/usr/include/CGAL/Linear_cell_complex.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 | // Copyright (c) 2011 CNRS and LIRIS' Establishments (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Guillaume Damiand <guillaume.damiand@liris.cnrs.fr>
//
#ifndef CGAL_LINEAR_CELL_COMPLEX_H
#define CGAL_LINEAR_CELL_COMPLEX_H 1
#include <CGAL/Combinatorial_map.h>
#include <CGAL/Combinatorial_map_operations.h>
#include <CGAL/Combinatorial_map_constructors.h>
#include <CGAL/Linear_cell_complex_min_items.h>
#include <CGAL/Linear_cell_complex_traits.h>
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
namespace CGAL {
/** @file Linear_cell_complex.h
* Definition of a linear cell complex, i.e. a combinatorial map with points
* associated to all vertices.
*/
/** Linear_cell_complex class.
* The Linear_cell_complex a nD object with linear geometry, ie
* an nD combinatorial map with point associated to each vertex.
*/
template < unsigned int d_, unsigned int ambient_dim = d_,
class Traits_ = Linear_cell_complex_traits<ambient_dim>,
class Items_ = Linear_cell_complex_min_items<d_>,
class Alloc_ = CGAL_ALLOCATOR(int),
template<unsigned int,class,class,class>
class CMap = Combinatorial_map_base >
class Linear_cell_complex:
public CMap<d_,Linear_cell_complex<d_, ambient_dim, Traits_,
Items_, Alloc_>, Items_, Alloc_>
{
public:
typedef Linear_cell_complex<d_, ambient_dim,
Traits_, Items_, Alloc_> Self;
typedef Combinatorial_map_base<d_, Self, Items_, Alloc_> Base;
typedef Traits_ Traits;
typedef Items_ Items;
typedef Alloc_ Alloc;
static const unsigned int ambient_dimension = ambient_dim;
static const unsigned int dimension = Base::dimension;
typedef typename Base::Dart_handle Dart_handle;
typedef typename Base::Dart_const_handle Dart_const_handle;
typedef typename Base::Helper Helper;
typedef typename Traits::Point Point;
typedef typename Traits::Vector Vector;
typedef typename Traits::FT FT;
typedef typename Base::Dart_range Dart_range;
typedef typename Base::template Attribute_type<0>::type Vertex_attribute;
typedef typename Base::template Attribute_handle<0>::type
Vertex_attribute_handle;
typedef typename Base::template Attribute_const_handle<0>::type
Vertex_attribute_const_handle;
typedef typename Base::template Attribute_range<0>::type
Vertex_attribute_range;
typedef typename Base::template Attribute_const_range<0>::type
Vertex_attribute_const_range;
/// To use previous definition of create_dart methods.
using Base::create_dart;
/** Create a vertex attribute.
* @return an handle on the new attribute.
*/
#ifndef CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES
template<typename ...Args>
Vertex_attribute_handle create_vertex_attribute(const Args&... args)
{ return Base::template create_attribute<0>(args...); }
#else
Vertex_attribute_handle create_vertex_attribute()
{ return Base::template create_attribute<0>(); }
template<typename T1>
Vertex_attribute_handle create_vertex_attribute(const T1& t1)
{ return Base::template create_attribute<0>(t1); }
template<typename T1, typename T2>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2)
{ return Base::template create_attribute<0>(t1, t2); }
template<typename T1, typename T2, typename T3>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2, const T3 &t3)
{ return Base::template create_attribute<0>(t1, t2, t3); }
template<typename T1, typename T2, typename T3, typename T4>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2, const T3 &t3, const T4 &t4)
{ return Base::template create_attribute<0>(t1, t2, t3, t4); }
template<typename T1, typename T2, typename T3, typename T4, typename T5>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2, const T3 &t3, const T4 &t4,
const T5 &t5)
{ return Base::template create_attribute<0>(t1, t2, t3, t4, t5); }
template<typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2, const T3 &t3, const T4 &t4,
const T5 &t5, const T6 &t6)
{ return Base::template create_attribute<0>(t1, t2, t3, t4, t5, t6); }
template<typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2, const T3 &t3, const T4 &t4,
const T5 &t5, const T6 &t6, const T7 &t7)
{ return Base::template create_attribute<0>(t1, t2, t3, t4, t5, t6, t7); }
template<typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2, const T3 &t3, const T4 &t4,
const T5 &t5, const T6 &t6, const T7 &t7, const T8 &t8)
{ return Base::template create_attribute<0>(t1, t2, t3, t4, t5, t6, t7,
t8); }
template<typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8, typename T9>
Vertex_attribute_handle create_vertex_attribute
(const T1& t1, const T2 &t2, const T3 &t3, const T4 &t4,
const T5 &t5, const T6 &t6, const T7 &t7, const T8 &t8, const T9 &t9)
{ return Base::template create_attribute<0>(t1, t2, t3, t4, t5, t6, t7,
t8, t9); }
#endif // CGAL_CFG_NO_CPP0X_VARIADIC_TEMPLATES
/**
* Create a new dart associated with an handle through an attribute.
* @param ahandle the point handle to associated with the dart.
* @return a Dart_handle on the new dart.
*/
Dart_handle create_dart(Vertex_attribute_handle ahandle)
{
Dart_handle res = create_dart();
set_vertex_attribute_of_dart(res,ahandle);
return res;
}
/** Create a new dart associated with a point.
* @param apoint the point to associated with the dart.
* @return a Dart_handle on the new dart.
*/
Dart_handle create_dart(const Point& apoint)
{ return create_dart(create_vertex_attribute(apoint)); }
/** Erase a given vertex attribute.
* @param ahandle the handle to the vertex attribute to erase.
*/
void erase_vertex_attribute(Vertex_attribute_handle ahandle)
{ Base::template erase_attribute<0>(ahandle); }
/** Set the vertex attribute of the given dart.
* @param adart a dart.
* @param ah the attribute to set.
*/
void set_vertex_attribute_of_dart(Dart_handle adart,
Vertex_attribute_handle ah)
{
return CGAL::internal::Set_i_attribute_of_dart_functor<Self, 0>::
run(this, adart,ah);
}
/** Set the vertex attribute of all the darts of the vertex.
* @param adart a dart of the vertex.
* @param ah the attribute to set.
*/
void set_vertex_attribute(Dart_handle adart,
Vertex_attribute_handle ah)
{ return CGAL::Set_i_attribute_functor<Self, 0>::run(this, adart,ah); }
/// @return the Vertex_attribute_range for all vertex_attributes.
Vertex_attribute_range& vertex_attributes()
{ return this->template attributes<0>(); }
/// @return the Vertex_attribute_const_range for all vertex_attributes.
Vertex_attribute_const_range& vertex_attributes() const
{ return this->template attributes<0>(); }
/// @return the size of the vertex_attribute container.
typename Base::size_type number_of_vertex_attributes() const
{ return Base::template number_of_attributes<0>(); }
/// Get the vertex_attribute associated with a dart.
/// @param a dart
/// @return the vertex_attribute.
static Vertex_attribute_handle vertex_attribute(Dart_handle adart)
{
CGAL_assertion(adart!=NULL);
return adart->template attribute<0>();
}
/// Get the vertex_attribute associated with a const dart.
/// @param a dart
/// @return the vertex_const_attribute.
static Vertex_attribute_const_handle vertex_attribute(Dart_const_handle
adart)
{
CGAL_assertion(adart!=NULL);
return adart->template attribute<0>();
}
/// Get the point associated with a dart.
/// @param a dart
/// @return the point.
static Point& point(Dart_handle adart)
{
CGAL_assertion(adart!=NULL && adart->template attribute<0>()!=NULL );
return adart->template attribute<0>()->point();
}
/// Get the point associated with a const dart.
/// @param a dart
/// @return the point.
static const Point& point(Dart_const_handle adart)
{
CGAL_assertion(adart!=NULL && adart->template attribute<0>()!=NULL );
return adart->template attribute<0>()->point();
}
/** Test if the lcc is valid.
* A Linear_cell_complex is valid if it is a valid Combinatorial_map with
* an attribute associated to each dart.
* @return true iff the map is valid.
*/
bool is_valid() const
{
bool valid = Base::is_valid();
for (typename Dart_range::const_iterator it(this->darts().begin()),
itend(this->darts().end()); valid && it != itend; ++it)
{
if ( vertex_attribute(it) == NULL )
{
std::cerr << "Map not valid: dart "<<&(*it)
<<" does not have a vertex."<< std::endl;
valid = false;
}
}
return valid;
}
/** test if the two given facets have the same geometry
* @return true iff the two facets have the same geometry.
*/
bool are_facets_same_geometry(Dart_const_handle d1,
Dart_const_handle d2) const
{
typename Base::template Dart_of_orbit_range<1>::const_iterator
it1(*this,d1);
typename Base::template Dart_of_orbit_range<0>::const_iterator
it2(*this,d2);
bool samegeometry = true;
for ( ; samegeometry && it1.cont() && it2.cont(); ++it1, ++it2)
{
if ( it2->other_extremity()!=NULL &&
point(it1)!=point(it2->other_extremity()) )
samegeometry = false;
}
if ( it1.cont() != it2.cont() ) samegeometry = false;
return samegeometry;
}
/// Sew3 the marked facets having same geometry
/// (a facet is considered marked if one of its dart is marked).
unsigned int sew3_same_facets(int AMark)
{
unsigned int res = 0;
std::map<Point, std::vector<Dart_handle> > one_dart_per_facet;
int mymark = this->get_new_mark();
CGAL_assertion( mymark!=-1 );
// First we fill the std::map by one dart per facet, and by using
// the minimal point as index.
for (typename Dart_range::iterator it(this->darts().begin()),
itend(this->darts().end()); it!=itend; ++it )
{
if ( !this->is_marked(it, mymark) && this->is_marked(it, AMark) )
{
Point min_point=point(it);
Dart_handle min_dart = it;
this->mark(it, mymark);
typename Base::template
Dart_of_orbit_range<1>::iterator it2(*this,it);
++it2;
for ( ; it2.cont(); ++it2 )
{
Point cur_point=point(it2);
this->mark(it2, mymark);
if ( cur_point < min_point )
{
min_point = cur_point;
min_dart = it2;
}
}
one_dart_per_facet[min_point].push_back(min_dart);
}
else
this->mark(it, mymark);
}
// Second we run through the map: candidates for sew3 have necessary the
// same minimal point.
typename std::map<Point, std::vector<Dart_handle> >::iterator
itmap=one_dart_per_facet.begin(),
itmapend=one_dart_per_facet.end();
for ( ; itmap!=itmapend; ++itmap )
{
for ( typename std::vector<Dart_handle>::iterator
it1=(itmap->second).begin(),
it1end=(itmap->second).end(); it1!=it1end; ++it1 )
{
typename std::vector<Dart_handle>::iterator it2=it1;
for ( ++it2; it2!= it1end; ++it2 )
{
if ( *it1!=*it2 && (*it1)->is_free(3) &&
(*it2)->is_free(3) &&
are_facets_same_geometry(*it1,(*it2)->beta(0)) )
{
++res;
this->template sew<3>(*it1,(*it2)->beta(0));
}
}
}
}
CGAL_assertion( this->is_whole_map_marked(mymark) );
this->free_mark(mymark);
return res;
}
/// Sew3 the facets having same geometry
/// (all the facets of the map are considered)
unsigned int sew3_same_facets()
{
int mark = this->get_new_mark();
this->negate_mark(mark);
unsigned int res=sew3_same_facets(mark);
this->free_mark(mark);
return res;
}
/** Create an edge given 2 Vertex_attribute_handle.
* @param h0 the first vertex handle.
* @param h1 the second vertex handle.
* @return the dart of the new edge incident to h0.
*/
Dart_handle make_segment(Vertex_attribute_handle h0,
Vertex_attribute_handle h1)
{
Dart_handle d1 = make_edge(*this);
set_vertex_attribute_of_dart(d1,h0);
set_vertex_attribute_of_dart(d1->beta(2),h1);
return d1;
}
/** Create a segment given 2 points.
* @param p0 the first point.
* @param p1 the second point.
* @return the dart of the new segment incident to p0.
*/
Dart_handle make_segment(const Point& p0,const Point& p1)
{
return make_segment(create_vertex_attribute(p0),
create_vertex_attribute(p1));
}
/** Create a triangle given 3 Vertex_attribute_handle.
* @param h0 the first vertex handle.
* @param h1 the second vertex handle.
* @param h2 the third vertex handle.
* @return the dart of the new triangle incident to h0.
*/
Dart_handle make_triangle(Vertex_attribute_handle h0,
Vertex_attribute_handle h1,
Vertex_attribute_handle h2)
{
Dart_handle d1 = make_combinatorial_polygon(*this,3);
set_vertex_attribute_of_dart(d1,h0);
set_vertex_attribute_of_dart(d1->beta(1),h1);
set_vertex_attribute_of_dart(d1->beta(0),h2);
return d1;
}
/** Create a triangle given 3 points.
* @param p0 the first point.
* @param p1 the second point.
* @param p2 the third point.
* @return the dart of the new triangle incident to p0.
*/
Dart_handle make_triangle(const Point& p0,
const Point& p1,
const Point& p2)
{
return make_triangle(create_vertex_attribute(p0),
create_vertex_attribute(p1),
create_vertex_attribute(p2));
}
/** Create a quadrangle given 4 Vertex_attribute_handle.
* @param h0 the first vertex handle.
* @param h1 the second vertex handle.
* @param h2 the third vertex handle.
* @param h3 the fourth vertex handle.
* @return the dart of the new quadrilateral incident to h0.
*/
Dart_handle make_quadrangle(Vertex_attribute_handle h0,
Vertex_attribute_handle h1,
Vertex_attribute_handle h2,
Vertex_attribute_handle h3)
{
Dart_handle d1 = make_combinatorial_polygon(*this,4);
set_vertex_attribute_of_dart(d1,h0);
set_vertex_attribute_of_dart(d1->beta(1),h1);
set_vertex_attribute_of_dart(d1->beta(1)->beta(1),h2);
set_vertex_attribute_of_dart(d1->beta(0),h3);
return d1;
}
/** Create a quadrangle given 4 points.
* @param p0 the first point.
* @param p1 the second point.
* @param p2 the third point.
* @param p3 the fourth point.
* @return the dart of the new quadrangle incident to p0.
*/
Dart_handle make_quadrangle(const Point& p0,
const Point& p1,
const Point& p2,
const Point& p3)
{
return make_quadrangle(create_vertex_attribute(p0),
create_vertex_attribute(p1),
create_vertex_attribute(p2),
create_vertex_attribute(p3));
}
/** Create a tetrahedron given 4 Vertex_attribute_handle.
* @param h0 the first vertex handle.
* @param h1 the second vertex handle.
* @param h2 the third vertex handle.
* @param h3 the fourth vertex handle.
* @return the dart of the new tetrahedron incident to h0 and to
* facet h0,h1,h2.
*/
Dart_handle make_tetrahedron(Vertex_attribute_handle h0,
Vertex_attribute_handle h1,
Vertex_attribute_handle h2,
Vertex_attribute_handle h3)
{
Dart_handle d1 = make_triangle(h0, h1, h2);
Dart_handle d2 = make_triangle(h1, h0, h3);
Dart_handle d3 = make_triangle(h1, h3, h2);
Dart_handle d4 = make_triangle(h3, h0, h2);
return make_combinatorial_tetrahedron(*this, d1, d2, d3, d4);
}
/** Create a tetrahedron given 4 points.
* @param p0 the first point.
* @param p1 the second point.
* @param p2 the third point.
* @param p3 the fourth point.
* @return the dart of the new tetrahedron incident to p0 and to
* facet p0,p1,p2.
*/
Dart_handle make_tetrahedron(const Point& p0,
const Point& p1,
const Point& p2,
const Point& p3)
{
return make_tetrahedron(create_vertex_attribute(p0),
create_vertex_attribute(p1),
create_vertex_attribute(p2),
create_vertex_attribute(p3));
}
/** Create an hexahedron given 8 Vertex_attribute_handle.
* (8 vertices, 12 edges and 6 facets)
* \verbatim
* 4----7
* /| /|
* 5----6 |
* | 3--|-2
* |/ |/
* 0----1
* \endverbatim
* @param h0 the first vertex handle.
* @param h1 the second vertex handle.
* @param h2 the third vertex handle.
* @param h3 the fourth vertex handle.
* @param h4 the fifth vertex handle.
* @param h5 the sixth vertex handle.
* @param h6 the seventh vertex handle.
* @param h7 the height vertex handle.
* @return the dart of the new hexahedron incident to h0 and to
* the facet (h0,h5,h6,h1).
*/
Dart_handle make_hexahedron(Vertex_attribute_handle h0,
Vertex_attribute_handle h1,
Vertex_attribute_handle h2,
Vertex_attribute_handle h3,
Vertex_attribute_handle h4,
Vertex_attribute_handle h5,
Vertex_attribute_handle h6,
Vertex_attribute_handle h7)
{
Dart_handle d1 = make_quadrangle(h0, h5, h6, h1);
Dart_handle d2 = make_quadrangle(h1, h6, h7, h2);
Dart_handle d3 = make_quadrangle(h2, h7, h4, h3);
Dart_handle d4 = make_quadrangle(h3, h4, h5, h0);
Dart_handle d5 = make_quadrangle(h0, h1, h2, h3);
Dart_handle d6 = make_quadrangle(h5, h4, h7, h6);
return make_combinatorial_hexahedron(*this, d1, d2, d3, d4, d5, d6);
}
/** Create an hexahedron given 8 points.
* \verbatim
* 4----7
* /| /|
* 5----6 |
* | 3--|-2
* |/ |/
* 0----1
* \endverbatim
* @param p0 the first point.
* @param p1 the second point.
* @param p2 the third point.
* @param p3 the fourth point.
* @param p4 the fifth point.
* @param p5 the sixth point.
* @param p6 the seventh point.
* @param p7 the height point.
* @return the dart of the new hexahedron incident to p0
* and to the facet (p0,p5,p6,p1).
*/
Dart_handle make_hexahedron(const Point& p0,
const Point& p1,
const Point& p2,
const Point& p3,
const Point& p4,
const Point& p5,
const Point& p6,
const Point& p7)
{
return make_hexahedron(create_vertex_attribute(p0),
create_vertex_attribute(p1),
create_vertex_attribute(p2),
create_vertex_attribute(p3),
create_vertex_attribute(p4),
create_vertex_attribute(p5),
create_vertex_attribute(p6),
create_vertex_attribute(p7));
}
/** Compute the barycenter of a given cell.
* @param adart a dart incident to the cell.
* @param adim the dimension of the cell.
* @return the barycenter of the cell.
*/
template<unsigned int i>
Point barycenter(Dart_const_handle adart) const
{
CGAL_static_assertion(0<i && i<=dimension);
CGAL_assertion(adart != NULL);
// Special case for edge.
if (i==1)
{
Dart_const_handle d2=adart->other_extremity();
if (d2==NULL) return point(adart);
return typename Traits::Construct_midpoint() (point(adart),
point(d2));
}
// General case, 1<i<=dimension
Vector vec(typename Traits::Construct_vector()(CGAL::ORIGIN,
point(adart)));
unsigned int nb = 1;
// TODO: test if we can optimize by using <Self,0,i,i+1> ?
CGAL::CMap_one_dart_per_incident_cell_const_iterator<Self,0,i>
it(*this, adart);
for ( ++it; it.cont(); ++it)
{
vec = typename Traits::Construct_sum_of_vectors()
(vec, typename Traits::Construct_vector()(CGAL::ORIGIN, point(it) ));
++nb;
}
return typename Traits::Construct_translated_point()
(CGAL::ORIGIN, typename Traits::Construct_scaled_vector()(vec, 1.0/nb));
}
/** Insert a point in a given 1-cell.
* @param dh a dart handle to the 1-cell
* @param p the point to insert
* @return a dart handle to the new vertex containing p.
*/
Dart_handle insert_point_in_cell_1(Dart_handle dh, const Point& p)
{
return CGAL::insert_cell_0_in_cell_1(*this, dh,
create_vertex_attribute(p));
}
/** Insert a point in a given 2-cell.
* @param dh a dart handle to the 2-cell
* @param p the point to insert
* @return a dart handle to the new vertex containing p.
*/
Dart_handle insert_point_in_cell_2(Dart_handle dh, const Point& p)
{
Vertex_attribute_handle v = create_vertex_attribute(p);
Dart_handle first = CGAL::insert_cell_0_in_cell_2(*this, dh, v);
if ( first== NULL ) // If the triangulated facet was made of one dart
erase_vertex_attribute(v);
CGAL_assertion( is_valid() );
return first;
}
/** Insert a point in a given i-cell.
* @param dh a dart handle to the i-cell
* @param p the point to insert
* @return a dart handle to the new vertex containing p.
*/
template <unsigned int i>
Dart_handle insert_point_in_cell(Dart_handle dh, const Point& p)
{
CGAL_static_assertion(1<=i && i<=2);
if (i==1) return insert_point_in_cell_1(dh, p);
return insert_point_in_cell_2(dh, p);
}
/** Insert a dangling edge in a given facet.
* @param dh a dart of the facet (!=NULL).
* @param p the coordinates of the new vertex.
* @return a dart of the new edge, incident to the new vertex.
*/
Dart_handle insert_dangling_cell_1_in_cell_2(Dart_handle dh,
const Point& p)
{
return CGAL::insert_dangling_cell_1_in_cell_2
(*this, dh, create_vertex_attribute(p));
}
/** Insert a point in a given i-cell.
* @param dh a dart handle to the i-cell
* @param p the point to insert
* @return a dart handle to the new vertex containing p.
*/
template <unsigned int i>
Dart_handle insert_barycenter_in_cell(Dart_handle dh)
{ return insert_point_in_cell<i>(dh, barycenter<i>(dh)); }
/** Compute the dual of a Linear_cell_complex.
* @param amap the lcc in which we build the dual of this lcc.
* @param adart a dart of the initial lcc, NULL by default.
* @return adart of the dual lcc, the dual of adart if adart!=NULL,
* any dart otherwise.
* As soon as we don't modify this lcc and alcc lcc, we can iterate
* simultaneously through all the darts of the two lcc and we have
* each time of the iteration two "dual" darts.
*/
Dart_handle dual_points_at_barycenter(Self & alcc, Dart_handle adart=NULL)
{
Dart_handle res = Base::dual(alcc, adart);
// Now the lcc alcc is topologically correct, we just need to add
// its geometry to each vertex (the barycenter of the corresponding
// dim-cell in the initial map).
typename Dart_range::iterator it2 = alcc.darts().begin();
for (typename Dart_range::iterator it(this->darts().begin());
it!=this->darts().end(); ++it, ++it2)
{
if (vertex_attribute(it2) == NULL)
{
alcc.set_vertex_attribute(it2, alcc.create_vertex_attribute
(barycenter<dimension>(it)));
}
}
return res;
}
};
} // namespace CGAL
#endif // CGAL_LINEAR_CELL_COMPLEX_H //
// EOF //
|