/usr/include/CGAL/MP_Float.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 | // Copyright (c) 2001-2007 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Sylvain Pion
#ifndef CGAL_MP_FLOAT_H
#define CGAL_MP_FLOAT_H
#include <CGAL/number_type_basic.h>
#include <CGAL/Algebraic_structure_traits.h>
#include <CGAL/Real_embeddable_traits.h>
#include <CGAL/Coercion_traits.h>
#include <CGAL/Quotient.h>
#include <CGAL/Sqrt_extension.h>
#include <CGAL/utils.h>
#include <CGAL/Interval_nt.h>
#include <iostream>
#include <vector>
#include <algorithm>
// MP_Float : multiprecision scaled integers.
// Some invariants on the internal representation :
// - zero is represented by an empty vector, and whatever exp.
// - no leading or trailing zero in the vector => unique
// The main algorithms are :
// - Addition/Subtraction
// - Multiplication
// - Integral division div(), gcd(), operator%().
// - Comparison
// - to_double() / to_interval()
// - Construction from a double.
// - IOs
// TODO :
// - The exponent really overflows sometimes -> make it multiprecision.
// - Write a generic wrapper that adds an exponent to be used by MP integers.
// - Karatsuba (or other) ? Would be fun to implement at least.
// - Division, sqrt... : different options :
// - nothing
// - convert to double, take approximation, compute over double, reconstruct
namespace CGAL {
class MP_Float;
template < typename > class Quotient; // Needed for overloaded To_double
namespace INTERN_MP_FLOAT {
Comparison_result compare(const MP_Float&, const MP_Float&);
MP_Float square(const MP_Float&);
// to_double() returns, not the closest double, but a one bit error is allowed.
// We guarantee : to_double(MP_Float(double d)) == d.
double to_double(const MP_Float&);
double to_double(const Quotient<MP_Float>&);
std::pair<double,double> to_interval(const MP_Float &);
std::pair<double,double> to_interval(const Quotient<MP_Float>&);
MP_Float div(const MP_Float& n1, const MP_Float& n2);
MP_Float gcd(const MP_Float& a, const MP_Float& b);
} //namespace INTERN_MP_FLOAT
std::pair<double, int>
to_double_exp(const MP_Float &b);
// Returns (first * 2^second), an interval surrounding b.
std::pair<std::pair<double, double>, int>
to_interval_exp(const MP_Float &b);
std::ostream &
operator<< (std::ostream & os, const MP_Float &b);
// This one is for debug.
std::ostream &
print (std::ostream & os, const MP_Float &b);
std::istream &
operator>> (std::istream & is, MP_Float &b);
MP_Float operator+(const MP_Float &a, const MP_Float &b);
MP_Float operator-(const MP_Float &a, const MP_Float &b);
MP_Float operator*(const MP_Float &a, const MP_Float &b);
MP_Float operator%(const MP_Float &a, const MP_Float &b);
class MP_Float
{
public:
typedef short limb;
typedef int limb2;
typedef double exponent_type;
typedef std::vector<limb> V;
typedef V::const_iterator const_iterator;
typedef V::iterator iterator;
private:
void remove_leading_zeros()
{
while (!v.empty() && v.back() == 0)
v.pop_back();
}
void remove_trailing_zeros()
{
if (v.empty() || v.front() != 0)
return;
iterator i = v.begin();
for (++i; *i == 0; ++i)
;
exp += i-v.begin();
v.erase(v.begin(), i);
}
// The constructors from float/double/long_double are factorized in the
// following template :
template < typename T >
void construct_from_builtin_fp_type(T d);
public:
#ifdef CGAL_ROOT_OF_2_ENABLE_HISTOGRAM_OF_NUMBER_OF_DIGIT_ON_THE_COMPLEX_CONSTRUCTOR
int tam() const { return v.size(); }
#endif
// Splits a limb2 into 2 limbs (high and low).
static
void split(limb2 l, limb & high, limb & low)
{
const unsigned int sizeof_limb=8*sizeof(limb);
const limb2 mask= ~( static_cast<limb2>(-1) << sizeof_limb ); //0000ffff
//Note: For Integer type, if the destination type is signed, the value is unchanged
//if it can be represented in the destination type)
low=static_cast<limb>(l & mask); //extract low bits from l
high = (l - low) >> sizeof_limb; //extract high bits from l
CGAL_postcondition ( l == low + ( static_cast<limb2>(high) << sizeof_limb ) );
}
// Given a limb2, returns the higher limb.
static
limb higher_limb(limb2 l)
{
limb high, low;
split(l, high, low);
return high;
}
void canonicalize()
{
remove_leading_zeros();
remove_trailing_zeros();
}
MP_Float()
: exp(0)
{
CGAL_assertion(sizeof(limb2) == 2*sizeof(limb));
CGAL_assertion(v.empty());
// Creates zero.
}
#if 0
// Causes ambiguities
MP_Float(limb i)
: v(1,i), exp(0)
{
remove_leading_zeros();
}
#endif
MP_Float(limb2 i)
: v(2), exp(0)
{
split(i, v[1], v[0]);
canonicalize();
}
MP_Float(float d);
MP_Float(double d);
MP_Float(long double d);
MP_Float operator+() const {
return *this;
}
MP_Float operator-() const
{
return MP_Float() - *this;
}
MP_Float& operator+=(const MP_Float &a) { return *this = *this + a; }
MP_Float& operator-=(const MP_Float &a) { return *this = *this - a; }
MP_Float& operator*=(const MP_Float &a) { return *this = *this * a; }
MP_Float& operator%=(const MP_Float &a) { return *this = *this % a; }
exponent_type max_exp() const
{
return v.size() + exp;
}
exponent_type min_exp() const
{
return exp;
}
limb of_exp(exponent_type i) const
{
if (i < exp || i >= max_exp())
return 0;
return v[static_cast<int>(i-exp)];
}
bool is_zero() const
{
return v.empty();
}
Sign sign() const
{
if (v.empty())
return ZERO;
if (v.back()>0)
return POSITIVE;
CGAL_assertion(v.back()<0);
return NEGATIVE;
}
void clear()
{
v.clear();
exp = 0;
}
void swap(MP_Float &m)
{
std::swap(v, m.v);
std::swap(exp, m.exp);
}
// Converts to a rational type (e.g. Gmpq).
template < typename T >
T to_rational() const
{
const unsigned log_limb = 8 * sizeof(MP_Float::limb);
if (is_zero())
return 0;
MP_Float::const_iterator i;
exponent_type exp2 = min_exp() * log_limb;
T res = 0;
for (i = v.begin(); i != v.end(); ++i)
{
res += T(std::ldexp(static_cast<double>(*i),static_cast<int>(exp2)));
exp2 += log_limb;
}
return res;
}
std::size_t size() const
{
return v.size();
}
// Returns a scaling factor (in limbs) which would be good to extract to get
// a value with an exponent close to 0.
exponent_type find_scale() const
{
return exp + v.size();
}
// Rescale the value by some factor (in limbs). (substract the exponent)
void rescale(exponent_type scale)
{
if (v.size() != 0)
exp -= scale;
}
// Accessory function that finds the least significant bit set (its position).
static unsigned short
lsb(limb l)
{
unsigned short nb = 0;
for (; (l&1)==0; ++nb, l>>=1)
;
return nb;
}
// This one is needed for normalizing gcd so that the mantissa is odd
// and non-negative, and the exponent is 0.
void gcd_normalize()
{
const unsigned log_limb = 8 * sizeof(MP_Float::limb);
if (is_zero())
return;
// First find how many least significant bits are 0 in the last digit.
unsigned short nb = lsb(v[0]);
if (nb != 0)
*this = *this * (1<<(log_limb-nb));
CGAL_assertion((v[0]&1) != 0);
exp=0;
if (sign() == NEGATIVE)
*this = - *this;
}
MP_Float unit_part() const
{
if (is_zero())
return 1;
MP_Float r = (sign() > 0) ? *this : - *this;
CGAL_assertion(r.v.begin() != r.v.end());
unsigned short nb = lsb(r.v[0]);
r.v.clear();
r.v.push_back(1<<nb);
return (sign() > 0) ? r : -r;
}
bool is_integer() const
{
return is_zero() || (exp >= 0);
}
V v;
exponent_type exp;
};
namespace internal{
std::pair<MP_Float, MP_Float> // <quotient, remainder>
division(const MP_Float & n, const MP_Float & d);
} // namespace internal
inline
void swap(MP_Float &m, MP_Float &n)
{ m.swap(n); }
inline
bool operator<(const MP_Float &a, const MP_Float &b)
{ return INTERN_MP_FLOAT::compare(a, b) == SMALLER; }
inline
bool operator>(const MP_Float &a, const MP_Float &b)
{ return b < a; }
inline
bool operator>=(const MP_Float &a, const MP_Float &b)
{ return ! (a < b); }
inline
bool operator<=(const MP_Float &a, const MP_Float &b)
{ return ! (a > b); }
inline
bool operator==(const MP_Float &a, const MP_Float &b)
{ return (a.v == b.v) && (a.v.empty() || (a.exp == b.exp)); }
inline
bool operator!=(const MP_Float &a, const MP_Float &b)
{ return ! (a == b); }
MP_Float
approximate_sqrt(const MP_Float &d);
MP_Float
approximate_division(const MP_Float &n, const MP_Float &d);
// Algebraic structure traits specialization
template <> class Algebraic_structure_traits< MP_Float >
: public Algebraic_structure_traits_base< MP_Float,
Unique_factorization_domain_tag
// with some work on mod/div it could be Euclidean_ring_tag
> {
public:
typedef Tag_true Is_exact;
typedef Tag_true Is_numerical_sensitive;
struct Unit_part
: public std::unary_function< Type , Type >
{
Type operator()(const Type &x) const {
return x.unit_part();
}
};
struct Integral_division
: public std::binary_function< Type,
Type,
Type > {
public:
Type operator()(
const Type& x,
const Type& y ) const {
std::pair<MP_Float, MP_Float> res = internal::division(x, y);
CGAL_assertion_msg(res.second == 0,
"exact_division() called with operands which do not divide");
return res.first;
}
};
class Square
: public std::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return INTERN_MP_FLOAT::square(x);
}
};
class Gcd
: public std::binary_function< Type, Type,
Type > {
public:
Type operator()( const Type& x,
const Type& y ) const {
return INTERN_MP_FLOAT::gcd( x, y );
}
};
class Div
: public std::binary_function< Type, Type,
Type > {
public:
Type operator()( const Type& x,
const Type& y ) const {
return INTERN_MP_FLOAT::div( x, y );
}
};
typedef INTERN_AST::Mod_per_operator< Type > Mod;
// Default implementation of Divides functor for unique factorization domains
// x divides y if gcd(y,x) equals x up to inverses
class Divides
: public std::binary_function<Type,Type,bool>{
public:
bool operator()( const Type& x, const Type& y) const {
return internal::division(y,x).second == 0 ;
}
// second operator computing q = x/y
bool operator()( const Type& x, const Type& y, Type& q) const {
std::pair<Type,Type> qr = internal::division(y,x);
q=qr.first;
return qr.second == 0;
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT( Type , bool)
};
};
// Real embeddable traits
template <> class Real_embeddable_traits< MP_Float >
: public INTERN_RET::Real_embeddable_traits_base< MP_Float , CGAL::Tag_true > {
public:
class Sgn
: public std::unary_function< Type, ::CGAL::Sign > {
public:
::CGAL::Sign operator()( const Type& x ) const {
return x.sign();
}
};
class Compare
: public std::binary_function< Type, Type,
Comparison_result > {
public:
Comparison_result operator()( const Type& x,
const Type& y ) const {
return INTERN_MP_FLOAT::compare( x, y );
}
};
class To_double
: public std::unary_function< Type, double > {
public:
double operator()( const Type& x ) const {
return INTERN_MP_FLOAT::to_double( x );
}
};
class To_interval
: public std::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x ) const {
return INTERN_MP_FLOAT::to_interval( x );
}
};
};
namespace INTERN_MP_FLOAT{
//Sqrt_extension internally uses Algebraic_structure_traits
template <class ACDE_TAG_, class FP_TAG>
double
to_double(const Sqrt_extension<MP_Float,MP_Float,ACDE_TAG_,FP_TAG> &x)
{
typedef MP_Float RT;
typedef Quotient<RT> FT;
typedef CGAL::Rational_traits< FT > Rational;
Rational r;
const RT r1 = r.numerator(x.a0());
const RT d1 = r.denominator(x.a0());
if(x.is_rational()) {
std::pair<double, int> n = to_double_exp(r1);
std::pair<double, int> d = to_double_exp(d1);
double scale = std::ldexp(1.0, n.second - d.second);
return (n.first / d.first) * scale;
}
const RT r2 = r.numerator(x.a1());
const RT d2 = r.denominator(x.a1());
const RT r3 = r.numerator(x.root());
const RT d3 = r.denominator(x.root());
std::pair<double, int> n1 = to_double_exp(r1);
std::pair<double, int> v1 = to_double_exp(d1);
double scale1 = std::ldexp(1.0, n1.second - v1.second);
std::pair<double, int> n2 = to_double_exp(r2);
std::pair<double, int> v2 = to_double_exp(d2);
double scale2 = std::ldexp(1.0, n2.second - v2.second);
std::pair<double, int> n3 = to_double_exp(r3);
std::pair<double, int> v3 = to_double_exp(d3);
double scale3 = std::ldexp(1.0, n3.second - v3.second);
return ((n1.first / v1.first) * scale1) +
((n2.first / v2.first) * scale2) *
std::sqrt((n3.first / v3.first) * scale3);
}
} //namespace INTERN_MP_FLOAT
namespace internal {
// This compares the absolute values of the odd-mantissa.
// (take the mantissas, get rid of all powers of 2, compare
// the absolute values)
inline
Sign
compare_bitlength(const MP_Float &a, const MP_Float &b)
{
if (a.is_zero())
return b.is_zero() ? EQUAL : SMALLER;
if (b.is_zero())
return LARGER;
//Real_embeddable_traits<MP_Float>::Abs abs;
MP_Float aa = CGAL_NTS abs(a);
MP_Float bb = CGAL_NTS abs(b);
if (aa.size() > (bb.size() + 2)) return LARGER;
if (bb.size() > (aa.size() + 2)) return SMALLER;
// multiply by 2 till last bit is 1.
while (((aa.v[0]) & 1) == 0) // last bit is zero
aa = aa + aa;
while (((bb.v[0]) & 1) == 0) // last bit is zero
bb = bb + bb;
// sizes might have changed
if (aa.size() > bb.size()) return LARGER;
if (aa.size() < bb.size()) return SMALLER;
for (std::size_t i = aa.size(); i > 0; --i)
{
if (aa.v[i-1] > bb.v[i-1]) return LARGER;
if (aa.v[i-1] < bb.v[i-1]) return SMALLER;
}
return EQUAL;
}
inline // Move it to libCGAL once it's stable.
std::pair<MP_Float, MP_Float> // <quotient, remainder>
division(const MP_Float & n, const MP_Float & d)
{
typedef MP_Float::exponent_type exponent_type;
MP_Float remainder = n, divisor = d;
CGAL_precondition(divisor != 0);
// Rescale d to have a to_double() value with reasonnable exponent.
exponent_type scale_d = divisor.find_scale();
divisor.rescale(scale_d);
const double dd = INTERN_MP_FLOAT::to_double(divisor);
MP_Float res = 0;
exponent_type scale_remainder = 0;
bool first_time_smaller_than_divisor = true;
// School division algorithm.
while ( remainder != 0 )
{
// We have to rescale, since remainder can diminish towards 0.
exponent_type tmp_scale = remainder.find_scale();
remainder.rescale(tmp_scale);
res.rescale(tmp_scale);
scale_remainder += tmp_scale;
// Compute a double approximation of the quotient
// (imagine school division with base ~2^53).
double approx = INTERN_MP_FLOAT::to_double(remainder) / dd;
CGAL_assertion(approx != 0);
res += approx;
remainder -= approx * divisor;
if (remainder == 0)
break;
// Then we need to fix it up by checking if neighboring double values
// are closer to the exact result.
// There should not be too many iterations, because approx is only a few ulps
// away from the optimal.
// If we don't do the fixup, then spurious bits can be introduced, which
// will require an unbounded amount of additional iterations to be eliminated.
// The direction towards which we need to try to move from "approx".
double direction = (CGAL_NTS sign(remainder) == CGAL_NTS sign(dd))
? std::numeric_limits<double>::infinity()
: -std::numeric_limits<double>::infinity();
while (true)
{
const double approx2 = nextafter(approx, direction);
const double delta = approx2 - approx;
MP_Float new_remainder = remainder - delta * divisor;
if (CGAL_NTS abs(new_remainder) < CGAL_NTS abs(remainder)) {
remainder = new_remainder;
res += delta;
approx = approx2;
}
else {
break;
}
}
if (remainder == 0)
break;
// Test condition for non-exact division (with remainder).
if (compare_bitlength(remainder, divisor) == SMALLER)
{
if (! first_time_smaller_than_divisor)
{
// Scale back.
res.rescale(scale_d - scale_remainder);
remainder.rescale(- scale_remainder);
CGAL_postcondition(res * d + remainder == n);
return std::make_pair(res, remainder);
}
first_time_smaller_than_divisor = false;
}
}
// Scale back the result.
res.rescale(scale_d - scale_remainder);
CGAL_postcondition(res * d == n);
return std::make_pair(res, MP_Float(0));
}
inline // Move it to libCGAL once it's stable.
bool
divides(const MP_Float & d, const MP_Float & n)
{
return internal::division(n, d).second == 0;
}
} // namespace internal
inline
bool
is_integer(const MP_Float &m)
{
return m.is_integer();
}
inline
MP_Float
operator%(const MP_Float& n1, const MP_Float& n2)
{
return internal::division(n1, n2).second;
}
// The namespace INTERN_MP_FLOAT contains global functions like square or sqrt
// which collide with the global functor adapting functions provided by the new
// AST/RET concept.
//
// TODO: IMHO, a better solution would be to put the INTERN_MP_FLOAT-functions
// into the MP_Float-class... But there is surely a reason why this is not
// the case..?
namespace INTERN_MP_FLOAT {
inline
MP_Float
div(const MP_Float& n1, const MP_Float& n2)
{
return internal::division(n1, n2).first;
}
inline
MP_Float
gcd( const MP_Float& a, const MP_Float& b)
{
if (a == 0) {
if (b == 0)
return 0;
MP_Float tmp=b;
tmp.gcd_normalize();
return tmp;
}
if (b == 0) {
MP_Float tmp=a;
tmp.gcd_normalize();
return tmp;
}
MP_Float x = a, y = b;
while (true) {
x = x % y;
if (x == 0) {
CGAL_postcondition(internal::divides(y, a) & internal::divides(y, b));
y.gcd_normalize();
return y;
}
swap(x, y);
}
}
} // INTERN_MP_FLOAT
inline
void
simplify_quotient(MP_Float & numerator, MP_Float & denominator)
{
// Currently only simplifies the two exponents.
#if 0
// This better version causes problems as the I/O is changed for
// Quotient<MP_Float>, which then does not appear as rational 123/345,
// 1.23/3.45, this causes problems in the T2 test-suite (to be investigated).
numerator.exp -= denominator.exp
+ (MP_Float::exponent_type) denominator.v.size();
denominator.exp = - (MP_Float::exponent_type) denominator.v.size();
#elif 1
numerator.exp -= denominator.exp;
denominator.exp = 0;
#else
if (numerator != 0 && denominator != 0) {
numerator.exp -= denominator.exp;
denominator.exp = 0;
const MP_Float g = gcd(numerator, denominator);
numerator = integral_division(numerator, g);
denominator = integral_division(denominator, g);
}
numerator.exp -= denominator.exp;
denominator.exp = 0;
#endif
}
inline void simplify_root_of_2(MP_Float &/*a*/, MP_Float &/*b*/, MP_Float&/*c*/) {
#if 0
if(is_zero(a)) {
simplify_quotient(b,c); return;
} else if(is_zero(b)) {
simplify_quotient(a,c); return;
} else if(is_zero(c)) {
simplify_quotient(a,b); return;
}
MP_Float::exponent_type va = a.exp +
(MP_Float::exponent_type) a.v.size();
MP_Float::exponent_type vb = b.exp +
(MP_Float::exponent_type) b.v.size();
MP_Float::exponent_type vc = c.exp +
(MP_Float::exponent_type) c.v.size();
MP_Float::exponent_type min = (std::min)((std::min)(va,vb),vc);
MP_Float::exponent_type max = (std::max)((std::max)(va,vb),vc);
MP_Float::exponent_type med = (min+max)/2.0;
a.exp -= med;
b.exp -= med;
c.exp -= med;
#endif
}
namespace internal {
inline void simplify_3_exp(int &a, int &b, int &c) {
int min = (std::min)((std::min)(a,b),c);
int max = (std::max)((std::max)(a,b),c);
int med = (min+max)/2;
a -= med;
b -= med;
c -= med;
}
}
// specialization of to double functor
template<>
class Real_embeddable_traits< Quotient<MP_Float> >
: public INTERN_QUOTIENT::Real_embeddable_traits_quotient_base<
Quotient<MP_Float> >{
public:
struct To_double: public std::unary_function<Quotient<MP_Float>, double>{
inline
double operator()(const Quotient<MP_Float>& q) const {
return INTERN_MP_FLOAT::to_double(q);
}
};
struct To_interval
: public std::unary_function<Quotient<MP_Float>, std::pair<double,double> > {
inline
std::pair<double,double> operator()(const Quotient<MP_Float>& q) const {
return INTERN_MP_FLOAT::to_interval(q);
}
};
};
inline MP_Float min BOOST_PREVENT_MACRO_SUBSTITUTION(const MP_Float& x,const MP_Float& y){
return (x<=y)?x:y;
}
inline MP_Float max BOOST_PREVENT_MACRO_SUBSTITUTION(const MP_Float& x,const MP_Float& y){
return (x>=y)?x:y;
}
// Coercion_traits
CGAL_DEFINE_COERCION_TRAITS_FOR_SELF(MP_Float)
CGAL_DEFINE_COERCION_TRAITS_FROM_TO(int, MP_Float)
} //namespace CGAL
namespace Eigen {
template<class> struct NumTraits;
template<> struct NumTraits<CGAL::MP_Float>
{
typedef CGAL::MP_Float Real;
typedef CGAL::Quotient<CGAL::MP_Float> NonInteger;
typedef CGAL::MP_Float Nested;
static inline Real epsilon() { return 0; }
enum {
IsInteger = 1, // Is this lie right?
IsSigned = 1,
IsComplex = 0,
RequireInitialization = 1,
ReadCost = 6,
AddCost = 40,
MulCost = 40
};
};
}
#include <CGAL/MP_Float_impl.h>
//specialization for Get_arithmetic_kernel
#include <CGAL/MP_Float_arithmetic_kernel.h>
#endif // CGAL_MP_FLOAT_H
|