/usr/include/CGAL/Polynomials_1_3.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | // Copyright (c) 2005-2006 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// Partially supported by the IST Programme of the EU as a Shared-cost
// RTD (FET Open) Project under Contract No IST-2000-26473
// (ECG - Effective Computational Geometry for Curves and Surfaces)
// and a STREP (FET Open) Project under Contract No IST-006413
// (ACS -- Algorithms for Complex Shapes)
//
// $URL$
// $Id$
//
// Author(s) : Monique Teillaud <Monique.Teillaud@sophia.inria.fr>
// Sylvain Pion
// Pedro Machado
// Julien Hazebrouck
// Damien Leroy
#ifndef CGAL_ALGEBRAIC_KERNEL_POLYNOMIALS_1_3_H
#define CGAL_ALGEBRAIC_KERNEL_POLYNOMIALS_1_3_H
#include <CGAL/enum.h>
namespace CGAL {
// polynomials of the form aX + +bY + cZ + d
template < typename FT_ >
class Polynomial_1_3
{
FT_ rep[4]; // stores a, b, c, d
public:
typedef FT_ FT;
Polynomial_1_3(){}
Polynomial_1_3(const FT & a, const FT & b, const FT & c, const FT & d)
{
rep[0]=a;
rep[1]=b;
rep[2]=c;
rep[3]=d;
}
const FT & a() const
{ return rep[0]; }
const FT & b() const
{ return rep[1]; }
const FT & c() const
{ return rep[2]; }
const FT & d() const
{ return rep[3]; }
bool undefined() const {
return is_zero(a()) &&
is_zero(b()) &&
is_zero(c()) &&
is_zero(d());
}
bool empty_space() const {
return is_zero(a()) &&
is_zero(b()) &&
is_zero(c()) &&
(!is_zero(d()));
}
};
template < typename FT >
inline
bool
operator == ( const Polynomial_1_3<FT> & p1,
const Polynomial_1_3<FT> & p2 )
{
return( (p1.a() == p2.a()) &&
(p1.b() == p2.b()) &&
(p1.c() == p2.c()) &&
(p1.d() == p2.d()) );
}
template < typename FT >
inline
bool
same_solutions ( const Polynomial_1_3<FT> & p1,
const Polynomial_1_3<FT> & p2 )
{
if(p1.undefined()) return p2.undefined();
if(p1.empty_space()) return p2.empty_space();
if(p2.undefined()) return false;
if(p2.empty_space()) return false;
if(is_zero(p1.a())) {
if(!is_zero(p2.a())) return false;
if(is_zero(p1.b())) {
if(!is_zero(p2.b())) return false;
return p1.c() * p2.d() == p1.d() * p2.c();
}
return (p2.c() * p1.b() == p1.c() * p2.b()) &&
(p2.d() * p1.b() == p1.d() * p2.b());
}
return (p2.b() * p1.a() == p1.b() * p2.a()) &&
(p2.c() * p1.a() == p1.c() * p2.a()) &&
(p2.d() * p1.a() == p1.d() * p2.a());
}
} //namespace CGAL
#endif //CGAL_ALGEBRAIC_KERNEL_POLYNOMIALS_1_3_H
|