This file is indexed.

/usr/include/CGAL/Range_tree_d.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
// Copyright (c) 1997  ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Gabriele Neyer


#ifndef CGAL_RANGE_TREE_D_H
#define CGAL_RANGE_TREE_D_H

#include <algorithm>
#include <iterator>
#include <functional>
#include <CGAL/Tree_base.h>
#include <list>
#include <vector>

// A d-dimensional Range Tree or a multilayer tree consisting of Range 
// and other trees that are derived public 
// Tree_base<C_Data, C_Window, C_Interface>
// can be construced within this class.
// C_Data: container class which contains the d-dimensional data the tree holds.
// C_Window: Query window -- a d-dimensional interval
// C_Interface: Interface for the class with functions that allow to 
// access the data.
// cf. file Tree_interface.h, class point_interface for the requirements.

namespace CGAL {

template <class C_Data, class C_Window, class C_Interface>
class Range_tree_d;

template <class C_Data, class C_Window, class C_Interface>
struct Range_tree_node: public Tree_node_base<Range_tree_node<C_Data, C_Window, C_Interface> >
{
  private:
  typedef  C_Data Data;
  typedef  C_Window Window;
  typedef typename C_Interface::Key Key;
  typedef  C_Interface Interface;
  typedef typename Tree_base< C_Data,  C_Window>::Tree_base_type Tree_base_type;
  //  protected:
  //typedef Range_tree_d< C_Data,  C_Window,  C_Interface> rT_d;
public:
  friend class Range_tree_d< C_Data,  C_Window,  C_Interface>;

  typedef Tree_node_base<Range_tree_node<C_Data, C_Window, C_Interface> >  Base;

  Range_tree_node()
    : sublayer(0)
  {} 

  Range_tree_node( Range_tree_node    * p_left,
		   Range_tree_node    * p_right,
		   const  Data & v_obj,
		   const  Key  & v_key )
    : Base(p_left, p_right), object( v_obj ), key( v_key ), sublayer(0)
  {}
  
  Range_tree_node( Range_tree_node    * p_left,
		   Range_tree_node    * p_right,
		   const  Key  & v_key )
    : Base(p_left, p_right), key( v_key ), sublayer(0)
  {}

  virtual ~Range_tree_node()
  {
    if (sublayer != 0)
      delete sublayer;
  }
  
  Data object;
  Key key;
  Tree_base_type *sublayer;
};


template <class C_Data, class C_Window, class C_Interface>
class Range_tree_d: public Tree_base< C_Data,  C_Window>
{
 private:
  typedef  C_Data Data;
  typedef  C_Window Window;
  typedef typename C_Interface::Key Key;
  typedef  C_Interface Interface;
  typedef Tree_base< C_Data,  C_Window>  tbt;
protected:
  //  typedef Range_tree_d< C_Data,  C_Window,  C_Interface> rT_d;
  Tree_base<C_Data, C_Window> *sublayer_tree;
  C_Interface m_interface;
  int is_built;

 
  // A vertex is of this type:
  //  struct Range_tree_node;

  friend struct Range_tree_node<C_Data,C_Window,C_Interface>;

  typedef Range_tree_node<C_Data,C_Window,C_Interface> Range_tree_node2;
  typedef Range_tree_node<C_Data,C_Window,C_Interface> *link_type;

  static link_type& left(link_type x) { 
    return x->left_link;
  }
  static link_type& right(link_type x) {
    return x->right_link;   
  }

  static link_type& parent(link_type x) {
    return x->parent_link;
  }

  link_type header;
  link_type node;
  link_type rightmost(){return right(header);}
  link_type leftmost(){return left(header);}
  link_type root() const {
    if(header!=0)
      return header->parent_link;
    // return parent(header);
    else 
      return 0;
  }

  bool is_less_equal(const Key&  x, const Key&  y) const
  {
    return (!m_interface.comp(y,x));
  }  
  
  // this tree is not a recursion anchor
  bool is_anchor() const {return false;}

  // returns true, if the object lies inside of win
  bool is_inside( C_Window const &win,  C_Data const& object) const
  {
    if(is_less_equal(m_interface.get_left(win), m_interface.get_key(object)) 
       && m_interface.comp(m_interface.get_key(object),m_interface.get_right(win)))
   //half open
//       && is_less_equal(m_interface.get_key(object),m_interface.get_right(win)))
   //closed interval
    {
      return sublayer_tree->is_inside(win,object);
    }

    return false;
  }


  // merge sort algorithms that takes O(n) time if the sequence to
  // be sorted consists of two sorted subsequences.
  template <class T>
  void dynamic_merge(const T& first, const T& last) // af: was not const
  {
    T prev, current=first;
    T current_first, current_middle, current_last;

    std::list<T> startpoints, tmp_startpoints;
    startpoints.push_back(current);
    prev = current++;

    while(current!=last)
    {
      if (m_interface.comp(m_interface.get_key(*current),m_interface.get_key(*prev)))
	startpoints.push_back(current);
      prev = current++;
    }
    while(startpoints.size()>1)
    {
      while(startpoints.size()>1)
      {
	current_first = startpoints.front();
	startpoints.erase(startpoints.begin());
	current_middle = startpoints.front();
	startpoints.erase(startpoints.begin());
	if(startpoints.size()>0)
	  current_last = startpoints.front();
	else 
	  current_last = last;
	tmp_startpoints.push_back(current_first);
	std::inplace_merge(current_first, current_middle, current_last, 
		      m_interface.key_comp);
      }
      if(startpoints.size()>0)
      {
	tmp_startpoints.push_back(startpoints.front());
	startpoints.erase(startpoints.begin());
      }
      startpoints.swap(tmp_startpoints);
    }
  }


  // recursive function 
  // (current,last) describe an interval of length n of sorted elements,
  // for this interval a tree is build containing these elements.
  // the most left child is returend in prevchild.

  template <class T>
  void build_range_tree(int n, link_type& leftchild, 
			link_type& rightchild,
			link_type& prevchild, 
			link_type& leftmostlink,
			T& current, 
			const T& last,
			T& sublevel_first,
			T& sublevel_last)
  {
    // only two elements ==> two leaves and a parent is constructed
    if (n==2)
    {
      sublevel_first = current;

      link_type  vleft = new Range_tree_node2( 0, 0,
                                  (*current), m_interface.get_key(*current) ); 
      //CGAL_NIL CGAL_NIL first two arguments
      CGAL_Tree_assertion( vleft != 0);

      ++current;
      link_type  vright = new Range_tree_node2( 0,0,
                                  (*current), m_interface.get_key(*current) ); 
      //CGAL_NIL CGAL_NIL first two arguments
      CGAL_Tree_assertion( vright != 0);
      current++;
      sublevel_last = current;

      link_type  vparent = new Range_tree_node2( vleft, vright, vleft->key );
      CGAL_Tree_assertion( vparent != 0);

      vleft->parent_link = vparent;
      vright->parent_link = vparent;
      leftchild = vleft;
      rightchild = vright;
      prevchild = vparent;
      if ( leftmostlink == 0)
	leftmostlink = leftchild;

      Tree_base<C_Data, C_Window> *g = sublayer_tree->clone();
      
      T sub_first = sublevel_first;
      T sub_last = sublevel_last;
   
      g->make_tree(sub_first, sub_last);
      
      vparent->sublayer= g;
    }
    else
      // only one element ==> one leaf is constructed
      if(n==1)
      {
	sublevel_first = current;
	link_type vright = new Range_tree_node2( 0, 0,
	                           (*current), m_interface.get_key(*current) );
	//CGAL_NIL CGAL_NIL first two arguments
        CGAL_Tree_assertion( vright != 0); //CGAL_NIL
	current++;
	sublevel_last = current;
	prevchild = vright;
	rightchild = vright;
      }
      else
      {
	// recursiv call for the construction. the interval is devided.
	T sublevel_left, sublevel_right;
	build_range_tree(n - (int)n/2, leftchild, rightchild, 
			 prevchild, leftmostlink, current, last, 
			 sublevel_first, sublevel_left);
	link_type vparent = new Range_tree_node2( prevchild, 0,
                                        rightchild->key );
	//CGAL_NIL argument
        CGAL_Tree_assertion( vparent != 0);

	prevchild->parent_link = vparent;

	build_range_tree((int)n/2, leftchild, rightchild, 
			 prevchild, leftmostlink, current, 
			 last, sublevel_right, sublevel_last);
	vparent->right_link = prevchild;
	prevchild->parent_link = vparent;
	prevchild = vparent;
	Tree_base<C_Data, C_Window> *g = sublayer_tree->clone();
	T sub_first = sublevel_first;
	T sub_last = sublevel_last;
	g->make_tree(sub_first, sub_last);
	vparent->sublayer = g;
      }
  }



  void delete_tree(link_type v)
  {
    if (v->left_link != 0)
    { 
       delete_tree(left(v));
       delete_tree(right(v));
    }
    delete v;
  }	    
		    
  
  // the vertex from that the way from root to the left interval bound 
  // and the right interval bound splits.
  link_type findSplitNode(Window const &key)
  {
    link_type v = root();

    while(v->left_link!=0)
    {
//      if(m_interface.comp(m_interface.get_right(key), v->key))
      if(is_less_equal(m_interface.get_right(key), v->key))
	v = left(v);
      else 
	if(m_interface.comp(v->key, m_interface.get_left(key)))
	  v = right(v);
	else
	  break;
    }

    return v;
  }

  template <class T>
  void report_subtree(link_type v, 
		      T result)
  {
    if(left(v)!=0)
    {
      report_subtree(left(v), result);
      report_subtree(right(v), result);
    }
    else
      (*result++)=v->object;
  }

  bool is_valid(link_type& v, link_type&  leftmost_child, 
		link_type& rightmost_child) const
  {
    link_type leftmost_child_l, rightmost_child_l,  leftmost_child_r, 
      rightmost_child_r;
    if (v->sublayer != 0)
    {
      Tree_base<C_Data, C_Window> *T= v->sublayer;
      if(! T->is_valid())
	return false;
    }
    if(left(v)!=0)
    {
      if(!is_valid(left(v), leftmost_child_l, rightmost_child_l))
	return false;
      if(!is_valid(right(v), leftmost_child_r, rightmost_child_r))
	return false;
      if(m_interface.comp(v->key, rightmost_child_l->key) || 
	 m_interface.comp(rightmost_child_l->key, v->key))
	return false;
      rightmost_child = rightmost_child_r;
      leftmost_child = leftmost_child_l;
    }
    else
    {
      rightmost_child = v;
      leftmost_child = v;      
    }
    return true;
  }




public:

  // construction of a tree
  Range_tree_d(Range_tree_d const &fact, bool):
    sublayer_tree(fact.sublayer_tree->clone()), is_built(false), header(0)
  {}

  // construction of a tree
  Range_tree_d(Tree_base<C_Data, C_Window> const &fact):
    sublayer_tree(fact.clone()), is_built(false), header(0) 
  {}

  // destruction
  virtual ~Range_tree_d()
  {
    link_type v=root();   

    if (v!=0)
      delete_tree(v);
      if (header!=0)
      	delete header;
      if (sublayer_tree!=0)
      	delete sublayer_tree;
  }


 // a prototype of the tree is returned
  Tree_base<C_Data, C_Window> *clone() const 
  { 
    return new Range_tree_d(*this, true); 
  }
  
  bool make_tree(const typename std::list< C_Data>::iterator& beg, 
		 const typename std::list< C_Data>::iterator& end,
		 typename tbt::lit * =0){ 
    return make_tree_impl(beg,end);
  }

#ifdef stlvector
  bool make_tree(const typename std::vector< C_Data>::iterator& beg, 
		 const typename std::vector< C_Data>::iterator& end,
		 typename tbt::vbit * =0){ 
    return make_tree_impl(beg,end);
  }
#endif
#ifdef carray
  bool make_tree(const C_Data *beg, 
		 const C_Data *end){
    return make_tree_impl(beg,end);
  }
#endif

  // the tree is build according to the input elements in [first,last)
  template<class T>
  inline  
  bool make_tree_impl(T first, 
		      T last) // af: was &   todo: can we turn it in const& ??  
  {
    link_type leftchild, rightchild, prevchild, leftmostlink;

    if(!is_built)
      is_built = true;
    else
      return false;
    
    if(first == last) {
      is_built = false;
      return true;
    }

    int n = static_cast<int>(std::distance(first,last));
    dynamic_merge(first, last);
    
    leftmostlink = 0;
    T sublevel_first, sublevel_last;
    
    build_range_tree(n, leftchild, rightchild, prevchild, 
		     leftmostlink, first, last, 
		     sublevel_first, sublevel_last);
    
    header = new Range_tree_node2();
    header->right_link = rightchild;
    header->parent_link = prevchild;
    header->left_link = leftmostlink;

    return true;
  }


  std::back_insert_iterator< std::list< C_Data> > window_query
          ( C_Window const &win, 
	    std::back_insert_iterator< std::list< C_Data> > out,
	    typename tbt::lbit * =0){
    return window_query_impl(win,out);
  }


  std::back_insert_iterator< std::vector< C_Data> > window_query
          ( C_Window const &win, 
	    std::back_insert_iterator< std::vector< C_Data> > out,
	    typename tbt::vbit * =0){
    return window_query_impl(win,out);
  }


#ifdef carray
  C_Data *window_query( C_Window const &win, C_Data *out){
    return window_query_impl(win,out);
  }
#endif

#ifdef ostreamiterator
  std::ostream_iterator< C_Data>  window_query( C_Window const &win, 
		     std::ostream_iterator< C_Data> out,
		     typename tbt::oit *dummy=0){
    return window_query_impl(win,out);
  }
#endif

  // all elements that ly in win are inserted in result
  template <class X>
  inline  
  X window_query_impl( C_Window const &win, X result)
  {
    if(is_less_equal(m_interface.get_right(win), m_interface.get_left(win)))
       return result;
    if(root()==0)
      return result;
    link_type split_node = findSplitNode(win);
    if(left(split_node)==0)
    {
      if(is_inside(win,split_node->object))
	(*result++)=split_node->object;
    }	  
    else
    {
      link_type v = (link_type) split_node->left_link;

      while(left(v)!=0)
      {
	if(is_less_equal(m_interface.get_left(win),v->key))
	{
	  link_type w = right(v);
	  if(left(w)!=0)
	  {
	    Tree_base<C_Data, C_Window> *T= (w)->sublayer;
	    if(T->is_anchor())
	      report_subtree(w,result);
	    else
	      T->window_query(win, result);
	  }
	  else
	    if(is_inside(win,w->object))
	      (*result++)=(w)->object;
	  v = left(v);
	}
	else
	  v = right(v);
      }                 // end while
      if(is_inside(win,v->object))
	(*result++)=v->object;
      v = right(split_node);
      while(right(v)!=0)
      {
//	if(is_less_equal(v->key, m_interface.get_right(win))) closed interval
	if(m_interface.comp(v->key, m_interface.get_right(win))) 
	  //half open interval
	{
	  if(left(left(v))!=0)
	  {
	    Tree_base<C_Data, C_Window> *T= (left(v))->sublayer;
	    if(T->is_anchor())
	      report_subtree(left(v),result);
	    else
	      T->window_query(win, result);
	  }
	  else
	  {
	    if(is_inside(win,left(v)->object))
	      (*result++)=left(v)->object; 
	  }
	  v = right(v);
	}
	else
	  v = left(v);
      }//end while
      if(is_inside(win,v->object))
      {
	(*result++)=v->object; 
      }
    }
    return result;
  }

  std::back_insert_iterator< std::list< C_Data> > enclosing_query( C_Window const &win, 
			     std::back_insert_iterator< std::list< C_Data> > out,
			     typename tbt::lbit * =0){
    return enclosing_query_impl(win,out);
  }

  std::back_insert_iterator< std::vector< C_Data> > enclosing_query( C_Window const &win, 
			     std::back_insert_iterator< std::vector< C_Data> > out,
			     typename tbt::vbit * =0){
    return enclosing_query_impl(win,out);
  }


#ifdef carray
  C_Data *enclosing_query( C_Window const &win, C_Data *out){
    return enclosing_query_impl(win,out);
  }
#endif

#ifdef ostreamiterator
  std::ostream_iterator< C_Data>  enclosing_query( C_Window const &win, 
			     std::ostream_iterator< C_Data> out,
			     typename tbt::oit *dummy=0){
    return enclosing_query_impl(win,out);
  }
#endif

  // a window query is performed 
  template <class T>
  inline
  T enclosing_query_impl(C_Window const &win, T result)
  {
    return window_query_impl(win, result);
  }

  bool is_valid() const
  {
    link_type u,v,w;
    u=v=w=root();
    if(v!=0)
      return is_valid(u, v, w);
    return true;
  }
};

} //namespace CGAL
#endif // CGAL_RANGE_TREE_D_H