This file is indexed.

/usr/include/CGAL/MP_Float_impl.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
// Copyright (c) 2001-2006  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Sylvain Pion

#ifndef CGAL_MP_FLOAT_IMPL_H
#define CGAL_MP_FLOAT_IMPL_H

#include <CGAL/basic.h>
#include <CGAL/Quotient.h>
#include <functional>
#include <cmath>
#include <CGAL/MP_Float.h>

namespace CGAL {

namespace INTERN_MP_FLOAT {
const unsigned        log_limb         = 8 * sizeof(MP_Float::limb);
const MP_Float::limb2 base             = 1 << log_limb;
const MP_Float::V::size_type limbs_per_double = 2 + 53/log_limb;

const double trunc_max = double(base)*(base/2-1)/double(base-1);
const double trunc_min = double(-base)*(base/2)/double(base-1);
} // namespace INTERN_MP_FLOAT

// We face portability issues with the ISO C99 functions "nearbyint",
// so I re-implement it for my need.
template < typename T >
inline 
int my_nearbyint(const T& d)
{
  int z = int(d);
  T frac = d - z;

  CGAL_assertion(CGAL::abs(frac) < T(1.0));

  if (frac > 0.5)
    ++z;
  else if (frac < -0.5)
    --z;
  else if (frac == 0.5 && (z&1) != 0) // NB: We also need the round-to-even rule.
    ++z;
  else if (frac == -0.5 && (z&1) != 0)
    --z;

  CGAL_assertion(CGAL::abs(T(z) - d) < T(0.5) ||
                 (CGAL::abs(T(z) - d) == T(0.5) && ((z&1) == 0)));
  return z;
}


template < typename T >
inline
void MP_Float::construct_from_builtin_fp_type(T d)
{
    if (d == 0)
      return;

    // Protection against rounding mode != nearest, and extended precision.
    Set_ieee_double_precision P;

    CGAL_assertion(is_finite(d));

    // This is subtle, because ints are not symetric against 0.

    // First, scale d, and adjust exp accordingly.
    exp = 0;
    while (d <  INTERN_MP_FLOAT::trunc_min || d >  INTERN_MP_FLOAT::trunc_max) {
      ++exp;
      d /=  INTERN_MP_FLOAT::base;
    }

    while (d >=  INTERN_MP_FLOAT::trunc_min/ INTERN_MP_FLOAT::base && d <=  INTERN_MP_FLOAT::trunc_max/ INTERN_MP_FLOAT::base) {
      --exp;
      d *=  INTERN_MP_FLOAT::base;
    }

    // Then, compute the limbs.
    // Put them in v (in reverse order temporarily).
    T orig = d, sum = 0;
    while (true) {
      int r = my_nearbyint(d);
      if (d-r >= T( INTERN_MP_FLOAT::base/2-1)/( INTERN_MP_FLOAT::base-1))
        ++r;
      v.push_back(r);
      // We used to do simply "d -= v.back();", but when the most significant
      // limb is 1 and the second is -32768, then it can happen that
      // |d - v.back()| > |d|, hence a bit of precision can be lost.
      //  Hence the need for sum/orig.
      sum += v.back();
      d = orig-sum;
      if (d == 0)
        break;
      sum *=  INTERN_MP_FLOAT::base;
      orig *=  INTERN_MP_FLOAT::base;
      d *=  INTERN_MP_FLOAT::base;
      --exp;
    }

    // Reverse v.
    std::reverse(v.begin(), v.end());

    CGAL_assertion(v.back() != 0);
}

inline
MP_Float::MP_Float(float d)
{
    construct_from_builtin_fp_type(d);
    CGAL_expensive_assertion(CGAL::to_double(*this) == d);
}

inline
MP_Float::MP_Float(double d)
{
    construct_from_builtin_fp_type(d);
    CGAL_expensive_assertion(CGAL::to_double(*this) == d);
}

inline
MP_Float::MP_Float(long double d)
{
    construct_from_builtin_fp_type(d);
    // CGAL_expensive_assertion(CGAL::to_double(*this) == d);
}

inline
Comparison_result
INTERN_MP_FLOAT::compare (const MP_Float & a, const MP_Float & b)
{
  typedef MP_Float::exponent_type       exponent_type;
  if (a.is_zero())
    return (Comparison_result) - b.sign();
  if (b.is_zero())
    return (Comparison_result) a.sign();

  for (exponent_type i = (std::max)(a.max_exp(), b.max_exp()) - 1;
                    i >= (std::min)(a.min_exp(), b.min_exp()); i--)
  {
    if (a.of_exp(i) > b.of_exp(i))
      return LARGER;
    if (a.of_exp(i) < b.of_exp(i))
      return SMALLER;
  }
  return EQUAL;
}

// Common code for operator+ and operator-.
template <class BinOp>
inline
MP_Float
Add_Sub(const MP_Float &a, const MP_Float &b, const BinOp &op)
{
  typedef MP_Float::exponent_type       exponent_type;
  CGAL_assertion(!b.is_zero());

  exponent_type min_exp, max_exp;

  if (a.is_zero()) {
    min_exp = b.min_exp();
    max_exp = b.max_exp();
  }
  else {
    min_exp = (std::min)(a.min_exp(), b.min_exp());
    max_exp = (std::max)(a.max_exp(), b.max_exp());
  }

  MP_Float r;
  r.exp = min_exp;
  r.v.resize(static_cast<int>(max_exp - min_exp + 1)); // One more for carry.
  r.v[0] = 0;
  for(int i = 0; i < max_exp - min_exp; i++)
  {
    MP_Float::limb2 tmp = r.v[i] + op(a.of_exp(i+min_exp),
                                      b.of_exp(i+min_exp));
    MP_Float::split(tmp, r.v[i+1], r.v[i]);
  }
  r.canonicalize();
  return r;
}

inline
MP_Float
operator+(const MP_Float &a, const MP_Float &b)
{
  if (a.is_zero())
    return b;
  if (b.is_zero())
    return a;

  return Add_Sub(a, b, std::plus<MP_Float::limb2>());
}

inline
MP_Float
operator-(const MP_Float &a, const MP_Float &b)
{
  if (b.is_zero())
    return a;

  return Add_Sub(a, b, std::minus<MP_Float::limb2>());
}

inline
MP_Float
operator*(const MP_Float &a, const MP_Float &b)
{
  if (a.is_zero() || b.is_zero())
    return MP_Float();

  // Disabled until square() is fixed.
  // if (&a == &b)
  //   return square(a);

  MP_Float r;
  r.exp = a.exp + b.exp;
  CGAL_assertion_msg(CGAL::abs(r.exp) < (1<<30)*1.0*(1<<23),
                     "Exponent overflow in MP_Float multiplication");
  r.v.assign(a.v.size() + b.v.size(), 0);
  for(unsigned i = 0; i < a.v.size(); ++i)
  {
    unsigned j;
    MP_Float::limb carry = 0;
    for(j = 0; j < b.v.size(); ++j)
    {
      MP_Float::limb2 tmp = carry + (MP_Float::limb2) r.v[i+j]
                        + std::multiplies<MP_Float::limb2>()(a.v[i], b.v[j]);
      MP_Float::split(tmp, carry, r.v[i+j]);
    }
    r.v[i+j] = carry;
  }
  r.canonicalize();
  return r;
}

// Squaring simplifies things and is faster, so we specialize it.
inline
MP_Float
INTERN_MP_FLOAT::square(const MP_Float &a)
{
  // There is a bug here (see test-case in test/NT/MP_Float.C).
  // For now, I disable this small optimization.
  // See also the comment code in operator*().
  return a*a;
#if 0
  typedef MP_Float::limb limb;
  typedef MP_Float::limb2 limb2;

  if (a.is_zero())
    return MP_Float();

  MP_Float r;
  r.exp = 2*a.exp;
  r.v.assign(2*a.v.size(), 0);
  for(unsigned i=0; i<a.v.size(); i++)
  {
    unsigned j;
    limb2 carry = 0;
    limb carry2 = 0;
    for(j=0; j<i; j++)
    {
      // There is a risk of overflow here :(
      // It can only happen when a.v[i] == a.v[j] == -2^15 (log_limb...)
      limb2 tmp0 = std::multiplies<limb2>()(a.v[i], a.v[j]);
      limb2 tmp1 = carry + (limb2) r.v[i+j] + tmp0;
      limb2 tmp = tmp0 + tmp1;

      limb tmpcarry;
      MP_Float::split(tmp, tmpcarry, r.v[i+j]);
      carry = tmpcarry + (limb2) carry2;

      // Is there a more efficient way to handle this carry ?
      if (tmp > 0 && tmp0 < 0 && tmp1 < 0)
      {
        // If my calculations are correct, this case should never happen.
	CGAL_error();
      }
      else if (tmp < 0 && tmp0 > 0 && tmp1 > 0)
        carry2 = 1;
      else
        carry2 = 0;
    }
    // last round for j=i :
    limb2 tmp0 = carry + (limb2) r.v[i+i]
                       + std::multiplies<limb2>()(a.v[i], a.v[i]);
    MP_Float::split(tmp0, r.v[i+i+1], r.v[i+i]);
    r.v[i+i+1] += carry2;
  }
  r.canonicalize();
  return r;
#endif
}

// Division by Newton (code by Valentina Marotta & Chee Yap) :
/*
Integer reciprocal(const Integer A, Integer k) {
  Integer t, m, ld;
  Integer e, X, X1, X2, A1;
  if (k == 1)
    return 2;

  A1 = A >> k/2;   // k/2 most significant bits
  X1 = reciprocal(A1, k/2);
  // To avoid the adjustment :
  Integer E = (1 << (2*k - 1)) - A*X1;
  if (E > A)
    X1 = X1 + 1;

  e = 1 << 3*k/2; // 2^(3k/2)
  X2 = X1*e - X1*X1*A;
  X = X2 >> k-1;
  return X;
}
*/

inline
MP_Float
approximate_division(const MP_Float &a, const MP_Float &b)
{
  CGAL_assertion_msg(! b.is_zero(), " Division by zero");
  return MP_Float(CGAL::to_double(a)/CGAL::to_double(b));
}

inline
MP_Float
approximate_sqrt(const MP_Float &d)
{
  return MP_Float(CGAL_NTS sqrt(CGAL::to_double(d)));
}

// Returns (first * 2^second), an approximation of b.
inline
std::pair<double, int>
to_double_exp(const MP_Float &b)
{
  typedef MP_Float::exponent_type       exponent_type;
  if (b.is_zero())
    return std::make_pair(0.0, 0);

  exponent_type exp = b.max_exp();
  int steps = static_cast<int>((std::min)( INTERN_MP_FLOAT::limbs_per_double, b.v.size()));
  double d_exp_1 = std::ldexp(1.0, - static_cast<int>( INTERN_MP_FLOAT::log_limb));
  double d_exp   = 1.0;
  double d = 0;

  for (exponent_type i = exp - 1; i > exp - 1 - steps; i--) {
    d_exp *= d_exp_1;
    d += d_exp * b.of_exp(i);
  }

  CGAL_assertion_msg(CGAL::abs(exp* INTERN_MP_FLOAT::log_limb) < (1<<30)*2.0,
                     "Exponent overflow in MP_Float to_double");

  return std::make_pair(d, static_cast<int>(exp *  INTERN_MP_FLOAT::log_limb));
}

// Returns (first * 2^second), an interval surrounding b.
inline
std::pair<std::pair<double, double>, int>
to_interval_exp(const MP_Float &b)
{
  typedef MP_Float::exponent_type       exponent_type;
  if (b.is_zero())
    return std::make_pair(std::pair<double, double>(0, 0), 0);

  exponent_type exp = b.max_exp();
  int steps = static_cast<int>((std::min)( INTERN_MP_FLOAT::limbs_per_double, b.v.size()));
  double d_exp_1 = std::ldexp(1.0, - (int)  INTERN_MP_FLOAT::log_limb);
  double d_exp   = 1.0;

  Interval_nt_advanced::Protector P;
  Interval_nt_advanced d = 0;

  exponent_type i;
  for (i = exp - 1; i > exp - 1 - steps; i--) {
    d_exp *= d_exp_1;
    if (d_exp == 0) // Take care of underflow.
      d_exp = CGAL_IA_MIN_DOUBLE;
    d += d_exp * b.of_exp(i);
  }

  if (i >= b.min_exp() && d.is_point()) {
    if (b.of_exp(i) > 0)
      d += Interval_nt_advanced(0, d_exp);
    else if (b.of_exp(i) < 0)
      d += Interval_nt_advanced(-d_exp, 0);
    else
      d += Interval_nt_advanced(-d_exp, d_exp);
  }

#ifdef CGAL_EXPENSIVE_ASSERTION // force it always in early debugging
  if (d.is_point())
    CGAL_assertion(MP_Float(d.inf()) == b);
  else
    CGAL_assertion(MP_Float(d.inf()) <= b & MP_Float(d.sup()) >= b);
#endif

  CGAL_assertion_msg(CGAL::abs(exp* INTERN_MP_FLOAT::log_limb) < (1<<30)*2.0,
                     "Exponent overflow in MP_Float to_interval");
  return std::make_pair(d.pair(), static_cast<int>(exp *  INTERN_MP_FLOAT::log_limb));
}

// to_double() returns, not the closest double, but a one bit error is allowed.
// We guarantee : to_double(MP_Float(double d)) == d.
inline
double
INTERN_MP_FLOAT::to_double(const MP_Float &b)
{
  std::pair<double, int> ap = to_double_exp(b);
  return ap.first * std::ldexp(1.0, ap.second);
}

inline
double
INTERN_MP_FLOAT::to_double(const Quotient<MP_Float> &q)
{
    std::pair<double, int> n = to_double_exp(q.numerator());
    std::pair<double, int> d = to_double_exp(q.denominator());
    double scale = std::ldexp(1.0, n.second - d.second);
    return (n.first / d.first) * scale;
}

// FIXME : This function deserves proper testing...
inline
std::pair<double,double>
INTERN_MP_FLOAT::to_interval(const MP_Float &b)
{
  std::pair<std::pair<double, double>, int> ap = to_interval_exp(b);
  return ldexp(Interval_nt<>(ap.first), ap.second).pair();
}

// FIXME : This function deserves proper testing...
inline
std::pair<double,double>
INTERN_MP_FLOAT::to_interval(const Quotient<MP_Float> &q)
{
  std::pair<std::pair<double, double>, int> n = to_interval_exp(q.numerator());
  std::pair<std::pair<double, double>, int> d = to_interval_exp(q.denominator());
  CGAL_assertion_msg(CGAL::abs(1.0*n.second - d.second) < (1<<30)*2.0,
                     "Exponent overflow in Quotient<MP_Float> to_interval");
  return ldexp(Interval_nt<>(n.first) / Interval_nt<>(d.first),
               n.second - d.second).pair();
}

inline
std::ostream &
operator<< (std::ostream & os, const MP_Float &b)
{
  os << CGAL::to_double(b);
  return os;
}

inline
std::ostream &
print (std::ostream & os, const MP_Float &b)
{
  typedef MP_Float::exponent_type       exponent_type;
  // Binary format would be nice and not hard to have too (useful ?).
  if (b.is_zero())
    return os << 0 << " [ double approx == " << 0.0 << " ]";

  MP_Float::const_iterator i;
  exponent_type exp = b.min_exp() *  INTERN_MP_FLOAT::log_limb;
  double approx = 0; // only for giving an idea.

  for (i = b.v.begin(); i != b.v.end(); i++)
  {
    os << ((*i > 0) ? " +" : " ") << *i;

    if (exp != 0)
      os << " * 2^" << exp;

    approx += std::ldexp(static_cast<double>(*i),
                                   static_cast<int>(exp));

    exp +=  INTERN_MP_FLOAT::log_limb;
  }

  os << "  [ double approx == " << approx << " ]";

  return os;
}

inline
std::istream &
operator>> (std::istream & is, MP_Float &b)
{
  double d;
  is >> d;
  if (is)
    b = MP_Float(d);
  return is;
}

} //namespace CGAL

#endif // CGAL_MP_FLOAT_IMPL_H