/usr/include/CGAL/OpenNL/linear_solver.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 | // Copyright (c) 2005-2008 Inria Loria (France).
/*
* author: Bruno Levy, INRIA, project ALICE
* website: http://www.loria.fr/~levy/software
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Scientific work that use this software can reference the website and
* the following publication:
*
* @INPROCEEDINGS {levy:NMDGP:05,
* AUTHOR = Bruno Levy,
* TITLE = Numerical Methods for Digital Geometry Processing,
* BOOKTITLE =Israel Korea Bi-National Conference,
* YEAR=November 2005,
* URL=http://www.loria.fr/~levy/php/article.php?pub=../publications/papers/2005/Numerics
* }
*
* Laurent Saboret 2005-2006: Changes for CGAL:
* - Added OpenNL namespace
* - DefaultLinearSolverTraits is now a model of the SparseLinearAlgebraTraits_d concept
* - Added SymmetricLinearSolverTraits
* - copied Jacobi preconditioner from Graphite 1.9 code
*/
#ifndef __OPENNL_LINEAR_SOLVER__
#define __OPENNL_LINEAR_SOLVER__
#include <CGAL/OpenNL/conjugate_gradient.h>
#include <CGAL/OpenNL/bicgstab.h>
#include <CGAL/OpenNL/preconditioner.h>
#include <CGAL/OpenNL/sparse_matrix.h>
#include <CGAL/OpenNL/full_vector.h>
#include <vector>
#include <iostream>
#include <cstdlib>
namespace OpenNL {
// Class DefaultLinearSolverTraits
// is a traits class for solving general sparse linear systems.
// It uses BICGSTAB solver with Jacobi preconditioner.
//
// Concept: Model of the SparseLinearAlgebraTraits_d concept.
template
<
class COEFFTYPE, // type of matrix and vector coefficients
class MATRIX = SparseMatrix<COEFFTYPE>, // model of SparseLinearSolverTraits_d::Matrix
class VECTOR = FullVector<COEFFTYPE> // model of SparseLinearSolverTraits_d::Vector
>
class DefaultLinearSolverTraits
{
// Public types
public:
typedef COEFFTYPE CoeffType ;
typedef COEFFTYPE NT;
typedef MATRIX Matrix ;
typedef VECTOR Vector ;
// Private types
private:
typedef Jacobi_Preconditioner<NT> Preconditioner ;
typedef Solver_preconditioned_BICGSTAB<Matrix, Preconditioner, Vector>
Preconditioned_solver ;
typedef Solver_BICGSTAB<Matrix, Vector> Solver ;
// Public operations
public:
// Default contructor, copy constructor, operator=() and destructor are fine
// Solve the sparse linear system "A*X = B"
// Return true on success. The solution is then (1/D) * X.
//
// Preconditions:
// - A.row_dimension() == B.dimension()
// - A.column_dimension() == X.dimension()
bool linear_solver (const Matrix& A, const Vector& B, Vector& X, NT& D)
{
D = 1; // OpenNL does not support homogeneous coordinates
// Solve using BICGSTAB solver with preconditioner
Preconditioned_solver preconditioned_solver ;
NT omega = 1.5;
Preconditioner C(A, omega);
X = B;
if (preconditioned_solver.solve(A, C, B, X))
return true;
// On error, solve using BICGSTAB solver without preconditioner
#ifdef DEBUG_TRACE
std::cerr << " Failure of BICGSTAB solver with Jacobi preconditioner. "
<< "Trying BICGSTAB." << std::endl;
#endif
Solver solver ;
X = B;
return solver.solve(A, B, X) ;
}
} ;
// Class SymmetricLinearSolverTraits
// is a traits class for solving symmetric positive definite sparse linear systems.
// It uses Conjugate Gradient solver with Jacobi preconditioner.
//
// Concept: Model of the SparseLinearAlgebraTraits_d concept.
template
<
class COEFFTYPE, // type of matrix and vector coefficients
class MATRIX = SparseMatrix<COEFFTYPE>, // model of SparseLinearSolverTraits_d::Matrix
class VECTOR = FullVector<COEFFTYPE> // model of SparseLinearSolverTraits_d::Vector
>
class SymmetricLinearSolverTraits
{
// Public types
public:
typedef COEFFTYPE CoeffType ;
typedef COEFFTYPE NT;
typedef MATRIX Matrix ;
typedef VECTOR Vector ;
// Private types
private:
typedef Jacobi_Preconditioner<NT> Preconditioner ;
typedef Solver_preconditioned_CG<Matrix, Preconditioner, Vector>
Preconditioned_solver ;
typedef Solver_CG<Matrix, Vector> Solver ;
// Public operations
public:
// Default contructor, copy constructor, operator=() and destructor are fine
// Solve the sparse linear system "A*X = B"
// Return true on success. The solution is then (1/D) * X.
//
// Preconditions:
// - A.row_dimension() == B.dimension()
// - A.column_dimension() == X.dimension()
bool linear_solver (const Matrix& A, const Vector& B, Vector& X, NT& D)
{
D = 1; // OpenNL does not support homogeneous coordinates
// Solve using Conjugate Gradient solver with preconditioner
Preconditioned_solver preconditioned_solver ;
NT omega = 1.5;
Preconditioner C(A, omega);
X = B;
if (preconditioned_solver.solve(A, C, B, X))
return true;
// On error, solve using Conjugate Gradient solver without preconditioner
#ifdef DEBUG_TRACE
std::cerr << " Failure of Conjugate Gradient solver with Jacobi preconditioner. "
<< "Trying Conjugate Gradient." << std::endl;
#endif
Solver solver ;
X = B;
return solver.solve(A, B, X) ;
}
};
/*
* Solves a linear system or minimizes a quadratic form.
*
* Requirements for its traits class: must be a model of SparseLinearSolverTraits_d concept
*/
template <class TRAITS>
class LinearSolver
{
protected:
enum State {
INITIAL, IN_SYSTEM, IN_ROW, CONSTRUCTED, SOLVED
} ;
public:
typedef TRAITS Traits ;
typedef typename Traits::Matrix Matrix ;
typedef typename Traits::Vector Vector ;
typedef typename Traits::NT CoeffType ;
class Variable {
public:
Variable() : x_(0), index_(-1), locked_(false) { }
double value() const { return x_; }
void set_value(double x_in) { x_ = x_in ; }
void lock() { locked_ = true ; }
void unlock() { locked_ = false ; }
bool is_locked() const { return locked_ ; }
unsigned int index() const {
CGAL_assertion(index_ != -1) ;
return (unsigned int)(index_) ;
}
void set_index(unsigned int index_in) {
index_ = index_in ;
}
private:
CoeffType x_ ;
int index_ ;
bool locked_ ;
} ;
LinearSolver(unsigned int nb_variables) {
state_ = INITIAL ;
least_squares_ = false ;
nb_variables_ = nb_variables ;
variable_ = new Variable[nb_variables] ;
A_ = NULL ;
x_ = NULL ;
b_ = NULL ;
}
~LinearSolver() {
delete[] variable_ ;
delete A_ ;
delete x_ ;
delete b_ ;
}
// __________________ Parameters ________________________
void set_least_squares(bool x) { least_squares_ = x ; }
// __________________ Access ____________________________
int nb_variables() const { return nb_variables_ ; }
Variable& variable(unsigned int idx) {
CGAL_assertion(idx < nb_variables_) ;
return variable_[idx] ;
}
const Variable& variable(unsigned int idx) const {
CGAL_assertion(idx < nb_variables_) ;
return variable_[idx] ;
}
// _________________ Construction _______________________
void begin_system() {
current_row_ = 0 ;
transition(INITIAL, IN_SYSTEM) ;
// Enumerate free variables.
unsigned int index = 0 ;
for(int ii=0; ii < nb_variables() ; ii++) {
Variable& v = variable(ii) ;
if(!v.is_locked()) {
v.set_index(index) ;
index++ ;
}
}
unsigned int n = index ;
A_ = new Matrix(n) ;
x_ = new Vector(n) ;
b_ = new Vector(n) ;
for(unsigned int i=0; i<n; i++) {
(*x_)[i] = 0 ;
(*b_)[i] = 0 ;
}
variables_to_vector() ;
}
void begin_row() {
transition(IN_SYSTEM, IN_ROW) ;
af_.clear() ;
if_.clear() ;
al_.clear() ;
xl_.clear() ;
bk_ = 0 ;
}
void set_right_hand_side(double b) {
check_state(IN_ROW) ;
bk_ = b ;
}
void add_coefficient(unsigned int iv, double a) {
check_state(IN_ROW) ;
Variable& v = variable(iv) ;
if(v.is_locked()) {
al_.push_back(a) ;
xl_.push_back(v.value()) ;
} else {
af_.push_back(a) ;
if_.push_back(v.index()) ;
}
}
void normalize_row(CoeffType weight = 1) {
check_state(IN_ROW) ;
CoeffType norm = 0.0 ;
unsigned int nf = af_.size() ;
for(unsigned int i=0; i<nf; i++) {
norm += af_[i] * af_[i] ;
}
unsigned int nl = al_.size() ;
for(unsigned int i=0; i<nl; i++) {
norm += al_[i] * al_[i] ;
}
norm = sqrt(norm) ;
CGAL_assertion( fabs(norm)>1e-40 );
scale_row(weight / norm) ;
}
void scale_row(CoeffType s) {
check_state(IN_ROW) ;
unsigned int nf = af_.size() ;
for(unsigned int i=0; i<nf; i++) {
af_[i] *= s ;
}
unsigned int nl = al_.size() ;
for(unsigned int i=0; i<nl; i++) {
al_[i] *= s ;
}
bk_ *= s ;
}
void end_row() {
if(least_squares_) {
unsigned int nf = af_.size() ;
unsigned int nl = al_.size() ;
for(unsigned int i=0; i<nf; i++) {
for(unsigned int j=0; j<nf; j++) {
A_->add_coef(if_[i], if_[j], af_[i] * af_[j]) ;
}
}
CoeffType S = - bk_ ;
for(unsigned int j=0; j<nl; j++) {
S += al_[j] * xl_[j] ;
}
for(unsigned int i=0; i<nf; i++) {
(*b_)[if_[i]] -= af_[i] * S ;
}
} else {
unsigned int nf = af_.size() ;
unsigned int nl = al_.size() ;
for(unsigned int i=0; i<nf; i++) {
A_->add_coef(current_row_, if_[i], af_[i]) ;
}
(*b_)[current_row_] = bk_ ;
for(unsigned int i=0; i<nl; i++) {
(*b_)[current_row_] -= al_[i] * xl_[i] ;
}
}
current_row_++ ;
transition(IN_ROW, IN_SYSTEM) ;
}
void end_system() {
transition(IN_SYSTEM, CONSTRUCTED) ;
}
// ----------------------------- Solver -------------------------------
// Solves a linear system or minimizes a quadratic form.
// Return true on success.
// (modified for SparseLinearAlgebraTraits_d concept)
bool solve()
{
check_state(CONSTRUCTED) ;
// Solve the sparse linear system "A*X = B". On success, the solution is (1/D) * X.
Traits solver_traits;
CoeffType D;
bool success = solver_traits.linear_solver(*A_, *b_, *x_, D) ;
CGAL_assertion(D == 1.0); // WARNING: this library does not support homogeneous coordinates!
vector_to_variables() ;
transition(CONSTRUCTED, SOLVED) ;
delete A_ ; A_ = NULL ;
delete b_ ; b_ = NULL ;
delete x_ ; x_ = NULL ;
return success;
}
protected:
// ----------- Converting between user representation and the internal representation -----
void vector_to_variables() {
for(int ii=0; ii < nb_variables(); ii++) {
Variable& v = variable(ii) ;
if(!v.is_locked()) {
v.set_value( (*x_)[v.index()] ) ;
}
}
}
void variables_to_vector() {
for(int ii=0; ii < nb_variables(); ii++) {
Variable& v = variable(ii) ;
if(!v.is_locked()) {
(*x_)[v.index()] = v.value() ;
}
}
}
// ----------- Finite state automaton (checks that calling sequence is respected) ---------
std::string state_to_string(State s) {
switch(s) {
case INITIAL:
return "initial" ;
case IN_SYSTEM:
return "in system" ;
case IN_ROW:
return "in row" ;
case CONSTRUCTED:
return "constructed" ;
case SOLVED:
return "solved" ;
}
// Should not go there.
CGAL_error();
return "undefined" ;
}
void check_state(State s) {
CGAL_assertion(state_ == s) ;
}
void transition(State from, State to) {
check_state(from) ;
state_ = to ;
}
private:
// --------------- parameters --------------------------
bool least_squares_ ;
// --------------- user representation --------------
unsigned int nb_variables_ ;
Variable* variable_ ;
// --------------- construction -----------------------
State state_ ;
unsigned int current_row_ ;
std::vector<CoeffType> af_ ;
std::vector<unsigned int> if_ ;
std::vector<CoeffType> al_ ;
std::vector<CoeffType> xl_ ;
double bk_ ;
// --------------- internal representation ---------
Matrix* A_ ;
Vector* x_ ;
Vector* b_ ;
} ;
} // namespace OpenNL
#endif
|