This file is indexed.

/usr/include/CGAL/Polynomial/polynomial_gcd.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Arno Eigenwillig <arno@mpi-inf.mpg.de>
//                 Tobias Reithmann <treith@mpi-inf.mpg.de>
//                 Michael Hemmer   <hemmer@informatik.uni-mainz.de>
//                 Michael Kerber   <mkerber@mpi-inf.mpg.de>
//                 Dominik Huelse   <dominik.huelse@gmx.de>
// ============================================================================

/*! \file CGAL/Polynomial/polynomial_gcd.h
 *   \brief Greatest common divisors and related operations on polynomials. 
 */

#ifndef CGAL_POLYNOMIAL_GCD_H
#define CGAL_POLYNOMIAL_GCD_H

#include <CGAL/config.h>

#ifndef CGAL_USE_INTERNAL_MODULAR_GCD
#define CGAL_USE_INTERNAL_MODULAR_GCD 1
#endif
 
#include <CGAL/basic.h>
#include <CGAL/Residue.h>
#include <CGAL/Polynomial.h>
#include <CGAL/Scalar_factor_traits.h>
#include <CGAL/Real_timer.h>
#include <CGAL/Polynomial/Polynomial_type.h>
#include <CGAL/Polynomial/misc.h>
#include <CGAL/Polynomial/polynomial_gcd_implementations.h>
#include <CGAL/polynomial_utils.h>

#ifdef CGAL_USE_NTL
#include <CGAL/Polynomial/polynomial_gcd_ntl.h>
#endif

#if CGAL_USE_INTERNAL_MODULAR_GCD 
#include <CGAL/Polynomial/modular_gcd.h>
#endif


// 1) gcd (basic form without cofactors)
//     uses three level of dispatch on tag types:
//     a) if the algebra type of the innermost coefficient is a field,
//         ask for decomposability. for UFDs compute the gcd directly
//     b) if NT supports integralization, the gcd is computed on
//         integralized polynomials
//     c) over a field (unless integralized), use the Euclidean algorithm;
//         over a UFD, use the subresultant algorithm
//
// NOTICE: For better performance, especially in AlciX, there exist special
// modular implementations for the polynmials with coefficient type 
// leda::integer and the CORE::BigInt type which use, when the 
// NTL library is available.
// see CGAL/Polynomial/polynomial_gcd_ntl.h

namespace CGAL { 
namespace internal {

template <class NT> 
inline
Polynomial<NT> gcd_(
        const Polynomial<NT>& p1, 
        const Polynomial<NT>& p2, 
        Field_tag)
{ 
    return CGAL::internal::gcd_utcf_(p1,p2);
}

template <class NT> 
inline
Polynomial<NT> gcd_(
        const Polynomial<NT>& p1, 
        const Polynomial<NT>& p2, 
        Unique_factorization_domain_tag)
{ 
	typedef Polynomial<NT> POLY;
    typedef Polynomial_traits_d<POLY> PT;  
    typedef typename PT::Innermost_coefficient_type IC; 
        
    typename PT::Multivariate_content mcont; 
    IC mcont_p1 = mcont(p1);
    IC mcont_p2 = mcont(p2);
    
    typename CGAL::Coercion_traits<POLY,IC>::Cast ictp; 
    POLY p1_ = CGAL::integral_division(p1,ictp(mcont_p1));
    POLY p2_ = CGAL::integral_division(p2,ictp(mcont_p2));
            
    return CGAL::internal::gcd_utcf_(p1_, p2_) * ictp(CGAL::gcd(mcont_p1, mcont_p2)); 
}



// name gcd() forwarded to the internal::gcd_() dispatch function
/*! \ingroup CGAL_Polynomial
 *  \relates CGAL::Polynomial
 *  \brief return the greatest common divisor of \c p1 and \c p2
 *
 *  \pre Requires \c Innermost_coefficient_type to be a \c Field or a \c UFDomain.
 */
template <class NT> 
inline
Polynomial<NT> gcd_(const Polynomial<NT>& p1, const Polynomial<NT>& p2)
{ 
    typedef typename internal::Innermost_coefficient_type<Polynomial<NT> >::Type IC;
    typedef typename Algebraic_structure_traits<IC>::Algebraic_category Algebraic_category;

    // Filter for zero-polynomials
    if( p1 == Polynomial<NT>(0) )
    	return p2;
    if( p2 == Polynomial<NT>(0) )
    	return p1;
    return internal::gcd_(p1,p2,Algebraic_category());
}

} // namespace internal

// 2) gcd_utcf computation
//     (gcd up to scalar factors, for non-UFD non-field coefficients)
//     a) first try to decompose the coefficients
//     b) second dispatch depends on the algebra type of NT

namespace internal {

template <class NT> Polynomial<NT> inline
gcd_utcf_(const Polynomial<NT>& p1, const Polynomial<NT>& p2){
    typedef CGAL::Fraction_traits< Polynomial<NT> > FT;
    typedef typename FT::Is_fraction Is_fraction;
    return gcd_utcf_is_fraction_(p1, p2, Is_fraction());
}

// is fraction ? 
template <class NT> Polynomial<NT> inline
gcd_utcf_is_fraction_( 
        const Polynomial<NT>& p1, 
        const Polynomial<NT>& p2, 
        ::CGAL::Tag_true)
{
    typedef Polynomial<NT> POLY;
    typedef Polynomial_traits_d<POLY> PT;
    typedef Fraction_traits<POLY> FT;

    typename FT::Denominator_type dummy;
    typename FT::Numerator_type p1i, p2i; 
    
    typename FT::Decompose()(p1,p1i, dummy);
    typename FT::Decompose()(p2,p2i, dummy);

    typename Coercion_traits<POLY,typename FT::Numerator_type>::Cast cast;
    return typename PT::Canonicalize()(cast(internal::gcd_utcf_(p1i, p2i)));
}

template <class NT> Polynomial<NT> inline
gcd_utcf_is_fraction_( 
        const Polynomial<NT>& p1, 
        const Polynomial<NT>& p2, 
        ::CGAL::Tag_false)
{
    typedef Algebraic_structure_traits< Polynomial<NT> > NTT;
    typedef CGAL::Modular_traits<Polynomial<NT> > MT;
    
    return gcd_utcf_modularizable_algebra_(
            p1,p2,typename MT::Is_modularizable(),typename NTT::Algebraic_category());
}

// is type modularizable 
template <class NT> Polynomial<NT> inline
gcd_utcf_modularizable_algebra_( 
        const Polynomial<NT>& p1,  
        const Polynomial<NT>& p2, 
        ::CGAL::Tag_false, 
        Integral_domain_tag){
    return internal::gcd_utcf_Integral_domain(p1, p2);   
}
template <class NT> Polynomial<NT> inline
gcd_utcf_modularizable_algebra_( 
        const Polynomial<NT>& p1, 
        const Polynomial<NT>& p2, 
        ::CGAL::Tag_false, 
        Unique_factorization_domain_tag){
    return internal::gcd_utcf_UFD(p1, p2);   
}
template <class NT> Polynomial<NT> inline
gcd_utcf_modularizable_algebra_( 
        const Polynomial<NT>& p1, 
        const Polynomial<NT>& p2, 
        ::CGAL::Tag_false, 
        Euclidean_ring_tag){
    return internal::gcd_Euclidean_ring(p1, p2);
}

#if CGAL_USE_INTERNAL_MODULAR_GCD 
template <class NT> Polynomial<NT> inline
gcd_utcf_modularizable_algebra_( 
        const Polynomial<NT>& p1, 
        const Polynomial<NT>& p2, 
        ::CGAL::Tag_true, 
        Integral_domain_tag tag){
    return modular_gcd_utcf(p1, p2, tag);
}
template <class NT> Polynomial<NT> inline
gcd_utcf_modularizable_algebra_( 
        const Polynomial<NT>& p1, 
        const Polynomial<NT>& p2, 
        ::CGAL::Tag_true, 
        Unique_factorization_domain_tag tag){
    return modular_gcd_utcf(p1, p2, tag);
//    return modular_gcd_utcf_algorithm_M(p1, p2);
}
#else
template <class NT> Polynomial<NT> inline
gcd_utcf_modularizable_algebra_( 
        const Polynomial<NT>& p1, 
        const Polynomial<NT>& p2, 
        ::CGAL::Tag_true, 
        Integral_domain_tag){
    return internal::gcd_utcf_Integral_domain(p1, p2);
}
template <class NT> Polynomial<NT> inline
gcd_utcf_modularizable_algebra_( 
        const Polynomial<NT>& p1, 
        const Polynomial<NT>& p2, 
        ::CGAL::Tag_true, 
        Unique_factorization_domain_tag){
    return internal::gcd_utcf_UFD(p1, p2);   
}
#endif

template <class NT> Polynomial<NT> inline
gcd_utcf_modularizable_algebra_( 
        const Polynomial<NT>& p1, 
        const Polynomial<NT>& p2, 
        ::CGAL::Tag_true, 
        Euclidean_ring_tag){
    // No modular algorithm available
    return internal::gcd_Euclidean_ring(p1, p2);
}

template <class NT> Polynomial<NT> inline
gcd_utcf(const Polynomial<NT>& p1, const Polynomial<NT>& p2){
    return internal::gcd_utcf_(p1,p2);
}

} // namespace internal 


// 3) extended gcd computation (with cofactors)
//     with dispatch similar to gcd

namespace internal {

template <class NT> 
inline
Polynomial<NT> gcdex_(
        Polynomial<NT> x, Polynomial<NT> y,
        Polynomial<NT>& xf, Polynomial<NT>& yf,
        ::CGAL::Tag_false
) {
    typedef typename Algebraic_structure_traits<NT>::Algebraic_category Algebraic_category;
    return gcdex_(x, y, xf, yf, Algebraic_category());
}

template <class NT>
inline
Polynomial<NT> gcdex_(
        Polynomial<NT> x, Polynomial<NT> y,
        Polynomial<NT>& xf, Polynomial<NT>& yf,
        Field_tag
) {
    /* The extended Euclidean algorithm for univariate polynomials.
     * See [Cohen, 1993], algorithm 3.2.2
     */
    typedef Polynomial<NT> POLY;
    typename Algebraic_structure_traits<NT>::Integral_div idiv;

    // handle trivial cases
    if (x.is_zero()) {
        if (y.is_zero()) CGAL_error_msg("gcdex(0,0) is undefined");
        xf = NT(0); yf = idiv(NT(1), y.unit_part());
        return yf * y;
    }
    if (y.is_zero()) {
        yf = NT(0); xf = idiv(NT(1), x.unit_part());
        return xf * x;
    }
    bool swapped = x.degree() < y.degree();
    if (swapped) { POLY t = x; x = y; y = t; }

    // main loop
    POLY u = x, v = y, q, r, m11(1), m21(0), m21old;
    for (;;) {
        /* invariant: (i) There exist m12 and m22 such that
         *   u = m11*x + m12*y
         *   v = m21*x + m22*y
         * (ii) and we have
         *   gcd(u,v) == gcd(x,y)
         */

        // compute next element of remainder sequence
        POLY::euclidean_division(u, v, q, r);  //  u == qv + r
        if (r.is_zero()) break;

        // update u and v while preserving invariant
        u = v; v = r;
        /* Since r = u - qv, this preserves invariant (part ii)
         * and corresponds to the matrix assignment
         *   (u) = (0  1) (u)
         *   (v)   (1 -q) (v)
         */
        m21old = m21; m21 = m11 - q*m21; m11 = m21old;
        /* This simulates the matching matrix assignment
         *   (m11 m12) = (0  1) (m11 m12)
         *   (m21 m22)   (1 -q) (m21 m22)
         * which preserves the invariant (part i)
         */
        if (r.degree() == 0) break;
    }
    /* postcondition:  invariant holds  and  v divides u */

    // make gcd unit-normal
    m21 /= v.unit_part(); v /= v.unit_part();

    // obtain m22 such that  v == m21*x + m22*y
    POLY m22;
    POLY::euclidean_division(v - m21*x, y, m22, r);
    CGAL_assertion(r.is_zero());

    // check computation
    CGAL_assertion(v == m21*x + m22*y);

    // return results
    if (swapped) {
        xf = m22; yf = m21;
    } else {
        xf = m21; yf = m22;
    }
    return v;
}

template <class NT> 
inline
Polynomial<NT> gcdex_(
        Polynomial<NT> x, Polynomial<NT> y,
        Polynomial<NT>& xf, Polynomial<NT>& yf,
        ::CGAL::Tag_true
) {
    typedef Polynomial<NT> POLY;
    typedef typename CGAL::Fraction_traits<POLY>::Numerator_type INTPOLY;
    typedef typename CGAL::Fraction_traits<POLY>::Denominator_type DENOM;
    typedef typename INTPOLY::NT INTNT;
    
    typename CGAL::Fraction_traits<POLY>::Decompose decompose;
    typename CGAL::Fraction_traits<POLY>::Compose   compose;
    

    // rewrite  x as xi/xd  and  y as yi/yd  with integral polynomials xi, yi
    DENOM xd, yd;
    x.simplify_coefficients();
    y.simplify_coefficients();
    INTPOLY xi ,yi; 
    decompose(x,xi,xd);
    decompose(y,yi,yd);

    // compute the integral gcd with cofactors:
    // vi = gcd(xi, yi);  vfi*vi == xfi*xi + yfi*yi
    INTPOLY xfi, yfi; INTNT vfi;
    INTPOLY vi = pseudo_gcdex(xi, yi, xfi, yfi, vfi);

    // proceed to vfi*v == xfi*x + yfi*y  with v = gcd(x,y) (unit-normal)
    POLY v = compose(vi, vi.lcoeff());
    v.simplify_coefficients();
    CGAL_assertion(v.unit_part() == NT(1));
    vfi *= vi.lcoeff(); xfi *= xd; yfi *= yd;

    // compute xf, yf such that gcd(x,y) == v == xf*x + yf*y
    xf = compose(xfi, vfi);
    yf = compose(yfi, vfi);
    xf.simplify_coefficients();
    yf.simplify_coefficients();
    return v;
}

} // namespace internal

/*! \ingroup CGAL_Polynomial
 *  \relates CGAL::Polynomial
 *  \brief compute gcd with cofactors
 *
 *  This function computes the gcd of polynomials \c p1 and \c p2
 *  along with two other polynomials \c f1 and \c f2 such that
 *  gcd(\e p1, \e p2) = <I>f1*p1 + f2*p2</I>. This is called
 *  <I>extended</I> gcd computation, and <I>f1, f2</I> are called
 *  <I>B&eacute;zout factors</I> or <I>cofactors</I>.
 *
 *  CGALially, computation is performed ``denominator-free'' if
 *  supported by the coefficient type via \c CGAL::Fraction_traits
 *  (using \c pseudo_gcdex() ), otherwise the euclidean remainder
 *  sequence is used.
 *
 *  \pre \c NT must be a \c Field.
 *
 *  The result <I>d</I> is unit-normal,
 *  i.e. <I>d</I><TT>.lcoeff() == NT(1)</TT>.
 *
 */
template <class NT> 
inline
Polynomial<NT> gcdex(
        Polynomial<NT> p1, Polynomial<NT> p2,
        Polynomial<NT>& f1, Polynomial<NT>& f2
) {
    typedef typename CGAL::Fraction_traits< Polynomial<NT> >
        ::Is_fraction Is_fraction;
    return internal::gcdex_(p1, p2, f1, f2, Is_fraction());
}


/*! \ingroup CGAL_Polynomial
 *  \relates CGAL::Polynomial
 *  \brief compute gcd with ``almost'' cofactors
 *
 *  This is a variant of \c exgcd() for use over non-field \c NT.
 *  It computes the gcd of polynomials \c p1 and \c p2
 *  along with two other polynomials \c f1 and \c f2 and a scalar \c v
 *  such that \e v * gcd(\e p1, \e p2) = <I>f1*p1 + f2*p2</I>,
 *  using the subresultant remainder sequence. That \c NT is not a field
 *  implies that one cannot achieve \e v = 1 for all inputs.
 *
 *  \pre \c NT must be a \c UFDomain of scalars (not polynomials).
 *
 *  The result is unit-normal.
 *
 */
template <class NT>
inline
Polynomial<NT> pseudo_gcdex(
#ifdef DOXYGEN_RUNNING
        Polynomial<NT> p1, Polynomial<NT> p2,
        Polynomial<NT>& f2, Polynomial<NT>& f2, NT& v
#else
        Polynomial<NT> x, Polynomial<NT> y,
        Polynomial<NT>& xf, Polynomial<NT>& yf, NT& vf
#endif // DOXYGEN_RUNNING
) {
    /* implemented using the extended subresultant algorithm
     * for gcd computation with Bezout factors
     *
     * To understand this, you need to understand the computation of
     * cofactors as in the basic extended Euclidean algorithm (see
     * the code above of gcdex_(..., Field_tag)), and the subresultant
     * gcd algorithm, see gcd_(..., Unique_factorization_domain_tag).
     *
     * The crucial point of the combination of both is the observation
     * that the subresultant factor (called rho here) divided out of the
     * new remainder in each step can also be divided out of the
     * cofactors.
     */

    typedef Polynomial<NT> POLY;
    typename Algebraic_structure_traits<NT>::Integral_division idiv;
    typename Algebraic_structure_traits<NT>::Gcd          gcd;

    // handle trivial cases
    if (x.is_zero()) {
        if (y.is_zero()) CGAL_error_msg("gcdex(0,0) is undefined");
        xf = POLY(0); yf = POLY(1); vf = y.unit_part();
        return y / vf;
    }
    if (y.is_zero()) {
        xf = POLY(1); yf = POLY(0); vf = x.unit_part();
        return x / vf;
    }
    bool swapped = x.degree() < y.degree();
    if (swapped) { POLY t = x; x = y; y = t; }

    // compute gcd of content
    NT xcont = x.content(); NT ycont = y.content();
    NT gcdcont = gcd(xcont, ycont);

    // compute gcd of primitive parts
    POLY xprim = x / xcont; POLY yprim = y / ycont;
    POLY u = xprim, v = yprim, q, r;
    POLY m11(1), m21(0), m21old;
    NT g(1), h(1), d, rho;
    for (;;) {
        int delta = u.degree() - v.degree();
        POLY::pseudo_division(u, v, q, r, d);
        CGAL_assertion(d == ipower(v.lcoeff(), delta+1));
        if (r.is_zero()) break;
        rho = g * ipower(h, delta);
        u = v; v = r / rho;
        m21old = m21; m21 = (d*m11 - q*m21) / rho; m11 = m21old;
        /* The transition from (u, v) to (v, r/rho) corresponds
         * to multiplication with the matrix
         *   __1__ (0 rho)
         *    rho  (d  -q)
         * The comments and correctness arguments from
         * gcdex(..., Field_tag) apply analogously.
         */
        g = u.lcoeff();
        CGAL::internal::hgdelta_update(h, g, delta);
        if (r.degree() == 0) break;
    }

    // obtain v == m21*xprim + m22*yprim
    // the correct m21 was already computed above
    POLY m22;
    POLY::euclidean_division(v - m21*xprim, yprim, m22, r);
    CGAL_assertion(r.is_zero());

    // now obtain gcd(x,y) == gcdcont * v/v.content() == (m21*x + m22*y)/denom
    NT vcont = v.content(), vup = v.unit_part();
    v /= vup * vcont; v *= gcdcont;
    m21 *= ycont; m22 *= xcont;
    vf = idiv(xcont, gcdcont) * ycont * (vup * vcont);
    CGAL_assertion(vf * v == m21*x + m22*y);

    // return results
    if (swapped) {
        xf = m22; yf = m21;
    } else {
        xf = m21; yf = m22;
    }
    return v;
}





} // namespace CGAL

#endif // CGAL_POLYNOMIAL_GCD_H

// EOF