This file is indexed.

/usr/include/CGAL/Poisson_reconstruction_function.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
// Copyright (c) 2007-09  INRIA (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s)     : Laurent Saboret, Pierre Alliez

#ifndef CGAL_POISSON_RECONSTRUCTION_FUNCTION_H
#define CGAL_POISSON_RECONSTRUCTION_FUNCTION_H

#ifndef CGAL_DIV_NORMALIZED
#  ifndef CGAL_DIV_NON_NORMALIZED
#    define CGAL_DIV_NON_NORMALIZED 1
#  endif
#endif

#include <vector>
#include <deque>
#include <algorithm>
#include <cmath>

#include <CGAL/trace.h>
#include <CGAL/Reconstruction_triangulation_3.h>
#include <CGAL/spatial_sort.h>
#ifdef CGAL_EIGEN3_ENABLED
#include <CGAL/Eigen_solver_traits.h>
#else
#ifdef CGAL_TAUCS_ENABLED
#include <CGAL/Taucs_solver_traits.h>
#endif
#endif
#include <CGAL/centroid.h>
#include <CGAL/property_map.h>
#include <CGAL/surface_reconstruction_points_assertions.h>
#include <CGAL/poisson_refine_triangulation.h>
#include <CGAL/Robust_circumcenter_filtered_traits_3.h>
#include <CGAL/compute_average_spacing.h>

#include <boost/shared_ptr.hpp>
#include <boost/array.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/utility/enable_if.hpp>

/*! 
  \file Poisson_reconstruction_function.h
*/

namespace CGAL {

  namespace internal {
template <class RT>
bool
invert(
       const RT& a0,  const RT& a1,  const RT& a2,
       const RT& a3,  const RT& a4,  const RT& a5,
       const RT& a6,  const RT& a7,  const RT& a8,
       RT& i0,   RT& i1,   RT& i2,
       RT& i3,   RT& i4,   RT& i5,
       RT& i6,   RT& i7,   RT& i8)
{
    // Compute the adjoint.
    i0 = a4*a8 - a5*a7;
    i1 = a2*a7 - a1*a8;
    i2 = a1*a5 - a2*a4;
    i3 = a5*a6 - a3*a8;
    i4 = a0*a8 - a2*a6;
    i5 = a2*a3 - a0*a5;
    i6 = a3*a7 - a4*a6;
    i7 = a1*a6 - a0*a7;
    i8 = a0*a4 - a1*a3;

    RT det = a0*i0 + a1*i3 + a2*i6;

    if(det != 0) {
      RT idet = (RT(1.0))/det;
      i0 *= idet;
      i1 *= idet;
      i2 *= idet;
      i3 *= idet;
      i4 *= idet;
      i5 *= idet;
      i6 *= idet;
      i7 *= idet;
      i8 *= idet;
      return true;
    }

    return false;
}

  }


/// \cond SKIP_IN_MANUAL
struct Poisson_visitor {
  void before_insertion() const
  {}
};

struct Poisson_skip_vertices { 
  double ratio;
  Random& m_random;
  Poisson_skip_vertices(const double ratio, Random& random)
    : ratio(ratio), m_random(random) {}

  template <typename Iterator>
  bool operator()(Iterator) const {
    return m_random.get_double() < ratio;
  }
};

// Given f1 and f2, two sizing fields, that functor wrapper returns
//   max(f1, f2*f2)
// The wrapper stores only pointers to the two functors.
template <typename F1, typename F2>
struct Special_wrapper_of_two_functions_keep_pointers {
  F1 *f1;
  F2 *f2;
  Special_wrapper_of_two_functions_keep_pointers(F1* f1, F2* f2) 
    : f1(f1), f2(f2) {}

  template <typename X>
  double operator()(const X& x) const {
    return (std::max)((*f1)(x), CGAL::square((*f2)(x)));
  }

  template <typename X>
  double operator()(const X& x) {
    return (std::max)((*f1)(x), CGAL::square((*f2)(x)));
  }
}; // end struct Special_wrapper_of_two_functions_keep_pointers<F1, F2>
/// \endcond 


/*!
\ingroup PkgSurfaceReconstructionFromPointSets

\brief Implementation of the Poisson Surface Reconstruction method.
  
Given a set of 3D points with oriented normals sampled on the boundary
of a 3D solid, the Poisson Surface Reconstruction method \cite Kazhdan06 
solves for an approximate indicator function of the inferred
solid, whose gradient best matches the input normals. The output
scalar function, represented in an adaptive octree, is then
iso-contoured using an adaptive marching cubes.

`Poisson_reconstruction_function` implements a variant of this
algorithm which solves for a piecewise linear function on a 3D
Delaunay triangulation instead of an adaptive octree.

\tparam Gt Geometric traits class. 

\cgalModels `ImplicitFunction`

*/
template <class Gt>
class Poisson_reconstruction_function
{
// Public types
public:

  /// \name Types 
  /// @{

  typedef Gt Geom_traits; ///< Geometric traits class
  /// \cond SKIP_IN_MANUAL
  typedef Reconstruction_triangulation_3<Robust_circumcenter_filtered_traits_3<Gt> >
                                                   Triangulation;
  /// \endcond
  typedef typename Triangulation::Cell_handle   Cell_handle;

  // Geometric types
  typedef typename Geom_traits::FT FT; ///< number type.
  typedef typename Geom_traits::Point_3 Point; ///< point type.
  typedef typename Geom_traits::Vector_3 Vector; ///< vector type.
  typedef typename Geom_traits::Sphere_3 Sphere; 

  /// @}

// Private types
private:

  // Internal 3D triangulation, of type Reconstruction_triangulation_3.
  // Note: poisson_refine_triangulation() requires a robust circumcenter computation.

  // Repeat Triangulation types
  typedef typename Triangulation::Triangulation_data_structure Triangulation_data_structure;
  typedef typename Geom_traits::Ray_3 Ray;
  typedef typename Geom_traits::Plane_3 Plane;
  typedef typename Geom_traits::Segment_3 Segment;
  typedef typename Geom_traits::Triangle_3 Triangle;
  typedef typename Geom_traits::Tetrahedron_3 Tetrahedron;
  typedef typename Triangulation::Vertex_handle Vertex_handle;
  typedef typename Triangulation::Cell   Cell;
  typedef typename Triangulation::Vertex Vertex;
  typedef typename Triangulation::Facet  Facet;
  typedef typename Triangulation::Edge   Edge;
  typedef typename Triangulation::Cell_circulator  Cell_circulator;
  typedef typename Triangulation::Facet_circulator Facet_circulator;
  typedef typename Triangulation::Cell_iterator    Cell_iterator;
  typedef typename Triangulation::Facet_iterator   Facet_iterator;
  typedef typename Triangulation::Edge_iterator    Edge_iterator;
  typedef typename Triangulation::Vertex_iterator  Vertex_iterator;
  typedef typename Triangulation::Point_iterator   Point_iterator;
  typedef typename Triangulation::Finite_vertices_iterator Finite_vertices_iterator;
  typedef typename Triangulation::Finite_cells_iterator    Finite_cells_iterator;
  typedef typename Triangulation::Finite_facets_iterator   Finite_facets_iterator;
  typedef typename Triangulation::Finite_edges_iterator    Finite_edges_iterator;
  typedef typename Triangulation::All_cells_iterator       All_cells_iterator;
  typedef typename Triangulation::Locate_type Locate_type;

// Data members.
// Warning: the Surface Mesh Generation package makes copies of implicit functions,
// thus this class must be lightweight and stateless.
private:

  // operator() is pre-computed on vertices of *m_tr by solving
  // the Poisson equation Laplacian(f) = divergent(normals field).
  boost::shared_ptr<Triangulation> m_tr;

  mutable boost::shared_ptr<std::vector<boost::array<double,9> > > m_Bary;
  mutable std::vector<Point> Dual;
  mutable std::vector<Vector> Normal;

  // contouring and meshing
  Point m_sink; // Point with the minimum value of operator()
  mutable Cell_handle m_hint; // last cell found = hint for next search

  FT average_spacing;


  /// function to be used for the different constructors available that are
  /// doing the same thing but with default template parameters
  template <typename InputIterator,
            typename PointPMap,
            typename NormalPMap,
            typename Visitor
  >
  void forward_constructor(
    InputIterator first,
    InputIterator beyond,
    PointPMap point_pmap,
    NormalPMap normal_pmap,
    Visitor visitor)
  {
    CGAL::Timer task_timer; task_timer.start();
    CGAL_TRACE_STREAM << "Creates Poisson triangulation...\n";

    // Inserts points in triangulation
    m_tr->insert(
      first,beyond,
      point_pmap,
      normal_pmap,
      visitor);

    // Prints status
    CGAL_TRACE_STREAM << "Creates Poisson triangulation: " << task_timer.time() << " seconds, "
                                                           << std::endl;
  }


// Public methods
public:

  /// \name Creation 
  /// @{


  /*! 
    Creates a Poisson implicit function from the  range of points `[first, beyond)`. 

    \tparam InputIterator iterator over input points. 

    \tparam PointPMap is a model of `ReadablePropertyMap` with
      a `value_type = Point`.  It can be omitted if `InputIterator`
      `value_type` is convertible to `Point`. 
    
    \tparam NormalPMap is a model of `ReadablePropertyMap`
      with a `value_type = Vector`.
  */ 
  template <typename InputIterator,
            typename PointPMap,
            typename NormalPMap
  >
  Poisson_reconstruction_function(
    InputIterator first,  ///< iterator over the first input point.
    InputIterator beyond, ///< past-the-end iterator over the input points.
    PointPMap point_pmap, ///< property map to access the position of an input point.
    NormalPMap normal_pmap ///< property map to access the *oriented* normal of an input point.
  )
    : m_tr(new Triangulation), m_Bary(new std::vector<boost::array<double,9> > )
    , average_spacing(CGAL::compute_average_spacing(first, beyond, 6))
  {
    forward_constructor(first, beyond, point_pmap, normal_pmap, Poisson_visitor());
  }

  /// \cond SKIP_IN_MANUAL
  template <typename InputIterator,
            typename PointPMap,
            typename NormalPMap,
            typename Visitor
  >
  Poisson_reconstruction_function(
    InputIterator first,  ///< iterator over the first input point.
    InputIterator beyond, ///< past-the-end iterator over the input points.
    PointPMap point_pmap, ///< property map to access the position of an input point.
    NormalPMap normal_pmap, ///< property map to access the *oriented* normal of an input point.
    Visitor visitor)
    : m_tr(new Triangulation), m_Bary(new std::vector<boost::array<double,9> > )
    , average_spacing(CGAL::compute_average_spacing(first, beyond, 6))
  {
    forward_constructor(first, beyond, point_pmap, normal_pmap, visitor);
  }

  // This variant creates a default point property map = Dereference_property_map and Visitor=Poisson_visitor
  template <typename InputIterator,
            typename NormalPMap
  >
  Poisson_reconstruction_function(
    InputIterator first,  ///< iterator over the first input point.
    InputIterator beyond, ///< past-the-end iterator over the input points.
    NormalPMap normal_pmap, ///< property map to access the *oriented* normal of an input point.
    typename boost::enable_if<
      boost::is_convertible<typename InputIterator::value_type, Point>
    >::type* = 0
  )
  : m_tr(new Triangulation), m_Bary(new std::vector<boost::array<double,9> > )
  , average_spacing(CGAL::compute_average_spacing(first, beyond, 6))
  {
    forward_constructor(first, beyond, make_dereference_property_map(first), normal_pmap, Poisson_visitor());
    CGAL::Timer task_timer; task_timer.start();
  }
  /// \endcond

  /// @}

  /// \name Operations
  /// @{

  /// Returns a sphere bounding the inferred surface.
  Sphere bounding_sphere() const
  {
    return m_tr->bounding_sphere();
  }
  
  /// \cond SKIP_IN_MANUAL
  const Triangulation& tr() const {
    return *m_tr;
  }
  
  // This variant requires all parameters.
  template <class SparseLinearAlgebraTraits_d,
            class Visitor>
  bool compute_implicit_function(
                                 SparseLinearAlgebraTraits_d solver,// = SparseLinearAlgebraTraits_d(),
                                 Visitor visitor,
                                 double approximation_ratio = 0,
                                 double average_spacing_ratio = 5) 
  {
    CGAL::Timer task_timer; task_timer.start();
    CGAL_TRACE_STREAM << "Delaunay refinement...\n";

    // Delaunay refinement
    const FT radius_edge_ratio_bound = 2.5;
    const unsigned int max_vertices = (unsigned int)1e7; // max 10M vertices
    const FT enlarge_ratio = 1.5;
    const FT radius = sqrt(bounding_sphere().squared_radius()); // get triangulation's radius
    const FT cell_radius_bound = radius/5.; // large

    internal::Poisson::Constant_sizing_field<Triangulation> sizing_field(CGAL::square(cell_radius_bound));

    std::vector<int> NB; 

    NB.push_back( delaunay_refinement(radius_edge_ratio_bound,sizing_field,max_vertices,enlarge_ratio));

    while(m_tr->insert_fraction(visitor)){

      NB.push_back( delaunay_refinement(radius_edge_ratio_bound,sizing_field,max_vertices,enlarge_ratio));
    }

    if(approximation_ratio > 0. && 
       approximation_ratio * std::distance(m_tr->input_points_begin(),
                                           m_tr->input_points_end()) > 20) {

      // Add a pass of Delaunay refinement.
      //
      // In that pass, the sizing field, of the refinement process of the
      // triangulation, is based on the result of a poisson function with a
      // sample of the input points. The ratio is 'approximation_ratio'.
      //
      // For optimization reasons, the cell criteria of the refinement
      // process uses two sizing fields:
      //
      //   - the minimum of the square of 'coarse_poisson_function' and the
      // square of the constant field equal to 'average_spacing',
      //
      //   - a second sizing field that is constant, and equal to:
      //
      //         average_spacing*average_spacing_ratio
      //
      // If a given cell is smaller than the constant second sizing field,
      // then the cell is considered as small enough, and the first sizing
      // field, more costly, is not evaluated.

      typedef Filter_iterator<typename Triangulation::Input_point_iterator,
                              Poisson_skip_vertices> Some_points_iterator;
      //make it deterministic
      Random random(0);
      Poisson_skip_vertices skip(1.-approximation_ratio,random);
      
      CGAL_TRACE_STREAM << "SPECIAL PASS that uses an approximation of the result (approximation ratio: "
                << approximation_ratio << ")" << std::endl;
      CGAL::Timer approximation_timer; approximation_timer.start();

      CGAL::Timer sizing_field_timer; sizing_field_timer.start();
      Poisson_reconstruction_function<Geom_traits> 
        coarse_poisson_function(Some_points_iterator(m_tr->input_points_end(),
                                                     skip,
                                                     m_tr->input_points_begin()),
                                Some_points_iterator(m_tr->input_points_end(),
                                                     skip),
                                Normal_of_point_with_normal_pmap<Geom_traits>() );
      coarse_poisson_function.compute_implicit_function(solver, Poisson_visitor(),
                                                        0.);
      internal::Poisson::Constant_sizing_field<Triangulation> 
        min_sizing_field(CGAL::square(average_spacing));
      internal::Poisson::Constant_sizing_field<Triangulation> 
        sizing_field_ok(CGAL::square(average_spacing*average_spacing_ratio));

      Special_wrapper_of_two_functions_keep_pointers<
        internal::Poisson::Constant_sizing_field<Triangulation>,
        Poisson_reconstruction_function<Geom_traits> > sizing_field2(&min_sizing_field,
                                                                     &coarse_poisson_function);
        
      sizing_field_timer.stop();
      std::cerr << "Construction time of the sizing field: " << sizing_field_timer.time() 
                << " seconds" << std::endl;

      NB.push_back( delaunay_refinement(radius_edge_ratio_bound,
                                        sizing_field2,
                                        max_vertices,
                                        enlarge_ratio,
                                        sizing_field_ok) );
      approximation_timer.stop();
      CGAL_TRACE_STREAM << "SPECIAL PASS END (" << approximation_timer.time() <<  " seconds)" << std::endl;
    }

    
    // Prints status
    CGAL_TRACE_STREAM << "Delaunay refinement: " << "added ";
    for(std::size_t i = 0; i < NB.size()-1; i++){
      CGAL_TRACE_STREAM << NB[i] << " + "; 
    } 
    CGAL_TRACE_STREAM << NB.back() << " Steiner points, "
                      << task_timer.time() << " seconds, "
                      << std::endl;
    task_timer.reset();

#ifdef CGAL_DIV_NON_NORMALIZED
    CGAL_TRACE_STREAM << "Solve Poisson equation with non-normalized divergence...\n";
#else
    CGAL_TRACE_STREAM << "Solve Poisson equation with normalized divergence...\n";
#endif

    // Computes the Poisson indicator function operator()
    // at each vertex of the triangulation.
    double lambda = 0.1;
    if ( ! solve_poisson(solver, lambda) )
    {
      std::cerr << "Error: cannot solve Poisson equation" << std::endl;
      return false;
    }

    // Shift and orient operator() such that:
    // - operator() = 0 on the input points,
    // - operator() < 0 inside the surface.
    set_contouring_value(median_value_at_input_vertices());

    // Prints status
    CGAL_TRACE_STREAM << "Solve Poisson equation: " << task_timer.time() << " seconds, "
                                                    << std::endl;
    task_timer.reset();

    return true;
  }
  /// \endcond

  /*!
    This function must be called after the
    insertion of oriented points. It computes the piecewise linear scalar
    function operator() by: applying Delaunay refinement, solving for
    operator() at each vertex of the triangulation with a sparse linear
    solver, and shifting and orienting operator() such that it is 0 at all
    input points and negative inside the inferred surface.

    \tparam SparseLinearAlgebraTraits_d Symmetric definite positive sparse linear solver.
    If \ref thirdpartyEigen "Eigen" 3.1 (or greater) is available and `CGAL_EIGEN3_ENABLED`
    is defined, an overload with \link Eigen_solver_traits <tt>Eigen_solver_traits<Eigen::ConjugateGradient<Eigen_sparse_symmetric_matrix<double>::EigenType> ></tt> \endlink
    as default solver is provided.
  
    \param solver sparse linear solver.
    \param smoother_hole_filling controls if the Delaunay refinement is done for the input points, or for an approximation of the surface obtained from a first pass of the algorithm on a sample of the points.

    \return `false` if the linear solver fails. 
  */ 
  template <class SparseLinearAlgebraTraits_d>
  bool compute_implicit_function(SparseLinearAlgebraTraits_d solver, bool smoother_hole_filling = false)
  {
    if (smoother_hole_filling)
      return compute_implicit_function<SparseLinearAlgebraTraits_d,Poisson_visitor>(solver,Poisson_visitor(),0.02,5);
    else
      return compute_implicit_function<SparseLinearAlgebraTraits_d,Poisson_visitor>(solver,Poisson_visitor());
  }
  
  /// \cond SKIP_IN_MANUAL
#ifdef CGAL_EIGEN3_ENABLED
  // This variant provides the default sparse linear traits class = Eigen_solver_traits.
  bool compute_implicit_function(bool smoother_hole_filling = false)
  {
    typedef Eigen_solver_traits<Eigen::ConjugateGradient<Eigen_sparse_symmetric_matrix<double>::EigenType> > Solver;
    return compute_implicit_function<Solver>(Solver(), smoother_hole_filling);
  }
#else
  #ifdef CGAL_TAUCS_ENABLED
  // This variant provides the default sparse linear traits class = Taucs_symmetric_solver_traits.
  bool compute_implicit_function(bool smoother_hole_filling = false)
  {
    typedef  Taucs_symmetric_solver_traits<double> Solver;
    return compute_implicit_function<Solver>(Solver(), smoother_hole_filling);
  }
  #endif
#endif
 
  boost::tuple<FT, Cell_handle, bool> special_func(const Point& p) const
  {
    m_hint = m_tr->locate(p  ,m_hint  ); // no hint when we use hierarchy

    if(m_tr->is_infinite(m_hint)) {
      int i = m_hint->index(m_tr->infinite_vertex());
      return boost::make_tuple(m_hint->vertex((i+1)&3)->f(),
                               m_hint, true);
    }

    FT a,b,c,d;
    barycentric_coordinates(p,m_hint,a,b,c,d);
    return boost::make_tuple(a * m_hint->vertex(0)->f() +
                             b * m_hint->vertex(1)->f() +
                             c * m_hint->vertex(2)->f() +
                             d * m_hint->vertex(3)->f(),
                             m_hint, false);
  }
  /// \endcond

  /*! 
    `ImplicitFunction` interface: evaluates the implicit function at a 
    given 3D query point. The function `compute_implicit_function` must be 
    called before the first call to `operator()`. 
  */ 
  FT operator()(const Point& p) const
  {
    m_hint = m_tr->locate(p ,m_hint); 

    if(m_tr->is_infinite(m_hint)) {
      int i = m_hint->index(m_tr->infinite_vertex());
      return m_hint->vertex((i+1)&3)->f();
    }

    FT a,b,c,d;
    barycentric_coordinates(p,m_hint,a,b,c,d);
    return a * m_hint->vertex(0)->f() +
           b * m_hint->vertex(1)->f() +
           c * m_hint->vertex(2)->f() +
           d * m_hint->vertex(3)->f();
  }
  
  /// \cond SKIP_IN_MANUAL
  void initialize_cell_indices()
  {
    int i=0;
    for(Finite_cells_iterator fcit = m_tr->finite_cells_begin();
        fcit != m_tr->finite_cells_end();
        ++fcit){
      fcit->info()= i++;
    }
  }

  void initialize_barycenters() const
  {
    m_Bary->resize(m_tr->number_of_cells());

    for(std::size_t i=0; i< m_Bary->size();i++){
      (*m_Bary)[i][0]=-1;
    }
  }

  void initialize_cell_normals() const
  {
    Normal.resize(m_tr->number_of_cells());
    int i = 0;
    int N = 0;
    for(Finite_cells_iterator fcit = m_tr->finite_cells_begin();
        fcit != m_tr->finite_cells_end();
        ++fcit){
      Normal[i] = cell_normal(fcit);
      if(Normal[i] == NULL_VECTOR){
        N++;
      }
      ++i;
    }
    std::cerr << N << " out of " << i << " cells have NULL_VECTOR as normal" << std::endl;
  }

  void initialize_duals() const
  {
    Dual.resize(m_tr->number_of_cells());    
    int i = 0;
    for(Finite_cells_iterator fcit = m_tr->finite_cells_begin();
        fcit != m_tr->finite_cells_end();
        ++fcit){
      Dual[i++] = m_tr->dual(fcit);
    }
  }

  void clear_duals() const
  {
    Dual.clear();
  }

  void clear_normals() const
  {
    Normal.clear();
  }

  void initialize_matrix_entry(Cell_handle ch) const
  {
    boost::array<double,9> & entry = (*m_Bary)[ch->info()];
    const Point& pa = ch->vertex(0)->point();
    const Point& pb = ch->vertex(1)->point();
    const Point& pc = ch->vertex(2)->point();
    const Point& pd = ch->vertex(3)->point();
    
    Vector va = pa - pd;
    Vector vb = pb - pd;
    Vector vc = pc - pd;
    
    internal::invert(va.x(), va.y(), va.z(),
           vb.x(), vb.y(), vb.z(),
           vc.x(), vc.y(), vc.z(),
           entry[0],entry[1],entry[2],entry[3],entry[4],entry[5],entry[6],entry[7],entry[8]);
  }
  /// \endcond
  
  /// Returns a point located inside the inferred surface.
  Point get_inner_point() const
  {
    // Gets point / the implicit function is minimum
    return m_sink;
  }

  /// @}

// Private methods:
private:

  /// Delaunay refinement (break bad tetrahedra, where
  /// bad means badly shaped or too big). The normal of
  /// Steiner points is set to zero.
  /// Returns the number of vertices inserted.

  template <typename Sizing_field>
  unsigned int delaunay_refinement(FT radius_edge_ratio_bound, ///< radius edge ratio bound (ignored if zero)
                                   Sizing_field sizing_field, ///< cell radius bound (ignored if zero)
                                   unsigned int max_vertices, ///< number of vertices bound
                                   FT enlarge_ratio) ///< bounding box enlarge ratio
  {
    return delaunay_refinement(radius_edge_ratio_bound,
                               sizing_field,
                               max_vertices,
                               enlarge_ratio,
                               internal::Poisson::Constant_sizing_field<Triangulation>());
  }

  template <typename Sizing_field, 
            typename Second_sizing_field>
  unsigned int delaunay_refinement(FT radius_edge_ratio_bound, ///< radius edge ratio bound (ignored if zero)
                                   Sizing_field sizing_field, ///< cell radius bound (ignored if zero)
                                   unsigned int max_vertices, ///< number of vertices bound
                                   FT enlarge_ratio, ///< bounding box enlarge ratio
                                   Second_sizing_field second_sizing_field)
  {
    Sphere elarged_bsphere = enlarged_bounding_sphere(enlarge_ratio);
    unsigned int nb_vertices_added = poisson_refine_triangulation(*m_tr,radius_edge_ratio_bound,sizing_field,second_sizing_field,max_vertices,elarged_bsphere);

    return nb_vertices_added;
  }

  /// Poisson reconstruction.
  /// Returns false on error.
  ///
  /// @commentheading Template parameters:
  /// @param SparseLinearAlgebraTraits_d Symmetric definite positive sparse linear solver.
  template <class SparseLinearAlgebraTraits_d>
  bool solve_poisson(
    SparseLinearAlgebraTraits_d solver, ///< sparse linear solver
    double lambda)
  {
    CGAL_TRACE("Calls solve_poisson()\n");

    double time_init = clock();

    double duration_assembly = 0.0;
    double duration_solve = 0.0;


    initialize_cell_indices();
    initialize_barycenters();

    // get #variables
    constrain_one_vertex_on_convex_hull();
    m_tr->index_unconstrained_vertices();
    unsigned int nb_variables = static_cast<unsigned int>(m_tr->number_of_vertices()-1);

    CGAL_TRACE("  Number of variables: %ld\n", (long)(nb_variables));

    // Assemble linear system A*X=B
    typename SparseLinearAlgebraTraits_d::Matrix A(nb_variables); // matrix is symmetric definite positive
    typename SparseLinearAlgebraTraits_d::Vector X(nb_variables), B(nb_variables);

    initialize_duals();
#ifndef CGAL_DIV_NON_NORMALIZED
    initialize_cell_normals();
#endif
    Finite_vertices_iterator v, e;
    for(v = m_tr->finite_vertices_begin(),
        e = m_tr->finite_vertices_end();
        v != e;
        ++v)
    {
      if(!m_tr->is_constrained(v)) {
#ifdef CGAL_DIV_NON_NORMALIZED
        B[v->index()] = div(v); // rhs -> divergent
#else // not defined(CGAL_DIV_NORMALIZED)
        B[v->index()] = div_normalized(v); // rhs -> divergent
#endif // not defined(CGAL_DIV_NORMALIZED)
        assemble_poisson_row<SparseLinearAlgebraTraits_d>(A,v,B,lambda);
      }
    }

    clear_duals();
    clear_normals();
    duration_assembly = (clock() - time_init)/CLOCKS_PER_SEC;
    CGAL_TRACE("  Creates matrix: done (%.2lf s)\n", duration_assembly);

    CGAL_TRACE("  Solve sparse linear system...\n");

    // Solve "A*X = B". On success, solution is (1/D) * X.
    time_init = clock();
    double D;
    if(!solver.linear_solver(A, B, X, D))
      return false;
    CGAL_surface_reconstruction_points_assertion(D == 1.0);
    duration_solve = (clock() - time_init)/CLOCKS_PER_SEC;

    CGAL_TRACE("  Solve sparse linear system: done (%.2lf s)\n", duration_solve);

    // copy function's values to vertices
    unsigned int index = 0;
    for (v = m_tr->finite_vertices_begin(), e = m_tr->finite_vertices_end(); v!= e; ++v)
      if(!m_tr->is_constrained(v))
        v->f() = X[index++];

    CGAL_TRACE("End of solve_poisson()\n");

    return true;
  }

  /// Shift and orient the implicit function such that:
  /// - the implicit function = 0 for points / f() = contouring_value,
  /// - the implicit function < 0 inside the surface.
  ///
  /// Returns the minimum value of the implicit function.
  FT set_contouring_value(FT contouring_value)
  {
    // median value set to 0.0
    shift_f(-contouring_value);

    // check value on convex hull (should be positive)
    Vertex_handle v = any_vertex_on_convex_hull();
    if(v->f() < 0.0)
      flip_f();

    // Update m_sink
    FT sink_value = find_sink();
    return sink_value;
  }


/// Gets median value of the implicit function over input vertices.
  FT median_value_at_input_vertices() const
  {
    std::deque<FT> values;
    Finite_vertices_iterator v, e;
    for(v = m_tr->finite_vertices_begin(),
        e= m_tr->finite_vertices_end();
        v != e; 
        v++)
      if(v->type() == Triangulation::INPUT)
        values.push_back(v->f());

    std::size_t size = values.size();
    if(size == 0)
    {
      std::cerr << "Contouring: no input points\n";
      return 0.0;
    }

    std::sort(values.begin(),values.end());
    std::size_t index = size/2;
    // return values[size/2];
    return 0.5 * (values[index] + values[index+1]); // avoids singular cases
  }

  void barycentric_coordinates(const Point& p,
                               Cell_handle cell,
                               FT& a,
                               FT& b,
                               FT& c,
                               FT& d) const
  {

    //    const Point& pa = cell->vertex(0)->point();
    // const Point& pb = cell->vertex(1)->point();
    // const Point& pc = cell->vertex(2)->point();
    const Point& pd = cell->vertex(3)->point();
#if 1
    //Vector va = pa - pd;
    //Vector vb = pb - pd;
    //Vector vc = pc - pd;
    Vector vp = p - pd;

    //FT i00, i01, i02, i10, i11, i12, i20, i21, i22;
    //internal::invert(va.x(), va.y(), va.z(),
    //       vb.x(), vb.y(), vb.z(),
    //       vc.x(), vc.y(), vc.z(),
    //       i00, i01, i02, i10, i11, i12, i20, i21, i22);
    const boost::array<double,9> & i = (*m_Bary)[cell->info()];
    if(i[0]==-1){
      initialize_matrix_entry(cell);
    }
    //    UsedBary[cell->info()] = true;
    a = i[0] * vp.x() + i[3] * vp.y() + i[6] * vp.z();
    b = i[1] * vp.x() + i[4] * vp.y() + i[7] * vp.z();
    c = i[2] * vp.x() + i[5] * vp.y() + i[8] * vp.z();
    d = 1 - ( a + b + c);
#else
    FT v = volume(pa,pb,pc,pd);
    a = std::fabs(volume(pb,pc,pd,p) / v);
    b = std::fabs(volume(pa,pc,pd,p) / v);
    c = std::fabs(volume(pb,pa,pd,p) / v);
    d = std::fabs(volume(pb,pc,pa,p) / v);

    std::cerr << "_________________________________\n";
    std::cerr << aa << "  " << bb << "  " << cc << "  " << dd << std::endl;
    std::cerr << a << "  " << b << "  " << c << "  " << d << std::endl;

#endif
  }

  FT find_sink()
  {
    m_sink = CGAL::ORIGIN;
    FT min_f = 1e38;
    Finite_vertices_iterator v, e;
    for(v = m_tr->finite_vertices_begin(),
        e= m_tr->finite_vertices_end();
        v != e;
        v++)
    {
      if(v->f() < min_f)
      {
        m_sink = v->point();
        min_f = v->f();
      }
    }
    return min_f;
  }

  void shift_f(const FT shift)
  {
    Finite_vertices_iterator v, e;
    for(v = m_tr->finite_vertices_begin(),
        e = m_tr->finite_vertices_end();
        v!= e;
        v++)
      v->f() += shift;
  }

  void flip_f()
  {
    Finite_vertices_iterator v, e;
    for(v = m_tr->finite_vertices_begin(),
          e = m_tr->finite_vertices_end();
        v != e;
        v++)
      v->f() = -v->f();
  }

  Vertex_handle any_vertex_on_convex_hull()
  {
    Cell_handle ch = m_tr->infinite_vertex()->cell();
    return  ch->vertex( (ch->index( m_tr->infinite_vertex())+1)%4);
  }


  void constrain_one_vertex_on_convex_hull(const FT value = 0.0)
  {
    Vertex_handle v = any_vertex_on_convex_hull();
    m_tr->constrain(v);
    v->f() = value;
  }

  // TODO: Some entities are computed too often
  // - nn and area should not be computed for the face and its opposite face
  // 
  // divergent
  FT div_normalized(Vertex_handle v)
  {
    std::vector<Cell_handle> cells;
    cells.reserve(32);
    m_tr->incident_cells(v,std::back_inserter(cells));
  
    FT div = 0;
    typename std::vector<Cell_handle>::iterator it;
    for(it = cells.begin(); it != cells.end(); it++)
    {
      Cell_handle cell = *it;
      if(m_tr->is_infinite(cell))
        continue;

      // compute average normal per cell
      Vector n = get_cell_normal(cell);

      // zero normal - no need to compute anything else
      if(n == CGAL::NULL_VECTOR)
        continue;


      // compute n'
      int index = cell->index(v);
      const Point& x = cell->vertex(index)->point();
      const Point& a = cell->vertex((index+1)%4)->point();
      const Point& b = cell->vertex((index+2)%4)->point();
      const Point& c = cell->vertex((index+3)%4)->point();
      Vector nn = (index%2==0) ? CGAL::cross_product(b-a,c-a) : CGAL::cross_product(c-a,b-a);
      nn = nn / std::sqrt(nn*nn); // normalize
      Vector p = a - x;
      Vector q = b - x;
      Vector r = c - x;
      FT p_n = std::sqrt(p*p);
      FT q_n = std::sqrt(q*q);
      FT r_n = std::sqrt(r*r);
      FT solid_angle = p*(CGAL::cross_product(q,r));
      solid_angle = std::abs(solid_angle / (p_n*q_n*r_n + (p*q)*r_n + (q*r)*p_n + (r*p)*q_n));

      FT area = std::sqrt(squared_area(a,b,c));
      FT length = p_n + q_n + r_n;
      div += n * nn * area / length ;
    }
    return div * FT(3.0);
  }

  FT div(Vertex_handle v)
  {
    std::vector<Cell_handle> cells;
    cells.reserve(32);
    m_tr->incident_cells(v,std::back_inserter(cells));
  
    FT div = 0.0;
    typename std::vector<Cell_handle>::iterator it;
    for(it = cells.begin(); it != cells.end(); it++)
    {
      Cell_handle cell = *it;
      if(m_tr->is_infinite(cell))
        continue;
      
      const int index = cell->index(v);
      const Point& a = cell->vertex(m_tr->vertex_triple_index(index, 0))->point();
      const Point& b = cell->vertex(m_tr->vertex_triple_index(index, 1))->point();
      const Point& c = cell->vertex(m_tr->vertex_triple_index(index, 2))->point();
      const Vector nn = CGAL::cross_product(b-a,c-a);

      div+= nn * (//v->normal() + 
                  cell->vertex((index+1)%4)->normal() +
                  cell->vertex((index+2)%4)->normal() +
                  cell->vertex((index+3)%4)->normal());
    }
    return div;
  }

  Vector get_cell_normal(Cell_handle cell)
  {
    return Normal[cell->info()];
  }

  Vector cell_normal(Cell_handle cell) const
  {
    const Vector& n0 = cell->vertex(0)->normal();
    const Vector& n1 = cell->vertex(1)->normal();
    const Vector& n2 = cell->vertex(2)->normal();
    const Vector& n3 = cell->vertex(3)->normal();
    Vector n = n0 + n1 + n2 + n3;
    if(n != NULL_VECTOR){
      FT sq_norm = n*n;
      if(sq_norm != 0.0){
        return n / std::sqrt(sq_norm); // normalize
      }
    }
    return NULL_VECTOR;
  }

  // cotan formula as area(voronoi face) / len(primal edge)
  FT cotan_geometric(Edge& edge)
  {
    Cell_handle cell = edge.first;
    Vertex_handle vi = cell->vertex(edge.second);
    Vertex_handle vj = cell->vertex(edge.third);

    // primal edge
    const Point& pi = vi->point();
    const Point& pj = vj->point();
    Vector primal = pj - pi;
    FT len_primal = std::sqrt(primal * primal);
    return area_voronoi_face(edge) / len_primal;
  }

  // spin around edge
  // return area(voronoi face)
  FT area_voronoi_face(Edge& edge)
  {
    // circulate around edge
    Cell_circulator circ = m_tr->incident_cells(edge);
    Cell_circulator done = circ;
    std::vector<Point> voronoi_points;
    voronoi_points.reserve(9);
    do
    {
      Cell_handle cell = circ;
      if(!m_tr->is_infinite(cell))
        voronoi_points.push_back(Dual[cell->info()]);
      else // one infinite tet, switch to another calculation
        return area_voronoi_face_boundary(edge);
      circ++;
    }
    while(circ != done);

    if(voronoi_points.size() < 3)
    {
      CGAL_surface_reconstruction_points_assertion(false);
      return 0.0;
    }

    // sum up areas
    FT area = 0.0;
    const Point& a = voronoi_points[0];
    std::size_t nb_triangles = voronoi_points.size() - 1;
    for(std::size_t i=1;i<nb_triangles;i++)
    {
      const Point& b = voronoi_points[i];
      const Point& c = voronoi_points[i+1];
      area += std::sqrt(squared_area(a,b,c));
    }
    return area;
  }

  // approximate area when a cell is infinite
  FT area_voronoi_face_boundary(Edge& edge)
  {
    FT area = 0.0;
    Vertex_handle vi = edge.first->vertex(edge.second);
    Vertex_handle vj = edge.first->vertex(edge.third);

    const Point& pi = vi->point();
    const Point& pj = vj->point();
    Point m = CGAL::midpoint(pi,pj);

    // circulate around each incident cell
    Cell_circulator circ = m_tr->incident_cells(edge);
    Cell_circulator done = circ;
    do
    {
      Cell_handle cell = circ;
      if(!m_tr->is_infinite(cell))
      {
        // circumcenter of cell
        Point c = Dual[cell->info()];
        Tetrahedron tet = m_tr->tetrahedron(cell);

        int i = cell->index(vi);
        int j = cell->index(vj);
        int k =  Triangulation_utils_3::next_around_edge(i,j);
        int l =  Triangulation_utils_3::next_around_edge(j,i);

        Vertex_handle vk = cell->vertex(k);
        Vertex_handle vl = cell->vertex(l);

        const Point& pk = vk->point();
        const Point& pl = vl->point();

        // if circumcenter is outside tet
        // pick barycenter instead
        if(tet.has_on_unbounded_side(c))
        {
          Point cell_points[4] = {pi,pj,pk,pl};
          c = CGAL::centroid(cell_points, cell_points+4);
        }

        Point ck = CGAL::circumcenter(pi,pj,pk);
        Point cl = CGAL::circumcenter(pi,pj,pl);

        area += std::sqrt(squared_area(m,c,ck));
        area += std::sqrt(squared_area(m,c,cl));
      }
      circ++;
    }
    while(circ != done);
    return area;
  }

  /// Assemble vi's row of the linear system A*X=B
  ///
  /// @commentheading Template parameters:
  /// @param SparseLinearAlgebraTraits_d Symmetric definite positive sparse linear solver.
  template <class SparseLinearAlgebraTraits_d>
  void assemble_poisson_row(typename SparseLinearAlgebraTraits_d::Matrix& A,
                            Vertex_handle vi,
                            typename SparseLinearAlgebraTraits_d::Vector& B,
                            double lambda)
  {
    // for each vertex vj neighbor of vi
    std::vector<Edge> edges;
    m_tr->incident_edges(vi,std::back_inserter(edges));

    double diagonal = 0.0;

    for(typename std::vector<Edge>::iterator it = edges.begin();
        it != edges.end();
        it++)
      {
        Vertex_handle vj = it->first->vertex(it->third);
        if(vj == vi){
          vj = it->first->vertex(it->second);
        }
        if(m_tr->is_infinite(vj))
          continue;

        // get corresponding edge
        Edge edge( it->first, it->first->index(vi), it->first->index(vj));
        if(vi->index() < vj->index()){
          std::swap(edge.second,  edge.third);
        }

        double cij = cotan_geometric(edge);

        if(m_tr->is_constrained(vj)){
          if(! is_valid(vj->f())){
            std::cerr << "vj->f() = " << vj->f() << " is not valid" << std::endl;
          }
          B[vi->index()] -= cij * vj->f(); // change rhs
          if(! is_valid( B[vi->index()])){
            std::cerr << " B[vi->index()] = " <<  B[vi->index()] << " is not valid" << std::endl;
          }

        } else {
          if(! is_valid(cij)){
            std::cerr << "cij = " << cij << " is not valid" << std::endl;
          }
          A.set_coef(vi->index(),vj->index(), -cij, true /*new*/); // off-diagonal coefficient
        }

        diagonal += cij;
      }
    // diagonal coefficient
    if (vi->type() == Triangulation::INPUT){
      A.set_coef(vi->index(),vi->index(), diagonal + lambda, true /*new*/) ;
    } else{
      A.set_coef(vi->index(),vi->index(), diagonal, true /*new*/);
    }
  }
  

  /// Computes enlarged geometric bounding sphere of the embedded triangulation.
  Sphere enlarged_bounding_sphere(FT ratio) const
  {
    Sphere bsphere = bounding_sphere(); // triangulation's bounding sphere
    return Sphere(bsphere.center(), bsphere.squared_radius() * ratio*ratio);
  }

}; // end of Poisson_reconstruction_function


} //namespace CGAL

#endif // CGAL_POISSON_RECONSTRUCTION_FUNCTION_H