exact_Mul<typename Coercion_traits<ET1, ET2>::Type,
ET1, ET2>(a, b);
}
template <typename ET1, typename ET2>
Lazy_exact_nt< typename Coercion_traits<ET1, ET2>::Type >
operator/(const Lazy_exact_nt<ET1>& a, const Lazy_exact_nt<ET2>& b)
{
CGAL_PROFILER(std::string("calls to : ") + std::string(CGAL_PRETTY_FUNCTION));
CGAL_precondition(b != 0);
return new Lazy_exact_Div<typename Coercion_traits<ET1, ET2>::Type,
ET1, ET2>(a, b);
}
//
// Algebraic structure traits
//
namespace INTERN_LAZY_EXACT_NT {
template< class NT, class Functor >
struct Simplify_selector {
struct Simplify : public std::unary_function<NT&, void> {
void operator()( NT& ) const {
// TODO: In the old implementation the Simplify-functor was the default
// (which does nothing). But this cannot be the correct way!?
}
};
};
template< class NT >
struct Simplify_selector< NT, Null_functor > {
typedef Null_functor Simplify;
};
template< class NT, class Functor >
struct Unit_part_selector {
struct Unit_part : public std::unary_function<NT, NT > {
NT operator()( const NT& x ) const {
return NT( CGAL_NTS unit_part( x.exact() ) );
}
};
};
template< class NT >
struct Unit_part_selector< NT, Null_functor > {
typedef Null_functor Unit_part;
};
template< class NT, class Functor >
struct Is_zero_selector {
struct Is_zero : public std::unary_function<NT, bool > {
bool operator()( const NT& x ) const {
return CGAL_NTS is_zero( x.exact() );
}
};
};
template< class NT >
struct Is_zero_selector< NT, Null_functor > {
typedef Null_functor Is_zero;
};
template< class NT, class Functor >
struct Is_one_selector {
struct Is_one : public std::unary_function<NT, bool > {
bool operator()( const NT& x ) const {
return CGAL_NTS is_one( x.exact() );
}
};
};
template< class NT >
struct Is_one_selector< NT, Null_functor > {
typedef Null_functor Is_one;
};
template< class NT, class Functor >
struct Square_selector {
struct Square : public std::unary_function<NT, NT > {
NT operator()( const NT& x ) const {
CGAL_PROFILER(std::string("calls to : ") + std::string(CGAL_PRETTY_FUNCTION));
return new Lazy_exact_Square<typename NT::ET>(x);
}
};
};
template< class NT >
struct Square_selector< NT, Null_functor > {
typedef Null_functor Square;
};
template< class NT, class Functor >
struct Integral_division_selector {
struct Integral_division : public std::binary_function<NT, NT, NT > {
NT operator()( const NT& x, const NT& y ) const {
return NT( CGAL_NTS integral_division( x.exact(), y.exact() ) );
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( NT )
};
};
template< class NT >
struct Integral_division_selector< NT, Null_functor > {
typedef Null_functor Integral_division;
};
template< class NT, class Functor >
struct Is_square_selector {
struct Is_square : public std::binary_function<NT, NT&, bool > {
bool operator()( const NT& x, NT& y ) const {
typename NT::ET y_et;
bool result = CGAL_NTS is_square( x.exact(), y_et );
y = NT(y_et);
return result;
}
bool operator()( const NT& x) const {
typename NT::ET y_et;
return CGAL_NTS is_square( x.exact(), y_et );
}
};
};
template< class NT >
struct Is_square_selector< NT, Null_functor > {
typedef Null_functor Is_square;
};
template <class NT, class AlgebraicStructureTag>
struct Sqrt_selector{
struct Sqrt : public std::unary_function<NT, NT > {
NT operator ()(const NT& x) const {
CGAL_PROFILER(std::string("calls to : ") + std::string(CGAL_PRETTY_FUNCTION));
CGAL_precondition(x >= 0);
return new Lazy_exact_Sqrt<typename NT::ET>(x);
}
};
};
template <class NT>
struct Sqrt_selector<NT,Null_functor> {
typedef Null_functor Sqrt;
};
template< class NT, class Functor >
struct Kth_root_selector {
struct Kth_root : public std::binary_function<int, NT, NT > {
NT operator()( int k, const NT& x ) const {
return NT( CGAL_NTS kth_root( k, x.exact() ) );
}
};
};
template< class NT >
struct Kth_root_selector< NT, Null_functor > {
typedef Null_functor Kth_root;
};
template< class NT, class Functor >
struct Root_of_selector {
private:
struct Cast{
typedef typename NT::ET result_type;
result_type operator()(const NT& lazy_exact) const {
return lazy_exact.exact();
}
};
public:
struct Root_of {
// typedef typename Functor::Boundary Boundary;
typedef NT result_type;
template< class Input_iterator >
NT operator()( int k, Input_iterator begin, Input_iterator end ) const {
Cast cast;
return NT( typename Algebraic_structure_traits<typename NT::ET>::
Root_of()( k,
::boost::make_transform_iterator( begin, cast ),
::boost::make_transform_iterator( end, cast ) ) );
}
};
};
template< class NT >
struct Root_of_selector< NT, Null_functor > {
typedef Null_functor Root_of;
};
template< class NT, class Functor >
struct Gcd_selector {
struct Gcd : public std::binary_function<NT, NT, NT > {
NT operator()( const NT& x, const NT& y ) const {
CGAL_PROFILER(std::string("calls to : ") + std::string(CGAL_PRETTY_FUNCTION));
return NT( CGAL_NTS gcd( x.exact(), y.exact() ) );
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( NT )
};
};
template< class NT >
struct Gcd_selector< NT, Null_functor > {
typedef Null_functor Gcd;
};
template< class NT, class Functor >
struct Div_selector {
struct Div : public std::binary_function<NT, NT, NT > {
NT operator()( const NT& x, const NT& y ) const {
return NT( CGAL_NTS div( x.exact(), y.exact() ) );
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( NT )
};
};
template< class NT >
struct Div_selector< NT, Null_functor > {
typedef Null_functor Div;
};
template< class NT, class Functor >
struct Inverse_selector {
struct Inverse {
typedef NT result_type;
NT operator()( const NT& x ) const {
return NT( 1 ) / x ;
}
};
};
template< class NT >
struct Inverse_selector< NT, Null_functor > {
typedef Null_functor Inverse;
};
template< class NT, class Functor >
struct Mod_selector {
struct Mod : public std::binary_function<NT, NT, NT > {
NT operator()( const NT& x, const NT& y ) const {
return NT( CGAL_NTS mod( x.exact(), y.exact() ) );
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( NT )
};
};
template< class NT >
struct Mod_selector< NT, Null_functor > {
typedef Null_functor Mod;
};
template< class NT, class Functor >
struct Div_mod_selector {
struct Div_mod {
typedef void result_type;
typedef NT first_argument_type;
typedef NT second_argument_type;
typedef NT& third_argument_type;
typedef NT& fourth_argument_type;
void operator()( const NT& x, const NT& y, NT& q, NT& r ) const {
typename NT::ET q_et;
typename NT::ET r_et;
CGAL_NTS div_mod( x.exact(), y.exact(), q_et, r_et );
q = NT( q_et );
r = NT( r_et );
}
template< class NT1, class NT2 >
void operator()( const NT1& x, const NT2& y,
NT& q,
NT& r ) const {
CGAL_static_assertion((::boost::is_same<
typename Coercion_traits< NT1, NT2 >::Type, NT
>::value));
typename Coercion_traits< NT1, NT2 >::Cast cast;
operator()( cast(x), cast(y), q, r );
}
};
};
template< class NT >
struct Div_mod_selector< NT, Null_functor >{
typedef Null_functor Div_mod;
};
} // namespace INTERN_LAZY_EXACT_NT
template <class ET>
class Algebraic_structure_traits< Lazy_exact_nt<ET> >
:public Algebraic_structure_traits_base
< Lazy_exact_nt<ET>,
typename Algebraic_structure_traits<ET>::Algebraic_category >
{
private:
typedef Algebraic_structure_traits<ET> AST_ET;
typedef typename AST_ET::Algebraic_category ET_as_tag;
public:
typedef typename AST_ET::Is_exact Is_exact;
typedef typename AST_ET::Is_numerical_sensitive Is_numerical_sensitive;
typedef typename INTERN_LAZY_EXACT_NT::Simplify_selector
<Lazy_exact_nt<ET>, typename AST_ET::Simplify > ::Simplify Simplify;
typedef typename INTERN_LAZY_EXACT_NT::Unit_part_selector
<Lazy_exact_nt<ET>, typename AST_ET::Unit_part > ::Unit_part Unit_part;
typedef typename INTERN_LAZY_EXACT_NT::Is_zero_selector
<Lazy_exact_nt<ET>, typename AST_ET::Is_zero > ::Is_zero Is_zero;
typedef typename INTERN_LAZY_EXACT_NT::Is_one_selector
<Lazy_exact_nt<ET>, typename AST_ET::Is_one > ::Is_one Is_one;
typedef typename INTERN_LAZY_EXACT_NT::Square_selector
<Lazy_exact_nt<ET>, typename AST_ET::Square > ::Square Square;
typedef typename INTERN_LAZY_EXACT_NT::Integral_division_selector
<Lazy_exact_nt<ET>, typename AST_ET::Integral_division> ::Integral_division Integral_division;
typedef typename INTERN_LAZY_EXACT_NT::Is_square_selector
<Lazy_exact_nt<ET>, typename AST_ET::Is_square > ::Is_square Is_square;
typedef typename INTERN_LAZY_EXACT_NT::Sqrt_selector
<Lazy_exact_nt<ET>, typename AST_ET::Sqrt> ::Sqrt Sqrt;
typedef typename INTERN_LAZY_EXACT_NT::Kth_root_selector
<Lazy_exact_nt<ET>, typename AST_ET::Kth_root > ::Kth_root Kth_root;
typedef typename INTERN_LAZY_EXACT_NT::Root_of_selector
<Lazy_exact_nt<ET>, typename AST_ET::Root_of > ::Root_of Root_of;
typedef typename INTERN_LAZY_EXACT_NT::Gcd_selector
<Lazy_exact_nt<ET>, typename AST_ET::Gcd > ::Gcd Gcd;
typedef typename INTERN_LAZY_EXACT_NT::Div_selector
<Lazy_exact_nt<ET>, typename AST_ET::Div > ::Div Div;
typedef typename INTERN_LAZY_EXACT_NT::Mod_selector
<Lazy_exact_nt<ET>, typename AST_ET::Mod > ::Mod Mod;
typedef typename INTERN_LAZY_EXACT_NT::Div_mod_selector
<Lazy_exact_nt<ET>, typename AST_ET::Div_mod > ::Div_mod Div_mod;
typedef typename INTERN_LAZY_EXACT_NT::Inverse_selector
<Lazy_exact_nt<ET>, typename AST_ET::Inverse > ::Inverse Inverse;
};
//
// Real embeddalbe traits
//
template < typename ET > class Real_embeddable_traits< Lazy_exact_nt<ET> >
: public INTERN_RET::Real_embeddable_traits_base< Lazy_exact_nt<ET> , CGAL::Tag_true > {
// Every type ET of Lazy_exact_nt<ET> has to be real embeddable.
CGAL_static_assertion((::boost::is_same< typename Real_embeddable_traits< ET >
::Is_real_embeddable, Tag_true >::value));
public:
typedef Lazy_exact_nt<ET> Type;
class Abs
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& a ) const {
CGAL_PROFILER(std::string("calls to : ") + std::string(CGAL_PRETTY_FUNCTION));
return new Lazy_exact_Abs<ET>(a);
}
};
class Sgn
: public std::unary_function< Type, ::CGAL::Sign > {
public:
::CGAL::Sign operator()( const Type& a ) const {
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
Uncertain< ::CGAL::Sign> res = CGAL_NTS sign(a.approx());
if (is_certain(res))
return get_certain(res);
CGAL_BRANCH_PROFILER_BRANCH(tmp);
return CGAL_NTS sign(a.exact());
}
};
class Compare
: public std::binary_function< Type, Type,
Comparison_result > {
public:
Comparison_result operator()( const Type& a,
const Type& b ) const {
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
if (a.identical(b))
return EQUAL;
Uncertain<Comparison_result> res = CGAL_NTS compare(a.approx(), b.approx());
if (is_certain(res))
return get_certain(res);
CGAL_BRANCH_PROFILER_BRANCH(tmp);
return CGAL_NTS compare(a.exact(), b.exact());
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT( Type,
Comparison_result )
};
class To_double
: public std::unary_function< Type, double > {
public:
double operator()( const Type& a ) const {
CGAL_BRANCH_PROFILER(std::string(" failures/calls to : ") + std::string(CGAL_PRETTY_FUNCTION), tmp);
const Interval_nt<false>& app = a.approx();
double r;
if (fit_in_double(app, r))
return r;
// If it's precise enough, then OK.
if (has_smaller_relative_precision(app,
Lazy_exact_nt<ET>::get_relative_precision_of_to_double()))
return CGAL_NTS to_double(app);
CGAL_BRANCH_PROFILER_BRANCH(tmp);
// Otherwise we trigger exact computation first,
// which will refine the approximation.
a.exact();
return CGAL_NTS to_double(a.approx());
}
};
class To_interval
: public std::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& a ) const {
CGAL_PROFILER(std::string("calls to : ") + std::string(CGAL_PRETTY_FUNCTION));
return a.approx().pair();
}
};
class Is_finite
: public std::unary_function< Type, bool > {
public:
bool operator()( const Type& x ) const {
return CGAL_NTS is_finite(x.approx()) || CGAL_NTS is_finite(x.exact());
}
};
};
template <class ET1, class ET2, class F>
class Lazy_exact_nt_coercion_traits_base {
public:
typedef Tag_false Are_explicit_interoperable;
typedef Tag_false Are_implicit_interoperable;
//typedef Null_type Type
typedef Null_functor Cast;
};
template <class ET1, class ET2>
class Lazy_exact_nt_coercion_traits_base < Lazy_exact_nt<ET1>, Lazy_exact_nt<ET2>, Tag_true >
{
typedef Coercion_traits<ET1,ET2> CT;
typedef Lazy_exact_nt<ET1> A;
typedef Lazy_exact_nt<ET2> B;
public:
typedef Lazy_exact_nt<typename CT::Type> Type;
typedef typename CT::Are_implicit_interoperable Are_explicit_interoperable;
typedef typename CT::Are_implicit_interoperable Are_implicit_interoperable;
class Cast{
private:
template <class T>
Type cast(const T& x) const{ return Type(x); }
Type cast(const Type& x) const{ return x; }
public:
typedef Type result_type;
Type operator()(const A& x) const { return cast(x);}
Type operator()(const B& x) const { return cast(x);}
};
};
CGAL_DEFINE_COERCION_TRAITS_FOR_SELF_TEM(Lazy_exact_nt<ET>, class ET)
CGAL_DEFINE_COERCION_TRAITS_FROM_TO_TEM(ET,Lazy_exact_nt<ET>,class ET)
template<class ET1, class ET2 >
struct Coercion_traits< Lazy_exact_nt<ET1>, Lazy_exact_nt<ET2> >
:public Lazy_exact_nt_coercion_traits_base
<Lazy_exact_nt<ET1>, Lazy_exact_nt<ET2>,
typename Coercion_traits<ET1,ET2>::Are_implicit_interoperable>{};
#define CGAL_COERCION_TRAITS_LAZY_EXACT(NTX) \
template<class ET> \
struct Coercion_traits< NTX, Lazy_exact_nt<ET> >{ \
private: \
typedef Coercion_traits<NTX,ET> CT; \
typedef Lazy_exact_nt<ET> NT; \
public: \
typedef typename CT::Are_explicit_interoperable \
Are_explicit_interoperable; \
typedef typename CT::Are_implicit_interoperable \
Are_implicit_interoperable; \
private: \
static const bool interoperable \
=boost::is_same< Are_implicit_interoperable, Tag_false>::value; \
public: \
typedef typename boost::mpl::if_c <interoperable,Null_tag,NT> \
::type Type; \
typedef typename boost::mpl::if_c <interoperable, Null_functor, \
INTERN_CT::Cast_from_to<NTX,NT> >::type Cast; \
}; \
\
template<class ET> \
struct Coercion_traits< Lazy_exact_nt<ET>, NTX > \
:public Coercion_traits<NTX, Lazy_exact_nt<ET> >{}; \
CGAL_COERCION_TRAITS_LAZY_EXACT(int)
CGAL_COERCION_TRAITS_LAZY_EXACT(short)
CGAL_COERCION_TRAITS_LAZY_EXACT(double)
CGAL_COERCION_TRAITS_LAZY_EXACT(float)
#undef CGAL_COERCION_TRAITS_LAZY_EXACT
namespace INTERN_LAZY_EXACT_NT {
template < typename NT, typename TAG > class Fraction_traits_base;
template < class ET >
class Fraction_traits_base <Lazy_exact_nt<ET> , CGAL::Tag_false>
: public Fraction_traits<ET> {
public:
typedef Lazy_exact_nt<ET> Type;
};
template < class ET >
class Fraction_traits_base <Lazy_exact_nt<ET> , CGAL::Tag_true>{
typedef Fraction_traits<ET> ETT;
typedef typename ETT::Numerator_type ET_numerator;
typedef typename ETT::Denominator_type ET_denominator;
public:
typedef Lazy_exact_nt<ET> Type;
typedef Tag_true Is_fraction;
typedef Lazy_exact_nt<ET_numerator> Numerator_type;
typedef Lazy_exact_nt<ET_denominator> Denominator_type;
struct Common_factor : std::binary_function<Denominator_type,Denominator_type,Denominator_type>{
Denominator_type operator()(const Denominator_type& a, const Denominator_type& b) const {
typename ETT::Common_factor common_factor;
return Denominator_type(common_factor(a.exact(),b.exact()));
}
};
struct Compose : std::binary_function<Type,Numerator_type,Denominator_type>{
Type operator()(const Numerator_type& n, const Denominator_type& d) const {
typename ETT::Compose compose;
return Type(compose(n.exact(),d.exact()));
}
};
struct Decompose {
typedef void result_type;
typedef Type first_argument_type;
typedef Numerator_type second_argument_type;
typedef Denominator_type third_argument_type;
void operator()(const Type& f, Numerator_type& n, Denominator_type& d) const {
typename ETT::Decompose decompose;
ET_numerator nn;
ET_denominator dd;
decompose(f.exact(),nn,dd);
n = Numerator_type(nn);
d = Denominator_type(dd);
}
};
};
} // namespace INTERN_LAZY_EXACT_NT
template < class ET >
class Fraction_traits< Lazy_exact_nt< ET > >
:public INTERN_LAZY_EXACT_NT::Fraction_traits_base<Lazy_exact_nt<ET>,
typename Fraction_traits<ET>::Is_fraction>
{};
template < class ET >
struct Min <Lazy_exact_nt<ET> >
: public std::binary_function<Lazy_exact_nt<ET>,Lazy_exact_nt<ET>,Lazy_exact_nt<ET> > {
Lazy_exact_nt<ET> operator()( const Lazy_exact_nt<ET>& x, const Lazy_exact_nt<ET>& y) const
{
if (x.identical(y)){
return x;
}
Uncertain<bool> res = x.approx() < y.approx();
if(is_certain(res)){
return res.make_certain() ? x : y;
}
CGAL_PROFILER(std::string("calls to : ") + std::string(CGAL_PRETTY_FUNCTION));
return new Lazy_exact_Min<ET>(x, y);
}
};
template < class ET >
struct Max <Lazy_exact_nt<ET> >
: public std::binary_function<Lazy_exact_nt<ET>,Lazy_exact_nt<ET>,Lazy_exact_nt<ET> > {
Lazy_exact_nt<ET> operator()( const Lazy_exact_nt<ET>& x, const Lazy_exact_nt<ET>& y) const
{
if (x.identical(y)){
return x;
}
Uncertain<bool> res = x.approx() > y.approx();
if(is_certain(res)){
return res.make_certain() ? x : y;
}
CGAL_PROFILER(std::string("calls to : ") + std::string(CGAL_PRETTY_FUNCTION));
return new Lazy_exact_Max<ET>(x, y);
}
};
template<typename ET> inline
Lazy_exact_nt<ET> min BOOST_PREVENT_MACRO_SUBSTITUTION(
const Lazy_exact_nt<ET> & x,
const Lazy_exact_nt<ET> & y){
return CGAL::Min<Lazy_exact_nt<ET> > ()(x,y);
}
template<typename ET> inline
Lazy_exact_nt<ET> max BOOST_PREVENT_MACRO_SUBSTITUTION(
const Lazy_exact_nt<ET> & x,
const Lazy_exact_nt<ET> & y){
return CGAL::Max<Lazy_exact_nt<ET> > ()(x,y);
}
template <typename ET>
std::ostream &
operator<< (std::ostream & os, const Lazy_exact_nt<ET> & a)
{ return os << CGAL_NTS to_double(a); }
template <typename ET>
std::istream &
operator>> (std::istream & is, Lazy_exact_nt<ET> & a)
{
ET e;
is >> e;
if (is)
a = e;
return is;
}
template< class ET >
class Is_valid< Lazy_exact_nt<ET> >
: public std::unary_function< Lazy_exact_nt<ET>, bool > {
public :
bool operator()( const Lazy_exact_nt<ET>& x ) const {
return is_valid(x.approx());
}
};
template < typename ET >
struct NT_converter < Lazy_exact_nt<ET>, ET >
{
const ET& operator()(const Lazy_exact_nt<ET> &a) const
{ return a.exact(); }
};
namespace internal {
// Returns true if the value is representable by a double and to_double()
// would return it. False means "don't know" (the exact number type is not
// queried).
template < typename ET >
inline bool
fit_in_double(const Lazy_exact_nt<ET>& l, double& r)
{ return fit_in_double(l.approx(), r); }
} // namespace internal
template <class NT_,class ROOT_, class ACDE_TAG_, class FP_TAG>
void
print(std::ostream &os, const CGAL::Lazy_exact_nt< Sqrt_extension<NT_,ROOT_,ACDE_TAG_,FP_TAG> > &r)
{
print(os,r.exact());
}
namespace INTERN_LAZY_EXACT_NT {
template< typename ET , typename Tag>
class Modular_traits_base{
public:
typedef Lazy_exact_nt<ET> NT;
typedef ::CGAL::Tag_false Is_modularizable;
typedef ::CGAL::Null_functor Residue_type;
typedef ::CGAL::Null_functor Modular_image;
typedef ::CGAL::Null_functor Modular_image_representative;
};
template< typename ET >
class Modular_traits_base<ET, Tag_true>{
typedef Modular_traits<ET> MT_ET;
public:
typedef Lazy_exact_nt<ET> NT;
typedef CGAL::Tag_true Is_modularizable;
typedef typename MT_ET::Residue_type Residue_type;
struct Modular_image{
Residue_type operator()(const NT& a){
typename MT_ET::Modular_image modular_image;
return modular_image(a.exact());
}
};
struct Modular_image_representative{
NT operator()(const Residue_type& x){
typename MT_ET::Modular_image_representative modular_image_representative;
return NT(modular_image_representative(x));
}
};
};
} // namespace INTERN_LAZY_EXACT_NT
template < typename ET >
class Modular_traits<Lazy_exact_nt<ET> >
:public INTERN_LAZY_EXACT_NT::Modular_traits_base
<ET,typename Modular_traits<ET>::Is_modularizable>{};
#undef CGAL_double
#undef CGAL_int
#undef CGAL_To_interval
} //namespace CGAL
namespace Eigen {
template<class> struct NumTraits;
template<typename ET> struct NumTraits<CGAL::Lazy_exact_nt<ET> >
{
typedef CGAL::Lazy_exact_nt<ET> Real;
// typedef CGAL::Lazy_exact_nt<ET> NonInteger;
typedef CGAL::Lazy_exact_nt<typename NumTraits<ET>::NonInteger> NonInteger;
typedef CGAL::Lazy_exact_nt<ET> Nested;
static inline Real epsilon() { return 0; }
enum {
IsInteger = NumTraits<ET>::IsInteger,
IsSigned = NumTraits<ET>::IsSigned,
IsComplex = NumTraits<ET>::IsComplex,
RequireInitialization = 1,
ReadCost = 8,
AddCost = 30,
MulCost = 30
};
};
}
#endif // CGAL_LAZY_EXACT_NT_H
|