/usr/include/CGAL/PolyhedralSurf_neighbors.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | // Copyright (c) 2007 INRIA Sophia-Antipolis (France), INRIA Lorraine LORIA.
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s) : Marc Pouget and Frédéric Cazals
#ifndef CGAL_POLYHEDRALSURF_NEIGHBORS_H_
#define CGAL_POLYHEDRALSURF_NEIGHBORS_H_
#include <queue>
#include <algorithm>
#include <CGAL/basic.h>
namespace CGAL {
//---------------------------------------------------------------------------
//T_Gate : element of the priority queue. A gate is a halfedge and a
//number giving the max distance from v to the vertices of the
//triangle incident to the halfedge.
//---------------------------------------------------------------------------
template < class TriangularPolyhedralSurface > class T_Gate
{
public:
typedef typename TriangularPolyhedralSurface::Traits::FT FT;
typedef typename TriangularPolyhedralSurface::Traits::Vector_3 Vector_3;
typedef typename TriangularPolyhedralSurface::Traits::Point_3 Point_3;
typedef typename TriangularPolyhedralSurface::Vertex_const_handle Vertex_const_handle;
typedef typename TriangularPolyhedralSurface::Halfedge_const_handle Halfedge_const_handle;
T_Gate(const Vertex_const_handle v, const Halfedge_const_handle he);
FT& d() { return m_d;}
const FT d() const { return m_d;}
const Halfedge_const_handle he() { return m_he;}
private:
FT m_d;
Halfedge_const_handle m_he;
};
//////////////IMPLEMENTATION//////////////////////////
template < class TriangularPolyhedralSurface >
T_Gate<TriangularPolyhedralSurface>::T_Gate(const Vertex_const_handle v,
const Halfedge_const_handle he)
: m_he(he)
{
Point_3 p0 = v->point(),
p1 = he->vertex()->point(),
p2 = he->next()->vertex()->point(),
p3 = he->prev()->vertex()->point();
Vector_3 p0p1 = p0 - p1,
p0p2 = p0 - p2,
p0p3 = p0 - p3;
FT d1 = p0p1*p0p1,
d2 = p0p2*p0p2,
d3 = p0p3*p0p3;
m_d = CGAL::sqrt( (std::max)( (std::max)(d1,d2), d3) );
}
//---------------------------------------------------------------------------
// functor for priority queue
// order so that the top element is the smallest in the queue
//---------------------------------------------------------------------------
template<class g>
struct compare_gates
{
bool operator()(const g& g1,
const g& g2) const
{
return g1.d() > g2.d();
}
};
//---------------------------------------------------------------------------
//T_PolyhedralSurf_neighbors : MAIN class for computation, it uses the
//class Gate and the functor compare_gates for the definition of a
//priority queue
//---------------------------------------------------------------------------
template < class TriangularPolyhedralSurface > class T_PolyhedralSurf_neighbors
{
public:
typedef typename TriangularPolyhedralSurface::Traits::FT FT;
typedef typename TriangularPolyhedralSurface::Traits::Vector_3 Vector_3;
typedef typename TriangularPolyhedralSurface::Traits::Point_3 Point_3;
typedef typename TriangularPolyhedralSurface::Vertex_const_handle Vertex_const_handle;
typedef typename TriangularPolyhedralSurface::Halfedge_const_handle Halfedge_const_handle;
typedef typename TriangularPolyhedralSurface::Halfedge_around_vertex_const_circulator
Halfedge_around_vertex_const_circulator;
typedef typename TriangularPolyhedralSurface::Vertex_const_iterator Vertex_const_iterator;
typedef T_Gate<TriangularPolyhedralSurface> Gate;
T_PolyhedralSurf_neighbors(const TriangularPolyhedralSurface& P);
// vertex_neigh stores the vertex v and its 1Ring neighbors contour
// stores halfedges, oriented CW, following the 1Ring disk border
// OneRingSize is the max distance from v to its OneRing
// neighbors. (the tag is_visited is not mofified)
void compute_one_ring(const Vertex_const_handle v,
std::vector<Vertex_const_handle> &vertex_neigh,
std::list<Halfedge_const_handle> &contour,
FT &OneRingSize);
// call compute_one_ring and expand the contour (circle of halfedges
// CW), vertex_neigh are vertices on and inside the contour (there
// tag is_visited is set to true, but reset to false at the end),
// size is such that gates with distance less than size*OneRingSize
// are processed
void compute_neighbors(const Vertex_const_handle v,
std::vector<Vertex_const_handle> &vertex_neigh,
std::list<Halfedge_const_handle> &contour,
const FT size);
//vertex tags is_visited are set to false
void reset_is_visited_map(std::vector<Vertex_const_handle> &vces);
protected:
//tag to visit vertices
struct Vertex_cmp{//comparison is wrt vertex addresses
bool operator()(const Vertex_const_handle a, const Vertex_const_handle b) const{
return &*a < &*b;
}
};
typedef std::map<Vertex_const_handle, bool, Vertex_cmp> Vertex2bool_map;
Vertex2bool_map is_visited_map;
};
//////////////IMPLEMENTATION//////////////////////////
template < class TriangularPolyhedralSurface >
T_PolyhedralSurf_neighbors < TriangularPolyhedralSurface >::
T_PolyhedralSurf_neighbors(const TriangularPolyhedralSurface& P)
{
//init the is_visited_map
Vertex_const_iterator itb = P.vertices_begin(), ite = P.vertices_end();
for(;itb!=ite;itb++) is_visited_map[itb] = false;
}
template < class TriangularPolyhedralSurface >
void T_PolyhedralSurf_neighbors < TriangularPolyhedralSurface >::
compute_one_ring(const Vertex_const_handle v,
std::vector<Vertex_const_handle> &vertex_neigh,
std::list<Halfedge_const_handle> &contour,
FT &OneRingSize)
{
vertex_neigh.push_back(v);
Halfedge_around_vertex_const_circulator he_circ = v->vertex_begin(),
he_end = he_circ;
do {
if ( he_circ->is_border() )//then he and he->next follow the contour CW
{contour.push_back(he_circ);
contour.push_back(he_circ->next());}
else contour.push_back(he_circ->prev()->opposite());//not border, he->prev->opp on contour CW
vertex_neigh.push_back(he_circ->opposite()->vertex());
he_circ++;
} while (he_circ != he_end);
//compute OneRingSize = distance(v, 1Ring)
OneRingSize = 0;
typename std::vector<Vertex_const_handle>::const_iterator itb = vertex_neigh.begin(),
ite = vertex_neigh.end();
itb++;//the first vertex v is the center to which distances are
//computed from, for other 1ring neighbors
Point_3 p0 = v->point(), p;
Vector_3 p0p;
FT d = OneRingSize;
for (; itb != ite; itb++){
p = (*itb)->point();
p0p = p0 - p;
d = CGAL::sqrt(p0p*p0p);
if (d > OneRingSize) OneRingSize = d;
}
}
template < class TriangularPolyhedralSurface >
void T_PolyhedralSurf_neighbors < TriangularPolyhedralSurface >::
compute_neighbors(const Vertex_const_handle v,
std::vector<Vertex_const_handle> &vertex_neigh,
std::list<Halfedge_const_handle> &contour,
const FT size)
{
FT OneRingSize;
compute_one_ring(v, vertex_neigh, contour, OneRingSize);
const FT d_max = OneRingSize*size;
std::priority_queue< Gate, std::vector< Gate >, compare_gates< Gate > > GatePQ;
// tag neighbors
typename std::vector<Vertex_const_handle>::const_iterator itbv = vertex_neigh.begin(),
itev = vertex_neigh.end();
for (; itbv != itev; itbv++) is_visited_map.find(*itbv)->second = true;
// init GatePQ
typename std::list<Halfedge_const_handle>::const_iterator itb = contour.begin(),
ite = contour.end();
for (; itb != ite; itb++) {
if (!( (*itb)->is_border() )) GatePQ.push(Gate(v, *itb));
}
// init d_current
Gate firstGate = GatePQ.top();
FT d_current = firstGate.d();
// main loop
while ( !GatePQ.empty() && d_current <= d_max ) {
Gate gate = GatePQ.top();
GatePQ.pop();
d_current = gate.d();
Halfedge_const_handle he = gate.he(), he1, he2;
Vertex_const_handle v1;
// find the gate on the contour
typename std::list<Halfedge_const_handle>::iterator pos_he, pos_prev, pos_next, iter;
pos_he = find(contour.begin(), contour.end(), he);
iter = pos_he;
/**
there are different cases to expand the contour :
(case 3) he is not on the contour, nothing to do
(case 2) he is on the contour and either the previous or the next
following edge in the triangle is also on the contour, then delete
these 2 he from the contour and add the third one to the contour
and the PQ.
(case1) the vertex opposite to he is not visited, then the he is removed
from the contour, the two others are added to the contour and PQ, the
vertex is set visited.
*/
// if the gate is not encountered on the contour (case 3)
if ( pos_he == contour.end() ) continue;
// simulate a circulator on the contour:
// find the prev and next pos on coutour
if ( ite != (++iter) ) pos_next = iter;
else pos_next = contour.begin();
iter = pos_he;
if ( iter != contour.begin() ) pos_prev = --iter;
else pos_prev = --contour.end();
if ( he->next() == *pos_next )
{ // case 2a
//contour
he1 = he->prev()->opposite();
contour.insert(pos_he, he1);
contour.erase(pos_he);
contour.erase(pos_next);
//GatePQ
if ( !(he1->is_border()) ) GatePQ.push(Gate(v, he1));
continue;
}
else if ( he->prev() == *pos_prev )
{ // case 2b
//contour
he1 = he->next()->opposite();
contour.insert(pos_prev, he1);
contour.erase(pos_prev);
contour.erase(pos_he);
//GatePQ
if ( !(he1->is_border()) ) GatePQ.push(Gate(v, he1));
continue;
}
v1 = he->next()->vertex();
if ( !is_visited_map.find(v1)->second )
{ // case 1
//vertex
is_visited_map.find(v1)->second = true;
vertex_neigh.push_back(v1);
//contour
he1 = he->prev()->opposite();
he2 = he->next()->opposite();
contour.insert(pos_he, he1);
contour.insert(pos_he, he2);
contour.erase(pos_he);
//GatePQ
if ( !(he1->is_border()) ) GatePQ.push(Gate(v, he1));
if ( !(he2->is_border()) ) GatePQ.push(Gate(v, he2));
continue;
}
//else do nothing (keep the he on the contour, and continue) to
//prevent a change of the topology.
}// end while
reset_is_visited_map(vertex_neigh);
}
template < class TriangularPolyhedralSurface >
void T_PolyhedralSurf_neighbors < TriangularPolyhedralSurface >::
reset_is_visited_map(std::vector<Vertex_const_handle> &vces)
{
typename std::vector<Vertex_const_handle>::const_iterator
itb = vces.begin(), ite = vces.end();
for (;itb != ite; itb++) is_visited_map[*itb] = false;
}
} //namespace CGAL
#endif
|