This file is indexed.

/usr/include/CGAL/Polygon_2.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
// Copyright (c) 1997  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Geert-Jan Giezeman <geert@cs.uu.nl>
//                 Wieger Wesselink

/*!
  \file Polygon_2.h
 */

#ifndef CGAL_POLYGON_2_H
#define CGAL_POLYGON_2_H

#include <CGAL/basic.h>
#include <vector>
#include <list>
#include <iterator>

#include <CGAL/circulator.h>
#include <CGAL/enum.h>

#include <CGAL/Aff_transformation_2.h>

#include <CGAL/Polygon_2_algorithms.h>
#include <CGAL/Polygon_2/Polygon_2_vertex_circulator.h>
#include <CGAL/Polygon_2/Polygon_2_edge_iterator.h>
#include <CGAL/Polygon_2/Polygon_2_edge_circulator.h>

namespace CGAL {

/// \ingroup PkgPolygon2
/// The class Polygon_2 implements polygons. The Polygon_2 is
/// parameterized by a traits class and a container class.  The latter
/// can be any class that fulfills the requirements for an STL
/// container. It defaults to the std::vector class.
///
/// ### Implementation ###
///
/// The methods `is_simple()`, `is_convex()`, `orientation()`,
/// `oriented_side()`, `bounded_side()`, `bbox()`, `area()`, `left_vertex()`,
/// `right_vertex()`, `top_vertex()` and `bottom_vertex()` are all
/// implemented using the algorithms on sequences of 2D points.  See
/// the corresponding global functions for information about which
/// algorithms were used and what complexity they have.
///

template <class Traits_P, class Container_P
        = std::vector<typename Traits_P::Point_2> >
class Polygon_2 {

  public:

    /// \name Types
    /// @{

    /// The traits type.
    typedef Traits_P Traits;
    /// The container type.
    typedef Container_P Container;

    /// The number type of the coordinates of the points of the polygon.
    typedef typename Traits_P::FT FT;
    /// The point type of the polygon.
    typedef typename Traits_P::Point_2 Point_2;
    /// The type of a segment between two points of the polygon.
    typedef typename Traits_P::Segment_2 Segment_2;

    /// @}

    typedef typename Container_P::difference_type difference_type;
    typedef typename Container_P::value_type value_type;
    typedef typename Container_P::pointer pointer;
    typedef typename Container_P::reference reference;
    typedef typename Container_P::const_reference const_reference;


    //-------------------------------------------------------//
    // this intermediary step is required by Sun C++ 4.1
    typedef typename Container_P::iterator iterator;
    typedef typename Container_P::const_iterator const_iterator;
    //-------------------------------------------------------//
    typedef typename Container::iterator       Vertex_const_iterator;
    typedef Polygon_circulator<Container_P>    Vertex_const_circulator;

    /// \name Iterators
    ///
    /// The following types denote iterators that allow to traverse
    /// the vertices and edges of a polygon.  Since 
    /// a polygon can be viewed as a circular as well as a
    /// linear data structure both circulators and iterators are
    /// defined.  
    ///
    /// \note At least conceptually, the circulators and iterators are
    /// non-mutable.  The enforcement depends on preprocessor flags. 
    ///
    /// \note The iterator category is in all cases bidirectional, except
    /// for Vertex_iterator, which has the same iterator category as
    /// `Container::iterator`. In fact all of them should have
    /// the same iterator category as `Container::iterator`. However,
    /// due to compiler problems this is currently not possible.
    ///
    /// @{

    /// 
    typedef typename Container::iterator       Vertex_iterator;


    //typedef typename Container::const_iterator Vertex_const_iterator; ??

#ifdef DOXYGEN_RUNNING
  typedef Hidden_type Vertex_circulator;
    typedef Hidden_type Edge_const_iterator;

    typedef Hidden_type Edge_const_circulator;
#else 
    typedef Vertex_const_circulator            Vertex_circulator;
    /// 
    typedef Polygon_2_edge_iterator<Traits_P,Container_P>
            Edge_const_iterator;

    /// 
    typedef Polygon_2_const_edge_circulator<Traits_P,Container_P>
            Edge_const_circulator;
#endif // DOXYGEN_RUNNING    
    /// @}

    /// \name Creation
    /// @{

    /// Creates an empty polygon.
    Polygon_2(const Traits & p_traits = Traits()) : traits(p_traits) {}

    /// Copy constructor.
    Polygon_2(const Polygon_2<Traits_P,Container_P>& polygon)
      : d_container(polygon.d_container), traits(polygon.traits) {}

    /// Introduces a polygon with vertices from the sequence
    /// defined by the range \c [first,last).
    /// The value type of \c InputIterator must be \c Point_2.
    template <class InputIterator>
    Polygon_2(InputIterator first, InputIterator last,
              Traits p_traits = Traits())
        : d_container(), traits(p_traits)
    {
      // Sun STL switches off member templates for binary backward compat.
      std::copy(first, last, std::back_inserter(d_container));
    }

    /// @}

    /// \name Modifiers
    /// @{

    /// Acts as `*i = q`, except that that would be illegal because
    /// the iterator is not mutable.
    void set(Vertex_iterator i, const Point_2& q)
     { *i = q; }

    void set(Polygon_circulator<Container>const &i, const Point_2& q)
     {
       *i.mod_iterator() = q;
     }

    /// Inserts the vertex `q` before `i`. The return value points to
    /// the inserted vertex.
    Vertex_iterator insert(Vertex_iterator i, const Point_2& q)
      {
        return d_container.insert(i,q);
      }

    Vertex_iterator insert(Vertex_circulator i, const Point_2& q)
      {
        return d_container.insert(i.mod_iterator(),q);
      }

    /// Inserts the vertices in the range `[first, last)`
    /// before `i`.  The value type of points in the range
    /// `[first,last)} must be \ccStyle{Point_2`.
    template <class InputIterator>
    void insert(Vertex_iterator i,
                InputIterator first,
                InputIterator last)
      { d_container.insert(i, first, last); }

    template <class InputIterator>
    void insert(Vertex_circulator i,
                InputIterator first,
                InputIterator last)
      { d_container.insert(i.mod_iterator(), first, last); }

    /// Has the same semantics as `p.insert(p.vertices_end(), q)`.
    void push_back(const Point_2& x)
      { d_container.insert(d_container.end(), x); }

    /// Erases the vertex pointed to by `i`.
    void erase(Vertex_iterator i)
      { d_container.erase(i); }

    void erase(Vertex_circulator i)
      { d_container.erase(i.mod_iterator()); }

    /// Erases the vertices in the range `[first, last)`.
    void erase(Vertex_iterator first, Vertex_iterator last)
      {
        d_container.erase(first, last);
      }

    /// Erases the vertices in the range `[first, last)`.
    void clear()
    {
      d_container.clear();
    }

    /// Reverses the orientation of the polygon. The vertex pointed to
    ///  by `p.vertices_begin()` remains the same.
    void reverse_orientation()
    {
      if (size() <= 1)
        return;
      typename Container_P::iterator i = d_container.begin();
      std::reverse(++i, d_container.end());
    }

    /// @}

    /// \name Access Functions 
    /// The following methods of the class Polygon_2
    /// return circulators and iterators that allow to traverse the
    /// vertices and edges.
    /// @{

    /// Returns a constant iterator that allows to traverse the
    /// vertices of the polygon.
    Vertex_const_iterator vertices_begin() const
      { return const_cast<Polygon_2&>(*this).d_container.begin(); }

    /// Returns the corresponding past-the-end iterator.
    Vertex_const_iterator vertices_end() const
      { return const_cast<Polygon_2&>(*this).d_container.end(); }

//    Vertex_const_circulator vertices_circulator() const
//      { return Vertex_const_circulator(&d_container, d_container.begin()); }

    /// Returns a mutable circulator that allows to traverse the
    /// vertices of the polygon.
    Vertex_const_circulator vertices_circulator() const
      { 
        Polygon_2& self = const_cast<Polygon_2&>(*this);
        return Vertex_const_circulator(&self.d_container,
               self.d_container.begin());
      }

    /// Returns a non-mutable iterator that allows to traverse the
    /// edges of the polygon.
    Edge_const_iterator edges_begin() const
      { return Edge_const_iterator(&d_container, d_container.begin()); }

    /// Returns the corresponding past-the-end iterator.
    Edge_const_iterator edges_end() const
      { return Edge_const_iterator(&d_container, d_container.end()); }

    /// Returns a non-mutable circulator that allows to traverse the
    /// edges of the polygon.
    Edge_const_circulator edges_circulator() const
      { return Edge_const_circulator(vertices_circulator()); }

    /// @}

    /// \name Predicates
    /// @{

    /// Returns whether this is a simple polygon.
    bool is_simple() const
    {
      return is_simple_2(d_container.begin(),d_container.end(), traits);
    }

    /// Returns whether this is convex.
    bool is_convex() const
    {
      return is_convex_2(d_container.begin(),d_container.end(), traits);
    }

    /// Returns the orientation. If the number of vertices
    /// `p.size() < 3` then \c COLLINEAR is returned.
    /// \pre `p.is_simple()`.
    Orientation orientation() const
    {
      return orientation_2(d_container.begin(), d_container.end(), traits);
    }

    /// Returns `POSITIVE_SIDE`, or `NEGATIVE_SIDE`,
    /// or `ON_ORIENTED_BOUNDARY`, depending on where point
    /// `q` is. 
    /// \pre `p.is_simple()`.
    Oriented_side oriented_side(const Point_2& value) const
    {
      return oriented_side_2(d_container.begin(), d_container.end(),
                                  value, traits);
    }

    /// Returns the symbolic constant `ON_BOUNDED_SIDE`,
    /// `ON_BOUNDARY` or `ON_UNBOUNDED_SIDE`,
    /// depending on where point `q` is. \pre
    /// `p.is_simple()`.
    Bounded_side bounded_side(const Point_2& value) const
    {
      CGAL_polygon_precondition(is_simple());
      return bounded_side_2(d_container.begin(), d_container.end(),
                                 value, traits);
    }

    /// Returns the smallest bounding box containing this polygon.
    Bbox_2 bbox() const
    {
      return bbox_2(d_container.begin(), d_container.end()); 
    }

    /// Returns the signed area of the polygon. This means that the
    /// area is positive for counter clockwise polygons and negative
    /// for clockwise polygons.
    FT area() const
    {
      return polygon_area_2(d_container.begin(), d_container.end(), traits);
    }

    /// Returns the leftmost vertex of the polygon with the smallest
    /// `x`-coordinate.
    Vertex_const_iterator left_vertex() const
    {
       Polygon_2 &self = const_cast<Polygon_2&>(*this);
       return left_vertex_2(self.d_container.begin(),
                            self.d_container.end(), traits);
    }

    /// Returns the rightmost vertex of the polygon with the largest
    /// `x`-coordinate.
    Vertex_const_iterator right_vertex() const
    {
       Polygon_2 &self = const_cast<Polygon_2&>(*this);
       return right_vertex_2(self.d_container.begin(),
                             self.d_container.end(), traits);
    }

    /// Returns topmost vertex of the polygon with the largest
    /// `y`-coordinate.
    Vertex_const_iterator top_vertex() const
    {
       Polygon_2 &self = const_cast<Polygon_2&>(*this);
       return top_vertex_2(self.d_container.begin(),
                           self.d_container.end(), traits);
    }

    /// Returns the bottommost vertex of the polygon with the
    /// smallest `y`-coordinate.
    Vertex_const_iterator bottom_vertex() const
    {
       Polygon_2 &self = const_cast<Polygon_2&>(*this);
       return bottom_vertex_2(self.d_container.begin(),
                              self.d_container.end(), traits);
    }

    /// @}


    /// \name 
    /// For convenience we provide the following Boolean functions:
    /// @{

    bool is_counterclockwise_oriented() const
      { return orientation() == COUNTERCLOCKWISE; }

    bool is_clockwise_oriented() const
      { return orientation() == CLOCKWISE; }

    bool is_collinear_oriented() const
      { return orientation() == COLLINEAR; }

    bool has_on_positive_side(const Point_2& q) const
      { return oriented_side(q) == ON_POSITIVE_SIDE; }

    bool has_on_negative_side(const Point_2& q) const
      { return oriented_side(q) == ON_NEGATIVE_SIDE; }

    bool has_on_boundary(const Point_2& q) const
      { return bounded_side(q) == ON_BOUNDARY; }

    bool has_on_bounded_side(const Point_2& q) const
      { return bounded_side(q) == ON_BOUNDED_SIDE; }

    bool has_on_unbounded_side(const Point_2& q) const
      { return bounded_side(q) == ON_UNBOUNDED_SIDE; }

    /// @}


    /// \name Random Access Methods
    /// @{

    /// Returns a (const) reference to the `i`-th vertex.
    const Point_2& vertex(std::size_t i) const
      { return *(d_container.begin() + i); }


    /// Returns a (const) reference to the `i`-th vertex.
    const Point_2& operator[](std::size_t i) const
      { return vertex(i); }

    /// Returns the `i`-th edge.
    Segment_2 edge(std::size_t i) const
      { return *(edges_begin() + i); }

    /// @}

    /// \name Miscellaneous
    /// @{

    /// Returns the number of vertices of the polygon.
    std::size_t size() const
      { return d_container.size(); }

    /// Returns `size() == 0`.
    bool is_empty() const
      { return d_container.empty(); }

    /// Returns a const reference to the sequence of vertices of the polygon.
    const Container_P& container() const
      { return d_container; }

    /// @}

    bool identical(const Polygon_2<Traits_P,Container_P> &q) const
      { return this == &q; }

    Traits_P const &traits_member() const { return traits;}

  private:
    Container_P d_container;
    Traits_P traits;
};

/// @} // polygon_2

/// \name Global Operators
/// @{

/// Test for equality: two polygons are equal iff there exists a
/// cyclic permutation of the vertices of `p2` such that they are
/// equal to the vertices of `p1`. Note that the template argument
/// `Container` of `p1` and `p2` may be different.
/// \memberof Polygon_2
template <class Traits_P, class Container1_P, class Container2_P>
bool operator==( const Polygon_2<Traits_P,Container1_P> &p1,
                 const Polygon_2<Traits_P,Container2_P> &p2 );

/// Test for inequality. 
/// \memberof Polygon_2
template <class Traits_P, class Container1_P, class Container2_P>
inline
bool
operator!=(const Polygon_2<Traits_P,Container1_P> &p1,
           const Polygon_2<Traits_P,Container2_P> &p2);

/// Returns the image of the polygon \c p under the transformation \c t.
/// \memberof Polygon_2
template <class Transformation, class Traits_P, class Container_P>
Polygon_2<Traits_P,Container_P>
transform(const Transformation& t, const Polygon_2<Traits_P,Container_P>& p);

/// @} // global operators

/// \name I/O
/// The information output in the `std::iostream` is the number of points
/// followed by the output of the coordinates of the vertices.
/// @{

/// Inserts the polygon `p` into the stream `os`. \pre The insert
/// operator must be defined for `Point_2`.
/// \memberof Polygon_2
template <class Traits_P, class Container_P>
std::istream &operator>>(std::istream &is, Polygon_2<Traits_P,Container_P>& p);

/// Reads a polygon from stream `is` and assigns it
/// to `p`. \pre The extract operator must be defined for `Point_2`.
/// \memberof Polygon_2
template <class Traits_P, class Container_P>
std::ostream
&operator<<(std::ostream &os, const Polygon_2<Traits_P,Container_P>& p);

/// @} // IO

} //namespace CGAL

//-----------------------------------------------------------------------//
//                         implementation
//-----------------------------------------------------------------------//

#include <CGAL/Polygon_2/Polygon_2_impl.h>

namespace CGAL {

template <class Traits_P, class Container1_P, class Container2_P>
inline
bool
operator!=(const Polygon_2<Traits_P,Container1_P> &x,
           const Polygon_2<Traits_P,Container2_P> &y)
{
  return !(x==y);
}

} //namespace CGAL

#endif