This file is indexed.

/usr/include/CGAL/Polynomial/Monomial_representation.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
// Copyright (c) 2009 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Michael Hemmer <hemmer@mpi-inf.mpg.de> 
//
// ============================================================================


#ifndef CGAL_POLYNOMIAL_MONOMIAL_REPRESENTAION_H
#define CGAL_POLYNOMIAL_MONOMIAL_REPRESENTAION_H

#include <CGAL/Exponent_vector.h>
#include <CGAL/Polynomial/misc.h>


namespace CGAL {

namespace internal{
template <typename Polynomial> struct Monomial_representation; 

// Polynomial muss be at least univariate ! 
template <typename Coeff_ > 
struct Monomial_representation<Polynomial<Coeff_> >{
private:
  typedef typename Innermost_coefficient_type<Polynomial<Coeff_> >::Type 
  Innermost_coefficient;
  
  // Polynomial is univariate 
  // final creation of pair<Exponent_vector,Innermost_coefficient> 
  template <typename Polynomial, typename OutputIterator>
  OutputIterator 
  create_mrep(const Polynomial& p, OutputIterator oit , Exponent_vector& ivec, Tag_true) const {
    int degree = 0; 
    for(typename Polynomial::const_iterator it = p.begin(); it != p.end(); it++){
      ivec[0] = degree; 
      if(!CGAL::is_zero(*it)) 
        *oit++ = std::make_pair(ivec,*it);
      degree++; 
    }
    ivec[0]=0;
    return oit; 
  }
  
  // polynomial is multivariate 
  // define correct exponent for dimension and recurse 
  template <typename Polynomial, typename OutputIterator>
  OutputIterator 
  create_mrep(const Polynomial& p, OutputIterator oit , Exponent_vector& ivec, Tag_false) const {
    if(CGAL::is_zero(p)) return oit; 
    static const int dim = Dimension<Polynomial>::value ;
    int degree = 0; 
    for(typename Polynomial::const_iterator it = p.begin(); it != p.end(); it++){
      ivec[dim-1] = degree; 
      oit = create_mrep(*it,oit,ivec,CGAL::Boolean_tag<1 == dim-1>());
      degree++; 
    }
    ivec[dim-1] = 0;
    return oit; 
  }
  
public:
  template <typename OutputIterator>
  OutputIterator operator()(const Polynomial<Coeff_>& p, OutputIterator oit) const {
    typedef Polynomial<Coeff_> Polynomial; 
    typedef CGAL::Boolean_tag<1 == Dimension<Polynomial>::value> Is_univariate;
    CGAL::Exponent_vector ivec((std::vector<int>)(Dimension<Polynomial>::value));
    if(p.is_zero()){
      *oit++ = std::make_pair(ivec,Innermost_coefficient(0));
      return oit; 
    }
    return create_mrep(p, oit, ivec, Is_univariate());
  }  
};

} // namespace internal
} //namespace CGAL

#endif //CGAL_POLYNOMIAL_MONOMIAL_REPRESENTAION_H