This file is indexed.

/usr/include/CGAL/Polynomial_traits_d.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Michael Hemmer <hemmer@informatik.uni-mainz.de> 
//                 Sebastian Limbach <slimbach@mpi-inf.mpg.de>
//
// ============================================================================
#ifndef CGAL_POLYNOMIAL_TRAITS_D_H
#define CGAL_POLYNOMIAL_TRAITS_D_H

#include <CGAL/basic.h>
#include <functional>
#include <list>
#include <vector>
#include <utility>

#include <CGAL/Polynomial/fwd.h>
#include <CGAL/Polynomial/misc.h>
#include <CGAL/Polynomial/Polynomial_type.h>
#include <CGAL/Polynomial/Monomial_representation.h>
#include <CGAL/Polynomial/Degree.h>
#include <CGAL/polynomial_utils.h>
#include <CGAL/Polynomial/square_free_factorize.h>
#include <CGAL/Polynomial/modular_filter.h>
#include <CGAL/extended_euclidean_algorithm.h>
#include <CGAL/Polynomial/resultant.h>
#include <CGAL/Polynomial/subresultants.h>
#include <CGAL/Polynomial/sturm_habicht_sequence.h>

#include <boost/iterator/transform_iterator.hpp> 


#define CGAL_POLYNOMIAL_TRAITS_D_BASE_TYPEDEFS                          \
  private:                                                              \
  typedef Polynomial_traits_d< Polynomial< Coefficient_type_ > > PT;    \
  typedef Polynomial_traits_d< Coefficient_type_ > PTC;                 \
                                                                        \
  typedef Polynomial<Coefficient_type_>               Polynomial_d;     \
  typedef Coefficient_type_                          Coefficient_type;  \
                                                                        \
  typedef typename Innermost_coefficient_type<Polynomial_d>::Type       \
  Innermost_coefficient_type;                                           \
  static const int d = Dimension<Polynomial_d>::value;                  \
                                                                        \
                                                                        \
  typedef std::pair< Exponent_vector, Innermost_coefficient_type >      \
  Exponents_coeff_pair;                                                 \
  typedef std::vector< Exponents_coeff_pair > Monom_rep;                \
                                                                        \
  typedef CGAL::Recursive_const_flattening< d-1,                        \
    typename CGAL::Polynomial<Coefficient_type>::const_iterator >       \
  Coefficient_const_flattening;                                         \
                                                                        \
  typedef typename                                                      \
  Coefficient_const_flattening::Recursive_flattening_iterator           \
  Innermost_coefficient_const_iterator;                                 \
                                                                        \
  typedef typename  Polynomial_d::const_iterator                        \
  Coefficient_const_iterator;                                           \
                                                                        \
  typedef std::pair<Innermost_coefficient_const_iterator,               \
                    Innermost_coefficient_const_iterator>               \
  Innermost_coefficient_const_iterator_range;                           \
                                                                        \
  typedef std::pair<Coefficient_const_iterator,                         \
                    Coefficient_const_iterator>                         \
  Coefficient_const_iterator_range;                                     \

 

namespace CGAL {

namespace internal {

// Base class for functors depending on the algebraic category of the
// innermost coefficient
template< class Coefficient_type_, class ICoeffAlgebraicCategory >
class Polynomial_traits_d_base_icoeff_algebraic_category {    
public:    
  typedef Null_functor    Multivariate_content;
};

// Specializations
template< class Coefficient_type_ >
class Polynomial_traits_d_base_icoeff_algebraic_category< 
            Polynomial< Coefficient_type_ >, Integral_domain_without_division_tag > 
  : public Polynomial_traits_d_base_icoeff_algebraic_category< 
                Polynomial< Coefficient_type_ >, Null_tag > {};

template< class Coefficient_type_ >
class Polynomial_traits_d_base_icoeff_algebraic_category< 
       Polynomial< Coefficient_type_ >, Integral_domain_tag >
  : public Polynomial_traits_d_base_icoeff_algebraic_category< 
       Polynomial< Coefficient_type_ >, Integral_domain_without_division_tag > {}; 

template< class Coefficient_type_ >
class Polynomial_traits_d_base_icoeff_algebraic_category< 
            Polynomial< Coefficient_type_ >, Unique_factorization_domain_tag >
  : public Polynomial_traits_d_base_icoeff_algebraic_category< 
                Polynomial< Coefficient_type_ >, Integral_domain_tag > {
  CGAL_POLYNOMIAL_TRAITS_D_BASE_TYPEDEFS
    
public:    

 
 struct Multivariate_content
    : public std::unary_function< Polynomial_d , Innermost_coefficient_type >{
    Innermost_coefficient_type 
    operator()(const Polynomial_d& p) const {
      typedef Innermost_coefficient_const_iterator IT;
      Innermost_coefficient_type content(0);
      typename PT::Construct_innermost_coefficient_const_iterator_range range;
      for (IT it = range(p).first; it != range(p).second; it++){
        content = CGAL::gcd(content, *it);
        if(CGAL::is_one(content)) break;
      }
      return content;
    }
  };
}; 

template< class Coefficient_type_ >
class Polynomial_traits_d_base_icoeff_algebraic_category< 
            Polynomial< Coefficient_type_ >, Euclidean_ring_tag >
  : public Polynomial_traits_d_base_icoeff_algebraic_category< 
                Polynomial< Coefficient_type_ >, Unique_factorization_domain_tag >
{}; 

template< class Coefficient_type_ >
class Polynomial_traits_d_base_icoeff_algebraic_category< 
            Polynomial< Coefficient_type_ >, Field_tag >
  : public Polynomial_traits_d_base_icoeff_algebraic_category< 
                Polynomial< Coefficient_type_ >, Integral_domain_tag > {
  CGAL_POLYNOMIAL_TRAITS_D_BASE_TYPEDEFS

public:
    
  //       Multivariate_content;
  struct Multivariate_content
    : public std::unary_function< Polynomial_d , Innermost_coefficient_type >{
    Innermost_coefficient_type operator()(const Polynomial_d& p) const {
      if( CGAL::is_zero(p) )
        return Innermost_coefficient_type(0);
      else
        return Innermost_coefficient_type(1);
    }
  };
};

template< class Coefficient_type_ >
class Polynomial_traits_d_base_icoeff_algebraic_category< 
            Polynomial< Coefficient_type_ >, Field_with_sqrt_tag >
  : public Polynomial_traits_d_base_icoeff_algebraic_category< 
                Polynomial< Coefficient_type_ >, Field_tag > {}; 

template< class Coefficient_type_ >
class Polynomial_traits_d_base_icoeff_algebraic_category< 
            Polynomial< Coefficient_type_ >, Field_with_kth_root_tag >
  : public Polynomial_traits_d_base_icoeff_algebraic_category< 
                Polynomial< Coefficient_type_ >, Field_with_sqrt_tag > {}; 
 
template< class Coefficient_type_ >
class Polynomial_traits_d_base_icoeff_algebraic_category< 
            Polynomial< Coefficient_type_ >, Field_with_root_of_tag >
  : public Polynomial_traits_d_base_icoeff_algebraic_category< 
                Polynomial< Coefficient_type_ >, Field_with_kth_root_tag > {}; 

// Base class for functors depending on the algebraic category of the
// Polynomial type
template< class Coefficient_type_, class PolynomialAlgebraicCategory >
class Polynomial_traits_d_base_polynomial_algebraic_category {        
public:
  typedef Null_functor    Univariate_content;
  typedef Null_functor    Square_free_factorize;
};

// Specializations
template< class Coefficient_type_ >
class Polynomial_traits_d_base_polynomial_algebraic_category<
            Polynomial< Coefficient_type_ >, Integral_domain_without_division_tag >
  : public Polynomial_traits_d_base_polynomial_algebraic_category<
                Polynomial< Coefficient_type_ >, Null_tag > {};

template< class Coefficient_type_ >
class Polynomial_traits_d_base_polynomial_algebraic_category<
            Polynomial< Coefficient_type_ >, Integral_domain_tag >
  : public Polynomial_traits_d_base_polynomial_algebraic_category<
          Polynomial< Coefficient_type_ >, Integral_domain_without_division_tag > {};

template< class Coefficient_type_ >
class Polynomial_traits_d_base_polynomial_algebraic_category<
            Polynomial< Coefficient_type_ >, Unique_factorization_domain_tag >
  : public Polynomial_traits_d_base_polynomial_algebraic_category<
                Polynomial< Coefficient_type_ >, Integral_domain_tag > {
  CGAL_POLYNOMIAL_TRAITS_D_BASE_TYPEDEFS

public:
    
  //       Univariate_content
  struct Univariate_content
    : public std::unary_function< Polynomial_d , Coefficient_type>{
    Coefficient_type operator()(const Polynomial_d& p) const {
      return p.content();
    }
  };
    
  //       Square_free_factorize;
  struct Square_free_factorize{
    
    template < class OutputIterator >
    OutputIterator operator()( const Polynomial_d& p, OutputIterator oi) const {
      std::vector<Polynomial_d> factors;
      std::vector<int> mults; 
      
      square_free_factorize
        ( p, std::back_inserter(factors), std::back_inserter(mults) );
      
      CGAL_postcondition( factors.size() == mults.size() );
      for(unsigned int i = 0; i < factors.size(); i++){
        *oi++=std::make_pair(factors[i],mults[i]);
      }
      
      return oi;
    }
    
    template< class OutputIterator >
    OutputIterator operator()( 
        const Polynomial_d&    p , 
        OutputIterator         oi, 
        Innermost_coefficient_type& a ) const {
      
      if( CGAL::is_zero(p) ) {
        a = Innermost_coefficient_type(0);
        return oi;
      }

      typedef Polynomial_traits_d< Polynomial_d > PT;
      typename PT::Innermost_leading_coefficient ilcoeff;
      typename PT::Multivariate_content mcontent;
      a = CGAL::unit_part( ilcoeff( p ) ) * mcontent( p ); 
      
      return (*this)( p/Polynomial_d(a), oi);
    }
  };   
};

template< class Coefficient_type_ >
class Polynomial_traits_d_base_polynomial_algebraic_category<
            Polynomial< Coefficient_type_ >, Euclidean_ring_tag >
  : public Polynomial_traits_d_base_polynomial_algebraic_category<
                Polynomial< Coefficient_type_ >, Unique_factorization_domain_tag > {};


// Polynomial_traits_d_base class connecting the two base classes which depend
//  on the algebraic category of the innermost coefficient type and the poly-
//  nomial type.

// First the general base class for the innermost coefficient
template< class InnermostCoefficient_type, 
          class ICoeffAlgebraicCategory, class PolynomialAlgebraicCategory >
class Polynomial_traits_d_base {
  typedef InnermostCoefficient_type ICoeff;
public:
  static const int d = 0;
    
  typedef ICoeff Polynomial_d;
  typedef ICoeff Coefficient_type;
  typedef ICoeff Innermost_coefficient_type;
    
  struct Degree 
    : public std::unary_function< ICoeff , int > {
    int operator()(const ICoeff&) const { return 0; }
  };
  struct Total_degree 
    : public std::unary_function< ICoeff , int > {
    int operator()(const ICoeff&) const { return 0; }
  };
    
  typedef Null_functor  Construct_polynomial;
  typedef Null_functor  Get_coefficient;
  typedef Null_functor  Leading_coefficient;
  typedef Null_functor  Univariate_content;
  typedef Null_functor  Multivariate_content;
  typedef Null_functor  Shift;
  typedef Null_functor  Negate;
  typedef Null_functor  Invert;
  typedef Null_functor  Translate;
  typedef Null_functor  Translate_homogeneous;
  typedef Null_functor  Scale_homogeneous;
  typedef Null_functor  Differentiate;
    
  struct Is_square_free
    : public std::unary_function< ICoeff, bool > {
    bool operator()( const ICoeff& ) const {
      return true;
    }
  };
    
  struct Make_square_free 
    : public std::unary_function< ICoeff, ICoeff>{
    ICoeff operator()( const ICoeff& x ) const {
      if (CGAL::is_zero(x)) return x ;
      else  return ICoeff(1);
    }
  };
        
  typedef Null_functor  Square_free_factorize;
  typedef Null_functor  Pseudo_division;
  typedef Null_functor  Pseudo_division_remainder;
  typedef Null_functor  Pseudo_division_quotient;

  struct Gcd_up_to_constant_factor 
    : public std::binary_function< ICoeff, ICoeff, ICoeff >{
    ICoeff operator()(const ICoeff& x, const ICoeff& y) const {
      if (CGAL::is_zero(x) && CGAL::is_zero(y)) 
        return ICoeff(0);
      else
        return ICoeff(1);
    }
  };

  typedef Null_functor Integral_division_up_to_constant_factor;

  struct Univariate_content_up_to_constant_factor
    : public std::unary_function< ICoeff, ICoeff >{
    ICoeff operator()(const ICoeff& ) const {
      // TODO: Why not return 0 if argument is 0 ? 
      return ICoeff(1);
    }
  };

  typedef Null_functor  Square_free_factorize_up_to_constant_factor;
  typedef Null_functor  Resultant;
  typedef Null_functor  Canonicalize;
  typedef Null_functor  Evaluate_homogeneous;
    
  struct Innermost_leading_coefficient
    :public std::unary_function <ICoeff, ICoeff>{
    const ICoeff& operator()(const ICoeff& x){return x;}
  };
    
  struct Degree_vector{
    typedef Exponent_vector         result_type;
    typedef Coefficient_type             argument_type;
    // returns the exponent vector of inner_most_lcoeff. 
    result_type operator()(const Coefficient_type&) const{
      return Exponent_vector();
    }
  };
  
  struct Get_innermost_coefficient 
    : public std::binary_function< ICoeff, Polynomial_d, Exponent_vector > {
    const ICoeff& operator()( const Polynomial_d& p, Exponent_vector ) {
      return p;
    }
  };
    
  typedef Null_functor Evaluate ;
    
  struct Substitute{
  public:
    template <class Input_iterator>
    typename 
    CGAL::Coercion_traits<
        typename std::iterator_traits<Input_iterator>::value_type,
                                   Innermost_coefficient_type>::Type
    operator()(
        const Innermost_coefficient_type& p, 
        Input_iterator CGAL_precondition_code(begin), 
        Input_iterator CGAL_precondition_code(end) ) const { 
      CGAL_precondition(end == begin);
      typedef typename std::iterator_traits<Input_iterator>::value_type 
        value_type;
      typedef CGAL::Coercion_traits<Innermost_coefficient_type,value_type> CT;
      return typename CT::Cast()(p);
    } 
  };

  struct Substitute_homogeneous{
  public:
    // this is the end of the recursion
    // begin contains the homogeneous variabel 
    // hdegree is the remaining degree 
    template <class Input_iterator>
    typename 
    CGAL::Coercion_traits<
        typename std::iterator_traits<Input_iterator>::value_type,
                                   Innermost_coefficient_type>::Type
    operator()(
        const Innermost_coefficient_type& p, 
        Input_iterator begin, 
        Input_iterator CGAL_precondition_code(end),
        int hdegree) const { 
      
      typedef typename std::iterator_traits<Input_iterator>::value_type 
        value_type;
      typedef CGAL::Coercion_traits<Innermost_coefficient_type,value_type> CT;
      typename CT::Type result =   
        typename CT::Cast()(CGAL::ipower(*begin++,hdegree)) 
        * typename CT::Cast()(p);

      CGAL_precondition(end == begin);
      CGAL_precondition(hdegree >= 0);
      return result;
    }
  };
};

// Now the version for the polynomials with all functors provided by all 
// polynomials
template< class Coefficient_type_,
          class ICoeffAlgebraicCategory, class PolynomialAlgebraicCategory >
class Polynomial_traits_d_base< Polynomial< Coefficient_type_ >,
          ICoeffAlgebraicCategory, PolynomialAlgebraicCategory >
  : public Polynomial_traits_d_base_icoeff_algebraic_category< 
        Polynomial< Coefficient_type_ >, ICoeffAlgebraicCategory >,
    public Polynomial_traits_d_base_polynomial_algebraic_category<
        Polynomial< Coefficient_type_ >, PolynomialAlgebraicCategory > {      
                 
  typedef Polynomial_traits_d< Polynomial< Coefficient_type_ > > PT;         
  typedef Polynomial_traits_d< Coefficient_type_ > PTC;                      
                                                                        
  public:                                                               
  typedef Polynomial<Coefficient_type_>                  Polynomial_d;       
  typedef Coefficient_type_                              Coefficient_type;        
          
  typedef typename internal::Innermost_coefficient_type<Polynomial_d>::Type    
  Innermost_coefficient_type;              
  static const int d = Dimension<Polynomial_d>::value; 
                                                          
private:                                                              
  typedef std::pair< Exponent_vector, Innermost_coefficient_type >           
  Exponents_coeff_pair;                                                 
  typedef std::vector< Exponents_coeff_pair > Monom_rep;                
                                                                        
  typedef CGAL::Recursive_const_flattening< d-1,                        
    typename CGAL::Polynomial<Coefficient_type>::const_iterator >            
  Coefficient_const_flattening;                                               
                                                                        
  public:                                                               
  typedef typename Coefficient_const_flattening::Recursive_flattening_iterator 
  Innermost_coefficient_const_iterator;                                       
  typedef typename  Polynomial_d::const_iterator Coefficient_const_iterator;       
  
  typedef std::pair<Innermost_coefficient_const_iterator,               
                    Innermost_coefficient_const_iterator>               
                    Innermost_coefficient_const_iterator_range;
                                                                        
  typedef std::pair<Coefficient_const_iterator,                         
                    Coefficient_const_iterator>                         
                    Coefficient_const_iterator_range;         


  // We use our own Strict Weak Ordering predicate in order to avoid
  // problems when calling sort for a Exponents_coeff_pair where the
  // coeff type has no comparison operators available.
private:
  struct Compare_exponents_coeff_pair 
    : public std::binary_function< 
       std::pair< Exponent_vector, Innermost_coefficient_type >,
       std::pair< Exponent_vector, Innermost_coefficient_type >,
       bool > 
  {
    bool operator()( 
        const std::pair< Exponent_vector, Innermost_coefficient_type >& p1,
        const std::pair< Exponent_vector, Innermost_coefficient_type >& p2 ) const {
      // TODO: Precondition leads to an error within test_translate in 
      // Polynomial_traits_d test
      // CGAL_precondition( p1.first != p2.first );
      return p1.first < p2.first;
    }            
  }; 

public:

  //
  // Functors as defined in the reference manual 
  // (with sometimes slightly extended functionality)

  // Construct_polynomial;
  struct Construct_polynomial {
        
    typedef Polynomial_d  result_type;
        
    Polynomial_d operator()()  const {
      return Polynomial_d(0);
    }
        
    template <class T>
    Polynomial_d operator()( T a ) const {
      return Polynomial_d(a);
    }
        
    //! construct the constant polynomial a0
    Polynomial_d operator() (const Coefficient_type& a0) const
    {return Polynomial_d(a0);}
        
    //! construct the polynomial a0 + a1*x
    Polynomial_d operator() (
        const Coefficient_type& a0, const Coefficient_type& a1) const
    {return Polynomial_d(a0,a1);}
        
    //! construct the polynomial a0 + a1*x + a2*x^2
    Polynomial_d operator() (
        const Coefficient_type& a0, const Coefficient_type& a1,
        const Coefficient_type& a2) const
    {return Polynomial_d(a0,a1,a2);}
        
    //! construct the polynomial a0 + a1*x + ... + a3*x^3
    Polynomial_d operator() (
        const Coefficient_type& a0, const Coefficient_type& a1,
        const Coefficient_type& a2, const Coefficient_type& a3) const
    {return Polynomial_d(a0,a1,a2,a3);}
        
    //! construct the polynomial a0 + a1*x + ... + a4*x^4
    Polynomial_d operator() (
        const Coefficient_type& a0, const Coefficient_type& a1,
        const Coefficient_type& a2, const Coefficient_type& a3,
        const Coefficient_type& a4) const
    {return Polynomial_d(a0,a1,a2,a3,a4);}
        
    //! construct the polynomial a0 + a1*x + ... + a5*x^5
    Polynomial_d operator() (
        const Coefficient_type& a0, const Coefficient_type& a1,
        const Coefficient_type& a2, const Coefficient_type& a3,
        const Coefficient_type& a4, const Coefficient_type& a5) const
    {return Polynomial_d(a0,a1,a2,a3,a4,a5);}
        
    //! construct the polynomial a0 + a1*x + ... + a6*x^6
    Polynomial_d operator() (
        const Coefficient_type& a0, const Coefficient_type& a1,
        const Coefficient_type& a2, const Coefficient_type& a3,
        const Coefficient_type& a4, const Coefficient_type& a5, 
        const Coefficient_type& a6) const
    {return Polynomial_d(a0,a1,a2,a3,a4,a5,a6);}
        
    //! construct the polynomial a0 + a1*x + ... + a7*x^7
    Polynomial_d operator() (
        const Coefficient_type& a0, const Coefficient_type& a1,
        const Coefficient_type& a2, const Coefficient_type& a3,
        const Coefficient_type& a4, const Coefficient_type& a5, 
        const Coefficient_type& a6, const Coefficient_type& a7) const
    {return Polynomial_d(a0,a1,a2,a3,a4,a5,a6,a7);}
        
    //! construct the polynomial a0 + a1*x + ... + a8*x^8
    Polynomial_d operator() (
        const Coefficient_type& a0, const Coefficient_type& a1,
        const Coefficient_type& a2, const Coefficient_type& a3,
        const Coefficient_type& a4, const Coefficient_type& a5, 
        const Coefficient_type& a6, const Coefficient_type& a7,
        const Coefficient_type& a8) const 
    {return Polynomial_d(a0,a1,a2,a3,a4,a5,a6,a7,a8);}

#if 1
  private:
    template <class Input_iterator, class NT> Polynomial_d 
    construct_value_type(Input_iterator begin, Input_iterator end, NT) const {
      typedef CGAL::Coercion_traits<NT,Coefficient_type> CT;
      CGAL_static_assertion((boost::is_same<typename CT::Type,Coefficient_type>::value));    
      typename CT::Cast cast; 
      return Polynomial_d(
          boost::make_transform_iterator(begin,cast),
          boost::make_transform_iterator(end,cast));
    }
    
    template <class Input_iterator, class NT> Polynomial_d 
    construct_value_type(Input_iterator begin, Input_iterator end, std::pair<Exponent_vector,NT>) const {
      return (*this)(begin,end,false);// construct from non sorted monom rep 
    }
    
  public:
    template< class Input_iterator >
    Polynomial_d operator()( Input_iterator begin, Input_iterator end) const {
      if(begin == end ) return Polynomial_d(0);
      typedef typename std::iterator_traits<Input_iterator>::value_type value_type;
      return construct_value_type(begin,end,value_type());
    }
    
    template< class Input_iterator >
    Polynomial_d operator()( Input_iterator begin, Input_iterator end, bool is_sorted) const {
      // Avoid compiler warning
      (void)is_sorted;
      if(begin == end ) return Polynomial_d(0);
      Monom_rep monom_rep(begin,end);
      // if(!is_sorted) 
      std::sort(monom_rep.begin(),monom_rep.end(),Compare_exponents_coeff_pair()); 
      return Create_polynomial_from_monom_rep<Coefficient_type>()(monom_rep.begin(),monom_rep.end());
    }
#else
    
    // Construct from Coefficient type 
    template< class Input_iterator >
    inline Polynomial_d 
    construct( Input_iterator begin, Input_iterator end, Tag_true) const {
      if(begin == end ) return Polynomial_d(0);
      return Polynomial_d(begin,end);
    }
    // Construct from momom rep     
    template< class Input_iterator >
    inline Polynomial_d 
    construct( Input_iterator begin, Input_iterator end, Tag_false) const {
      // construct from non sorted monom rep 
      return (*this)(begin,end,false);
    }
        
    template< class Input_iterator >
    Polynomial_d 
    operator()( Input_iterator begin, Input_iterator end ) const {
      if(begin == end ) return Polynomial_d(0);
      typedef typename std::iterator_traits<Input_iterator>::value_type value_type;
      typedef Boolean_tag<boost::is_same<value_type,Coefficient_type>::value> 
        Is_coeff;
      std::vector<value_type> vec(begin,end);
      return construct(vec.begin(),vec.end(),Is_coeff());
    }

    
    template< class Input_iterator >
    Polynomial_d 
    operator()(Input_iterator begin, Input_iterator end , bool is_sorted) const{
      if(!is_sorted) 
        std::sort(begin,end,Compare_exponents_coeff_pair()); 
      return Create_polynomial_from_monom_rep< Coefficient_type >()(begin,end); 
    }
#endif

  public: 

    template< class T >
    class Create_polynomial_from_monom_rep {
    public:
      template <class Monom_rep_iterator>
      Polynomial_d operator()( 
          Monom_rep_iterator begin,
          Monom_rep_iterator end) const {
                
        Innermost_coefficient_type zero(0);
        std::vector< Innermost_coefficient_type > coefficients;
        for(Monom_rep_iterator it = begin; it != end; it++){
          int current_exp = it->first[0];
          if((int) coefficients.size() < current_exp)
            coefficients.resize(current_exp,zero);
          coefficients.push_back(it->second);
        }
        return Polynomial_d(coefficients.begin(),coefficients.end());
      }
    };
    
    template< class T >
    class Create_polynomial_from_monom_rep< Polynomial < T > > {
    public:
      template <class Monom_rep_iterator>
      Polynomial_d operator()( 
          Monom_rep_iterator begin,
          Monom_rep_iterator end) const {
                
        typedef Polynomial_traits_d<Coefficient_type> PT;
        typename PT::Construct_polynomial construct;
                
        CGAL_static_assertion(PT::d != 0); // Coefficient_type is a Polynomial
        std::vector<Coefficient_type> coefficients;         
                
        Coefficient_type zero(0);
        while(begin != end){
          int current_exp = begin->first[PT::d];
          // fill up with zeros until current exp is reached
          if((int) coefficients.size() < current_exp)
            coefficients.resize(current_exp,zero);

          // select range for coefficient of current exponent 
          Monom_rep_iterator coeff_end = begin; 
          while(  coeff_end != end && coeff_end->first[PT::d] == current_exp ){
            ++coeff_end;
          }
          coefficients.push_back(construct(begin, coeff_end));
          begin = coeff_end; 
        }
        return Polynomial_d(coefficients.begin(),coefficients.end());
      }
    };
  };

  // Get_coefficient;
  struct Get_coefficient 
    : public std::binary_function<Polynomial_d, int, Coefficient_type > {
        
    const Coefficient_type& operator()( const Polynomial_d& p, int i) const {
      static const Coefficient_type zero =  Coefficient_type(0);
      CGAL_precondition( i >= 0 );
      typename PT::Degree degree;
      if( i >  degree(p) )
        return zero;
      return p[i];
    }       
  };
    
  //     Get_innermost_coefficient;
  struct Get_innermost_coefficient
    : public 
    std::binary_function< Polynomial_d, Exponent_vector, Innermost_coefficient_type >
  {
        
    const Innermost_coefficient_type& 
    operator()( const Polynomial_d& p, Exponent_vector ev ) const {
      CGAL_precondition( !ev.empty() );
      typename PTC::Get_innermost_coefficient gic;
      typename PT::Get_coefficient gc;
      int exponent = ev.back();
      ev.pop_back();
      return gic( gc( p, exponent ), ev ); 
    }; 
  };
     
  // Swap variable x_i with x_j
  struct Swap {
    typedef Polynomial_d        result_type;  
    typedef Polynomial_d        first_argument_type;
    typedef int                 second_argument_type;
    typedef int                 third_argument_type;
             
  public:

    Polynomial_d operator()(const Polynomial_d& p, int i, int j ) const {
      CGAL_precondition(0 <= i && i < d);
      CGAL_precondition(0 <= j && j < d);
      typedef std::pair< Exponent_vector, Innermost_coefficient_type >
        Exponents_coeff_pair;
      Monomial_representation gmr;
      Construct_polynomial construct; 
      typedef std::vector< Exponents_coeff_pair > Monom_vector;
      typedef typename Monom_vector::iterator MVIterator; 
      Monom_vector monoms; 
      gmr( p, std::back_inserter( monoms ) );
      for( MVIterator it = monoms.begin(); it != monoms.end(); ++it ) {
        std::swap(it->first[i],it->first[j]);
      }
      // sort only once ! 
      std::sort(monoms.begin(), monoms.end(),Compare_exponents_coeff_pair());
      return construct(monoms.begin(), monoms.end(),true);
    }
  };
  
  
  //       Move;    
  // move variable x_i to position of x_j
  // order of other variables remains 
  // default j = d makes x_i the othermost variable
  struct Move {
    typedef Polynomial_d        result_type;  
    typedef Polynomial_d        first_argument_type;
    typedef int                 second_argument_type;
    typedef int                 third_argument_type;
        
    Polynomial_d 
    operator()(const Polynomial_d& p, int i, int j = (d-1) ) const {
      CGAL_precondition(0 <= i && i < d);
      CGAL_precondition(0 <= j && j < d);
      typedef std::pair< Exponent_vector, Innermost_coefficient_type >
        Exponents_coeff_pair;
      typedef std::vector< Exponents_coeff_pair > Monom_rep; 
      Monomial_representation gmr;
      Construct_polynomial construct;
      Monom_rep mon_rep;
      gmr( p, std::back_inserter( mon_rep ) );
      for( typename Monom_rep::iterator it = mon_rep.begin(); 
           it != mon_rep.end();
           ++it ) {
        // this is as good as std::rotate since it uses swap also
        if (i < j) 
          for( int k = i; k < j; k++ )
            std::swap(it->first[k],it->first[k+1]);
        else
          for( int k = i; k > j; k-- )
            std::swap(it->first[k],it->first[k-1]);
                
      }
      return construct( mon_rep.begin(), mon_rep.end() );
    }
  };


  struct Permute {
    typedef Polynomial_d        result_type;
    template <typename Input_iterator> Polynomial_d operator() 
      (const Polynomial_d& p, Input_iterator first, Input_iterator last) const {
      Construct_polynomial construct;
      Monomial_representation gmr;
      Monom_rep mon_rep;
      gmr( p, std::back_inserter( mon_rep ));
      std::vector<int> on_place, number_is;
      int i= 0;
      for (Input_iterator  iter = first ; iter != last ; ++iter)
        number_is.push_back (i++);
      on_place = number_is;
      int rem_place = 0, rem_number = i= 0;
      for(Input_iterator iter = first ; iter != last ; ++iter){
        for( typename Monom_rep::iterator it = mon_rep.begin();  it !=
               mon_rep.end(); ++it )
          std::swap(it->first[number_is[i]],it->first[(*iter)]);


        rem_place= number_is[i];
        rem_number= on_place[(*iter)];

        on_place[(*iter)] = i;
        on_place[rem_place]=rem_number;
        number_is[rem_number]=rem_place;
        number_is[i++]= (*iter);
      }
      return construct( mon_rep.begin(), mon_rep.end() );
    }
  };
  
  //Degree;    
  typedef CGAL::internal::Degree<Polynomial_d> Degree; 

  //       Total_degree;
  struct Total_degree : public std::unary_function< Polynomial_d , int >{
    int operator()(const Polynomial_d& p) const {
      typedef Polynomial_traits_d<Coefficient_type> COEFF_POLY_TRAITS;
      typename COEFF_POLY_TRAITS::Total_degree total_degree;
      Degree degree;
      CGAL_precondition( degree(p) >= 0);

      int result = 0;
      for(int i = 0; i <= degree(p) ; i++){
        if( ! CGAL::is_zero( p[i]) )
          result = (std::max)(result , total_degree(p[i]) + i );
      } 
      return result;
    }
  };

  //       Leading_coefficient;
  struct Leading_coefficient 
    : public std::unary_function< Polynomial_d , Coefficient_type>{
    const Coefficient_type& operator()(const Polynomial_d& p) const {
      return p.lcoeff();
    }
  };
    
  //       Innermost_leading_coefficient;
  struct Innermost_leading_coefficient 
    : public std::unary_function< Polynomial_d , Innermost_coefficient_type>{
    const Innermost_coefficient_type& 
    operator()(const Polynomial_d& p) const {
      typename PTC::Innermost_leading_coefficient ilcoeff;
      typename PT::Leading_coefficient lcoeff;
      return ilcoeff(lcoeff(p));
    }
  };

  
  //return a canonical representative of all constant multiples. 
  struct Canonicalize
    : public std::unary_function<Polynomial_d, Polynomial_d>{
 
  private: 
    inline Polynomial_d canonicalize_(Polynomial_d p, CGAL::Tag_true) const 
    {
      typedef typename Polynomial_traits_d<Polynomial_d>::Innermost_coefficient_type IC;
      typename Polynomial_traits_d<Polynomial_d>::Innermost_leading_coefficient ilcoeff;
      typename Algebraic_extension_traits<IC>::Normalization_factor nfac;
      
      IC tmp = nfac(ilcoeff(p));
      if(tmp != IC(1)){
        p *= Polynomial_d(tmp);
      }
      remove_scalar_factor(p);
      p /= p.unit_part();
      p.simplify_coefficients();
      
      CGAL_postcondition(nfac(ilcoeff(p)) == IC(1));
      return p;
    };
    
    inline Polynomial_d canonicalize_(Polynomial_d p, CGAL::Tag_false) const 
    {  
      remove_scalar_factor(p);
      p /= p.unit_part();
      p.simplify_coefficients();
      return p;
    };

  public:
    Polynomial_d
    operator()( const Polynomial_d& p ) const {
      if (CGAL::is_zero(p)) return p; 

      typedef Innermost_coefficient_type IC; 
      typedef typename Algebraic_extension_traits<IC>::Is_extended Is_extended;
      return canonicalize_(p, Is_extended());
    }  
  };

  //       Differentiate;
  struct Differentiate 
    : public std::unary_function<Polynomial_d, Polynomial_d>{
    Polynomial_d
    operator()(Polynomial_d p, int i = (d-1)) const {
      if (i == (d-1) ){
        p.diff();
      }else{
        Swap swap;
        p = swap(p,i,d-1);
        p.diff();
        p = swap(p,i,d-1);
      }
      return p;
    }
  };

  // Evaluate;
  struct Evaluate
    :public std::binary_function<Polynomial_d,Coefficient_type,Coefficient_type>{
    // Evaluate with respect to one variable 
    Coefficient_type
    operator()(const Polynomial_d& p, const Coefficient_type& x) const {
      return p.evaluate(x);
    }
#define ICOEFF typename First_if_different<Innermost_coefficient_type, Coefficient_type>::Type 
    Coefficient_type operator()
      ( const Polynomial_d& p, const ICOEFF& x) const 
    {
      return p.evaluate(x);
    }
#undef ICOEFF      
  };
  
  // Evaluate_homogeneous;
  struct Evaluate_homogeneous{
    typedef Coefficient_type           result_type;  
    typedef Polynomial_d               first_argument_type;
    typedef Coefficient_type           second_argument_type;
    typedef Coefficient_type           third_argument_type;
       
    Coefficient_type operator()(
        const Polynomial_d& p, const Coefficient_type& a, const Coefficient_type& b) const 
    {
      return p.evaluate_homogeneous(a,b);
    }
#define ICOEFF typename First_if_different<Innermost_coefficient_type, Coefficient_type>::Type 
    Coefficient_type operator()
      ( const Polynomial_d& p, const ICOEFF& a, const ICOEFF& b) const 
    {
      return p.evaluate_homogeneous(a,b);
    }
#undef ICOEFF    

  };
    
  // Is_zero_at;
  struct Is_zero_at {
  private:
    typedef Algebraic_structure_traits<Innermost_coefficient_type> AST;
    typedef typename AST::Is_zero::result_type BOOL;
  public:
    typedef BOOL result_type;
        
    template< class Input_iterator >
    BOOL operator()( 
        const Polynomial_d& p, 
        Input_iterator begin, 
        Input_iterator end ) const {
      typename PT::Substitute substitute;            
      return( CGAL::is_zero( substitute( p, begin, end ) ) );
    } 
  };
    
  //  Is_zero_at_homogeneous;
  struct Is_zero_at_homogeneous {
 private:
    typedef Algebraic_structure_traits<Innermost_coefficient_type> AST;
    typedef typename AST::Is_zero::result_type BOOL;
  public:
    typedef BOOL result_type;
        
    template< class Input_iterator >
    BOOL operator()
      ( const Polynomial_d& p, Input_iterator begin, Input_iterator end ) const 
    {
      typename PT::Substitute_homogeneous substitute_homogeneous;
      return( CGAL::is_zero( substitute_homogeneous( p, begin, end ) ) );
    }
  };

  // Sign_at, Sign_at_homogeneous, Compare 
  // define XXX_ even though ICoeff may not be Real_embeddable 
  // select propoer XXX among XXX_ or Null_functor using ::boost::mpl::if_
private:
  struct Sign_at_ {
  private:
    typedef Real_embeddable_traits<Innermost_coefficient_type> RT;
  public:
    typedef typename RT::Sign result_type;

    template< class Input_iterator >
    result_type operator()( 
        const Polynomial_d& p, 
        Input_iterator begin, 
        Input_iterator end ) const 
    {
      typename PT::Substitute substitute;
      return CGAL::sign( substitute( p, begin, end ) );
    }
  };
  
  struct Sign_at_homogeneous_ {
    typedef Real_embeddable_traits<Innermost_coefficient_type> RT;
  public:
    typedef typename RT::Sign result_type;
        
    template< class Input_iterator >
    result_type operator()( 
        const Polynomial_d& p, 
        Input_iterator begin, 
        Input_iterator end) const {
      typename PT::Substitute_homogeneous substitute_homogeneous;
      return CGAL::sign( substitute_homogeneous( p, begin, end ) );
    }
  };
   
  typedef Real_embeddable_traits<Innermost_coefficient_type> RET_IC;
  typedef typename RET_IC::Is_real_embeddable IC_is_real_embeddable;
public:
  typedef typename ::boost::mpl::if_<IC_is_real_embeddable,Sign_at_,Null_functor>::type Sign_at; 
  typedef typename ::boost::mpl::if_<IC_is_real_embeddable,Sign_at_homogeneous_,Null_functor>::type Sign_at_homogeneous; 
  typedef typename Real_embeddable_traits<Polynomial_d>::Compare Compare; 
 

struct Construct_coefficient_const_iterator_range                                       
     : public std::unary_function< Polynomial_d, 
                                  Coefficient_const_iterator_range> {
    Coefficient_const_iterator_range      
    operator () (const Polynomial_d& p) const {                                      
      return std::make_pair( p.begin(), p.end() );
    }                                                                          
};        
                                       
struct Construct_innermost_coefficient_const_iterator_range                                       
   : public std::unary_function< Polynomial_d, 
                                 Innermost_coefficient_const_iterator_range> {
   Innermost_coefficient_const_iterator_range      
   operator () (const Polynomial_d& p) const {                                      
     return std::make_pair(
         typename Coefficient_const_flattening::Flatten()(p.end(),p.begin()),
         typename Coefficient_const_flattening::Flatten()(p.end(),p.end()));
   }                                                                          
};                           
  
  struct Is_square_free 
    : public std::unary_function< Polynomial_d, bool >{
    bool operator()( const Polynomial_d& p ) const {
      if( !internal::may_have_multiple_factor( p ) )
        return true;
      
      Gcd_up_to_constant_factor gcd_utcf;
      Univariate_content_up_to_constant_factor ucontent_utcf;
      Integral_division_up_to_constant_factor  idiv_utcf;
      Differentiate diff;
            
      Coefficient_type content = ucontent_utcf( p );
      typename PTC::Is_square_free isf;
            
      if( !isf( content ) )
        return false;
            
      Polynomial_d regular_part = idiv_utcf( p, Polynomial_d( content ) ); 
            
      Polynomial_d g = gcd_utcf(regular_part,diff(regular_part));
      return ( g.degree() == 0 );
    }
  };

                   
  struct Make_square_free 
    : public std::unary_function< Polynomial_d, Polynomial_d >{
    Polynomial_d
    operator()(const Polynomial_d& p) const {
      if (CGAL::is_zero(p)) return p;
      Gcd_up_to_constant_factor gcd_utcf;
      Univariate_content_up_to_constant_factor ucontent_utcf;
      Integral_division_up_to_constant_factor  idiv_utcf;
      Differentiate diff;
      typename PTC::Make_square_free msf;
            
      Coefficient_type content = ucontent_utcf(p);
      Polynomial_d result = Polynomial_d(msf(content));
            
      Polynomial_d regular_part = idiv_utcf(p,Polynomial_d(content));
      Polynomial_d g = gcd_utcf(regular_part,diff(regular_part));
            
            
      result *= idiv_utcf(regular_part,g);
      return Canonicalize()(result);
                    
    }
  };

  //       Pseudo_division;
  struct Pseudo_division {
    typedef Polynomial_d        result_type;  
    void
    operator()(
        const Polynomial_d& f, const Polynomial_d& g,
        Polynomial_d& q, Polynomial_d& r, Coefficient_type& D) const {
      Polynomial_d::pseudo_division(f,g,q,r,D);
    }
  };
    
  struct Pseudo_division_quotient
    :public std::binary_function<Polynomial_d, Polynomial_d, Polynomial_d> {
        
    Polynomial_d
    operator()(const Polynomial_d& f, const Polynomial_d& g) const {
      Polynomial_d q,r;
      Coefficient_type D;
      Polynomial_d::pseudo_division(f,g,q,r,D);
      return q;
    }
  };

  struct Pseudo_division_remainder
    :public std::binary_function<Polynomial_d, Polynomial_d, Polynomial_d> {
        
    Polynomial_d
    operator()(const Polynomial_d& f, const Polynomial_d& g) const {
      Polynomial_d q,r;
      Coefficient_type D;
      Polynomial_d::pseudo_division(f,g,q,r,D);
      return r;
    }
  };
    
  struct Gcd_up_to_constant_factor
    :public std::binary_function<Polynomial_d, Polynomial_d, Polynomial_d> {
    Polynomial_d
    operator()(const Polynomial_d& p, const Polynomial_d& q) const {
      if(p==q) return CGAL::canonicalize(p); 
      if (CGAL::is_zero(p) && CGAL::is_zero(q)){
        return Polynomial_d(0);
      }
      // apply modular filter first
      if (internal::may_have_common_factor(p,q)){
        return internal::gcd_utcf_(p,q);
      }else{
        return Polynomial_d(1);
      }
    }
  };
    
  struct Integral_division_up_to_constant_factor
    :public std::binary_function<Polynomial_d, Polynomial_d, Polynomial_d> {
   
  
    
    Polynomial_d
    operator()(const Polynomial_d& p, const Polynomial_d& q) const {
      typedef Innermost_coefficient_type IC;
      
      typename PT::Construct_polynomial construct;
      typename PT::Innermost_leading_coefficient ilcoeff;
      typename PT::Construct_innermost_coefficient_const_iterator_range range;
      typedef Algebraic_extension_traits<Innermost_coefficient_type> AET;
      typename AET::Denominator_for_algebraic_integers dfai;
      typename AET::Normalization_factor nfac;

            
      IC ilcoeff_q = ilcoeff(q);
      // this factor is needed in case IC is an Algebraic extension
      IC dfai_q = dfai(range(q).first, range(q).second);
      // make dfai_q a 'scalar'
      ilcoeff_q *= dfai_q * nfac(dfai_q);
            
      Polynomial_d result = (p * construct(ilcoeff_q)) / q;

      return Canonicalize()(result);
    }
  };
    
  struct Univariate_content_up_to_constant_factor
    :public std::unary_function<Polynomial_d, Coefficient_type> {
    Coefficient_type
    operator()(const Polynomial_d& p) const {
      typename PTC::Gcd_up_to_constant_factor gcd_utcf;
            
      if(CGAL::is_zero(p)) return Coefficient_type(0);
      if(PT::d == 1) return Coefficient_type(1);

      Coefficient_type result(0);
      for(typename Polynomial_d::const_iterator it = p.begin();
          it != p.end();
          it++){
        result = gcd_utcf(*it,result);
      }
      return result;

    }
  };

  struct Square_free_factorize_up_to_constant_factor {
  private:
    typedef Coefficient_type Coeff;
    typedef Innermost_coefficient_type ICoeff;
        
    // rsqff_utcf computes the sqff recursively for Coeff  
    // end of recursion: ICoeff
    
    template < class OutputIterator >
    OutputIterator rsqff_utcf ( ICoeff , OutputIterator oi) const{ 
      return oi;
    }        
    
    template < class OutputIterator >
    OutputIterator rsqff_utcf (
        typename First_if_different<Coeff,ICoeff>::Type c,
        OutputIterator                                 oi) const {
      
      typename PTC::Square_free_factorize_up_to_constant_factor sqff;
      std::vector<std::pair<Coefficient_type,int> > fac_mul_pairs;
      sqff(c,std::back_inserter(fac_mul_pairs));
      
      for(unsigned int i = 0; i < fac_mul_pairs.size(); i++){
        Polynomial_d factor(fac_mul_pairs[i].first);
        int mult = fac_mul_pairs[i].second;
        *oi++=std::make_pair(factor,mult);
      }
      return oi;
    }

  public:
    template < class OutputIterator>
    OutputIterator 
    operator()(Polynomial_d p, OutputIterator oi) const {            
      if (CGAL::is_zero(p)) return oi;

      Univariate_content_up_to_constant_factor ucontent_utcf;
      Integral_division_up_to_constant_factor idiv_utcf;
      Coefficient_type c = ucontent_utcf(p);
      
      p = idiv_utcf( p , Polynomial_d(c));
      std::vector<Polynomial_d> factors;
      std::vector<int> mults;
      square_free_factorize_utcf(
          p, std::back_inserter(factors), std::back_inserter(mults));
      for(unsigned int i = 0; i < factors.size() ; i++){
         *oi++=std::make_pair(factors[i],mults[i]);
      }
      if (CGAL::total_degree(c) == 0)
        return oi;
      else
        return rsqff_utcf(c,oi);
    }
  };

  struct Shift
    : public std::binary_function< Polynomial_d,int,Polynomial_d >{
    
    Polynomial_d 
    operator()(const Polynomial_d& p, int e, int i = (d-1)) const {
      Construct_polynomial construct; 
      Monomial_representation gmr; 
      Monom_rep monom_rep;
      gmr(p,std::back_inserter(monom_rep));
      for(typename Monom_rep::iterator it = monom_rep.begin(); 
          it != monom_rep.end();
          it++){
        it->first[i]+=e;
      }
      return construct(monom_rep.begin(), monom_rep.end());
    }
  };
    
  struct Negate
    : public std::unary_function< Polynomial_d, Polynomial_d >{
        
    Polynomial_d operator()(const Polynomial_d& p, int i = (d-1)) const {
      Construct_polynomial construct; 
      Monomial_representation gmr; 
      Monom_rep monom_rep;
      gmr(p,std::back_inserter(monom_rep));
      for(typename Monom_rep::iterator it = monom_rep.begin(); 
          it != monom_rep.end();
          it++){
        if (it->first[i] % 2 != 0) 
          it->second = - it->second; 
      }
      return construct(monom_rep.begin(), monom_rep.end());
    }
  };

  struct Invert
    : public std::unary_function< Polynomial_d , Polynomial_d >{
    Polynomial_d operator()(Polynomial_d p, int i = (PT::d-1)) const {
      if (i == (d-1)){
        p.reversal(); 
      }else{
        p = Swap()(p,i,PT::d-1);
        p.reversal();
        p = Swap()(p,i,PT::d-1);   
      }
      return p ;
    }
  };

  struct Translate
    : public std::binary_function< Polynomial_d , Innermost_coefficient_type, 
                                   Polynomial_d >{
    Polynomial_d
    operator()(
        Polynomial_d p, 
        const Innermost_coefficient_type& c, 
        int i = (d-1)) 
      const {
      if (i == (d-1) ){
        p.translate(Coefficient_type(c)); 
      }else{
        Swap swap;
        p = swap(p,i,d-1);
        p.translate(Coefficient_type(c));
        p = swap(p,i,d-1); 
      }
      return p;
    }
  };

  struct Translate_homogeneous{
    typedef Polynomial_d result_type;
    typedef Polynomial_d first_argument_type;
    typedef Innermost_coefficient_type second_argument_type;
    typedef Innermost_coefficient_type third_argument_type;
        
    Polynomial_d
    operator()(Polynomial_d p, 
        const Innermost_coefficient_type& a, 
        const Innermost_coefficient_type& b,
        int i = (d-1) ) const {
      if (i == (d-1) ){
        p.translate(Coefficient_type(a),Coefficient_type(b));  
      }else{
        Swap swap;
        p = swap(p,i,d-1);
        p.translate(Coefficient_type(a),Coefficient_type(b));
        p = swap(p,i,d-1);
      }
      return p;
    }
  };

  struct Scale 
    : public 
    std::binary_function< Polynomial_d, Innermost_coefficient_type, Polynomial_d > {
        
    Polynomial_d operator()( Polynomial_d p, const Innermost_coefficient_type& c,
        int i = (PT::d-1) ) const  {
      CGAL_precondition( i <= d-1 );
      CGAL_precondition( i >= 0 );
      typename PT::Scale_homogeneous scale_homogeneous;          
      return scale_homogeneous( p, c, Innermost_coefficient_type(1), i );
    }
        
  };
    
  struct Scale_homogeneous{
    typedef Polynomial_d result_type;
    typedef Polynomial_d first_argument_type;
    typedef Innermost_coefficient_type second_argument_type;
    typedef Innermost_coefficient_type third_argument_type;
        
    Polynomial_d
    operator()(
        Polynomial_d p, 
        const Innermost_coefficient_type& a, 
        const Innermost_coefficient_type& b,
        int i = (d-1) ) const {

      CGAL_precondition( ! CGAL::is_zero(b) );
      CGAL_precondition( i <= d-1 );
      CGAL_precondition( i >= 0 );
      
      if (i != (d-1) ) p = Swap()(p,i,d-1);
          
      if(CGAL::is_one(b)) 
        p.scale_up(Coefficient_type(a));
      else 
        if(CGAL::is_one(a)) 
          p.scale_down(Coefficient_type(b));
        else 
          p.scale(Coefficient_type(a),Coefficient_type(b));  
          
      if (i != (d-1) ) p = Swap()(p,i,d-1);
          
      return p;
    }
  };

  struct Resultant
    : public std::binary_function<Polynomial_d, Polynomial_d, Coefficient_type>{
        
    Coefficient_type
    operator()(
        const Polynomial_d& p, 
        const Polynomial_d& q) const {
        return internal::resultant(p,q);
    }  
  };

  // Polynomial subresultants (aka subresultant polynomials)
  struct Polynomial_subresultants {
  
    template<typename OutputIterator>
    OutputIterator operator()(
      const Polynomial_d& p, 
      const Polynomial_d& q,
      OutputIterator out,
      int i = (d-1) ) const {
        if(i == (d-1) )
          return CGAL::internal::polynomial_subresultants<PT>(p,q,out);
        else
          return CGAL::internal::polynomial_subresultants<PT>(Move()(p,i),
                                                    Move()(q,i),
                                                    out);
    }  
  };

  // principal subresultants (aka scalar subresultants)
  struct Principal_subresultants {
        
    template<typename OutputIterator>
    OutputIterator operator()(
      const Polynomial_d& p, 
      const Polynomial_d& q,
      OutputIterator out,
      int i = (d-1) ) const {
        if(i == (d-1) )
          return CGAL::internal::principal_subresultants<PT>(p,q,out);
        else
          return CGAL::internal::principal_subresultants<PT>(Move()(p,i),
                                                          Move()(q,i),
                                                          out);
    }  
  };

  // Subresultants with cofactors
  struct Polynomial_subresultants_with_cofactors {
    
    template<typename OutputIterator1,
             typename OutputIterator2,
             typename OutputIterator3>
    OutputIterator1 operator()(
      const Polynomial_d& p, 
      const Polynomial_d& q, 
      OutputIterator1 out_sres,
      OutputIterator2 out_co_p,
      OutputIterator3 out_co_q,
      int i = (d-1) ) const {
        if(i == (d-1) )
            return CGAL::internal::polynomial_subresultants_with_cofactors<PT>
                (p,q,out_sres,out_co_p,out_co_q);
        else
            return CGAL::internal::polynomial_subresultants_with_cofactors<PT>
                (Move()(p,i),Move()(q,i),out_sres,out_co_p,out_co_q);
    }  
  };

  // Sturm-Habicht sequence (aka signed subresultant sequence)
  struct Sturm_habicht_sequence {
        
    template<typename OutputIterator>
    OutputIterator operator()(
      const Polynomial_d& p, 
      OutputIterator out,
      int i = (d-1) ) const {
        if(i == (d-1) )
          return CGAL::internal::sturm_habicht_sequence<PT>(p,out);
        else
          return CGAL::internal::sturm_habicht_sequence<PT>(Move()(p,i),
                                                         out);
    }  
  };

  //       Sturm-Habicht sequence with cofactors
  struct Sturm_habicht_sequence_with_cofactors {
  
    template<typename OutputIterator1,
             typename OutputIterator2,
             typename OutputIterator3>
    OutputIterator1 operator()(
      const Polynomial_d& p, 
      OutputIterator1 out_stha,
      OutputIterator2 out_f,
      OutputIterator3 out_fx,
      int i = (d-1) ) const {
        if(i == (d-1) )
          return CGAL::internal::sturm_habicht_sequence_with_cofactors<PT>
              (p,out_stha,out_f,out_fx);
        else
          return CGAL::internal::sturm_habicht_sequence_with_cofactors<PT>
              (Move()(p,i),out_stha,out_f,out_fx);
    }  
  };
    
  //       Principal Sturm-Habicht sequence (formal leading coefficients
  //       of Sturm-Habicht sequence)
  struct Principal_sturm_habicht_sequence {
        
    template<typename OutputIterator>
    OutputIterator operator()(
      const Polynomial_d& p, 
      OutputIterator out,
      int i = (d-1) ) const {
        if(i == (d-1) )
          return CGAL::internal::principal_sturm_habicht_sequence<PT>(p,out);
        else
          return CGAL::internal::principal_sturm_habicht_sequence<PT>
              (Move()(p,i),out);
    }  
  };


  typedef
  CGAL::internal::Monomial_representation<Polynomial_d> 
  Monomial_representation;

  // returns the Exponten_vector of the innermost leading coefficient 
  struct Degree_vector{
    typedef Exponent_vector           result_type;
    typedef Polynomial_d              argument_type;
        
    // returns the exponent vector of inner_most_lcoeff. 
    result_type operator()(const Polynomial_d& polynomial) const{
      typename PTC::Degree_vector degree_vector;
      Exponent_vector result = degree_vector(polynomial.lcoeff());
      result.push_back(polynomial.degree());
      return result;
    }
  };

    // substitute every variable by its new value in the iterator range
  // begin refers to the innermost/first variable
  struct Substitute{
  public:
    template <class Input_iterator>
    typename CGAL::Coercion_traits<
         typename std::iterator_traits<Input_iterator>::value_type, 
         Innermost_coefficient_type
    >::Type
    operator()(
        const Polynomial_d& p, 
        Input_iterator begin, 
        Input_iterator end) const {
      typedef typename std::iterator_traits<Input_iterator> ITT;
      typedef typename ITT::iterator_category  Category; 
      return (*this)(p,begin,end,Category()); 
    }
        
    template <class Input_iterator>
    typename CGAL::Coercion_traits< 
         typename std::iterator_traits<Input_iterator>::value_type, 
         Innermost_coefficient_type
    >::Type
    operator()(
        const Polynomial_d& p, 
        Input_iterator begin, 
        Input_iterator end,
        std::forward_iterator_tag) const {
      typedef typename std::iterator_traits<Input_iterator> ITT;
      std::list<typename ITT::value_type> list(begin,end); 
      return (*this)(p,list.begin(),list.end()); 
    }
        
    template <class Input_iterator>
    typename 
    CGAL::Coercion_traits
    <typename std::iterator_traits<Input_iterator>::value_type, 
         Innermost_coefficient_type>::Type
    operator()(
        const Polynomial_d& p, 
        Input_iterator begin, 
        Input_iterator end,
        std::bidirectional_iterator_tag) const {
            
      typedef typename std::iterator_traits<Input_iterator>::value_type 
        value_type;
      typedef CGAL::Coercion_traits<Innermost_coefficient_type,value_type> CT;
      typename PTC::Substitute subs; 

      typename CT::Type x = typename CT::Cast()(*(--end));  
            
      int i = Degree()(p);
      typename CT::Type y = 
        subs(Get_coefficient()(p,i),begin,end);
            
      while (--i >= 0){
        y *= x;
        y += subs(Get_coefficient()(p,i),begin,end);
      }
      return y;  
    }        
  };  // substitute every variable by its new value in the iterator range


  
  // begin refers to the innermost/first variable
  struct Substitute_homogeneous{

    template<typename Input_iterator>
    struct Result_type{
      typedef std::iterator_traits<Input_iterator> ITT;
      typedef typename ITT::value_type value_type;
      typedef Coercion_traits<value_type, Innermost_coefficient_type> CT; 
      typedef typename CT::Type Type; 
    };
    
  public:
    
    template <class Input_iterator>
    typename Result_type<Input_iterator>::Type
    operator()( const Polynomial_d& p, Input_iterator begin, Input_iterator end) const{
      int hdegree = Total_degree()(p);

      typedef std::iterator_traits<Input_iterator> ITT;
      std::list<typename ITT::value_type> list(begin,end); 
      
      // make the homogeneous variable the first in the list
      list.push_front(list.back());
      list.pop_back();
      
      // reverse and begin with the outermost variable 
      return (*this)(p, list.rbegin(), list.rend(), hdegree); 
    }
      
    // this operator is undcoumented and for internal use:
    // the iterator range starts with the outermost variable 
    // and ends with the homogeneous variable 
    template <class Input_iterator>
    typename Result_type<Input_iterator>::Type
    operator()(
        const Polynomial_d& p, 
        Input_iterator begin, 
        Input_iterator end,
        int hdegree) const{
      
      
      typedef std::iterator_traits<Input_iterator> ITT;
      typedef typename ITT::value_type value_type;
      typedef Coercion_traits<value_type, Innermost_coefficient_type> CT; 
      
      typename PTC::Substitute_homogeneous subsh; 
      
      typename CT::Type x = typename CT::Cast()(*begin++);  
            

      int i = Degree()(p);
      typename CT::Type y = subsh(Get_coefficient()(p,i),begin,end, hdegree-i);
       
      while (--i >= 0){
        y *= x;
        y += subsh(Get_coefficient()(p,i),begin,end,hdegree-i);
      }
      return y;  
    }        
  };

};

} // namespace internal

// Definition of Polynomial_traits_d
//
// In order to determine the algebraic category of the innermost coefficient,
// the Polynomial_traits_d_base class with "Null_tag" is used.

template< class Polynomial >
class Polynomial_traits_d
  : public internal::Polynomial_traits_d_base< Polynomial,  
    typename Algebraic_structure_traits<
typename internal::Innermost_coefficient_type<Polynomial>::Type >::Algebraic_category,
    typename Algebraic_structure_traits< Polynomial >::Algebraic_category > ,
  public Algebraic_structure_traits<Polynomial>{

//------------ Rebind ----------- 
private:
  template <class T, int d>
  struct Gen_polynomial_type{
    typedef CGAL::Polynomial<typename Gen_polynomial_type<T,d-1>::Type> Type;
  };
  template <class T>
  struct Gen_polynomial_type<T,0>{ typedef T Type; };

public:
  template <class T, int d>
  struct Rebind{
    typedef Polynomial_traits_d<typename Gen_polynomial_type<T,d>::Type> Other;
  };
//------------ Rebind ----------- 
};

} //namespace CGAL

#endif // CGAL_POLYNOMIAL_TRAITS_D_H