This file is indexed.

/usr/include/CGAL/Reconstruction_triangulation_3.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
// Copyright (c) 2007  INRIA (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Laurent Saboret, Pierre Alliez


#ifndef CGAL_IMPLICIT_FCT_DELAUNAY_TRIANGULATION_H
#define CGAL_IMPLICIT_FCT_DELAUNAY_TRIANGULATION_H

#include <CGAL/Point_with_normal_3.h>
#include <CGAL/Lightweight_vector_3.h>
#include <CGAL/property_map.h>
#include <CGAL/surface_reconstruction_points_assertions.h>

#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_cell_base_with_info_3.h>
#include <CGAL/Min_sphere_of_spheres_d.h>
#include <CGAL/Min_sphere_of_points_d_traits_3.h>
#include <CGAL/centroid.h>

#include <boost/random/random_number_generator.hpp>
#include <boost/random/linear_congruential.hpp>

#include <vector>

namespace CGAL {

/// \internal
/// The Reconstruction_vertex_base_3 class is the default
/// vertex class of the Reconstruction_triangulation_3 class.
///
/// It provides the interface requested by the Poisson_reconstruction_function class:
/// - Each vertex stores a normal vector.
/// - A vertex is either an input point or a Steiner point added by Delaunay refinement.
/// - In order to solve a linear system over the triangulation, a vertex may be constrained
///   or not (i.e. may contribute to the right or left member of the linear system),
///   and has a unique index.
///
/// @param Gt   Geometric traits class / Point_3 is a typedef to Point_with_normal_3.
/// @param Cb   Vertex base class, model of TriangulationVertexBase_3.

template < typename Gt,
           typename Vb = Triangulation_vertex_base_3<Gt> >
class Reconstruction_vertex_base_3 : public Vb
{
// Public types
public:

  /// Geometric traits class / Point_3 is a typedef to Point_with_normal_3.
  typedef Gt Geom_traits;

  // Repeat Triangulation_vertex_base_3 public types
  /// \cond SKIP_IN_MANUAL
  typedef typename Vb::Cell_handle Cell_handle;
  template < typename TDS2 >
  struct Rebind_TDS {
    typedef typename Vb::template Rebind_TDS<TDS2>::Other                       Vb2;
    typedef Reconstruction_vertex_base_3<Geom_traits, Vb2> Other;
  };
  /// \endcond

  // Geometric types
  typedef typename Geom_traits::FT FT;
  typedef typename Geom_traits::Vector_3 Vector;           ///< typedef to Vector_3
  typedef typename Geom_traits::Point_3 Point;             ///< typedef to Point_with_normal_3
  typedef typename Geom_traits::Point_3 Point_with_normal; ///< typedef to Point_with_normal_3

// data members
private:

  // TODO: reduce memory footprint
  FT m_f; // value of the implicit function // float precise enough?
  bool m_constrained; // is vertex constrained? // combine constrained and type
  unsigned char m_type; // INPUT or STEINER
  unsigned int m_index; // index in matrix (to be stored outside)

// Public methods
public:

  Reconstruction_vertex_base_3()
    : Vb(), m_f(FT(0.0)), m_type(0), m_index(0)
  {}

  Reconstruction_vertex_base_3(const Point_with_normal& p)
    : Vb(p), m_f(FT(0.0)), m_type(0), m_index(0)
  {}

  Reconstruction_vertex_base_3(const Point_with_normal& p, Cell_handle c)
    : Vb(p,c), m_f(FT(0.0)), m_type(0), m_index(0)
  {}

  Reconstruction_vertex_base_3(Cell_handle c)
    : Vb(c), m_f(FT(0.0)), m_type(0), m_index(0)
  {}


  /// Gets/sets the value of the implicit function.
  /// Default value is 0.0.
  FT  f() const { return m_f; }
  FT& f()       { return m_f; }

  /// Gets/sets the type = INPUT or STEINER.
  unsigned char  type() const { return m_type; }
  unsigned char& type()       { return m_type; }

  /// Gets/sets the index in matrix.
  unsigned int  index() const { return m_index; }
  unsigned int& index()       { return m_index; }

  /// Gets/sets normal vector.
  /// Default value is null vector.
  const Vector& normal() const { return this->point().normal(); }
  Vector&       normal()       { return this->point().normal(); }

// Private methods
private:

    /// Copy constructor and operator =() are not implemented.
    Reconstruction_vertex_base_3(const Reconstruction_vertex_base_3& toCopy);
    Reconstruction_vertex_base_3& operator =(const Reconstruction_vertex_base_3& toCopy);

}; // end of Reconstruction_vertex_base_3


/// \internal
/// Helper class:
/// Reconstruction_triangulation_default_geom_traits_3
/// changes in a geometric traits class the Point_3 type to
/// Point_with_normal_3<BaseGt>.
///
/// @param BaseGt   Geometric traits class.
template <class BaseGt>
struct Reconstruction_triangulation_default_geom_traits_3 : public BaseGt
{
  typedef Point_with_normal_3<BaseGt> Point_3;
};


/// \internal
/// The Reconstruction_triangulation_3 class
/// provides the interface requested by the Poisson_reconstruction_function class:
/// - Each vertex stores a normal vector.
/// - A vertex is either an input point or a Steiner point added by Delaunay refinement.
/// - In order to solve a linear system over the triangulation, a vertex may be constrained
///   or not (i.e. may contribute to the right or left member of the linear system),
///   and has a unique index.
/// The vertex class must derive from Reconstruction_vertex_base_3.
///
/// @param BaseGt   Geometric traits class.
/// @param Gt       Geometric traits class / Point_3 is a typedef to Point_with_normal_3<BaseGt>.
/// @param Tds      Model of TriangulationDataStructure_3. The vertex class
///                 must derive from Reconstruction_vertex_base_3.

template <class BaseGt,
          class Gt = Reconstruction_triangulation_default_geom_traits_3<BaseGt>,
          class Tds_ = Triangulation_data_structure_3<Reconstruction_vertex_base_3<Gt>, Triangulation_cell_base_with_info_3<int,Gt> > >
class Reconstruction_triangulation_3 : public Delaunay_triangulation_3<Gt,Tds_>
{
// Private types
private:

  // Base class
  typedef Delaunay_triangulation_3<Gt,Tds_>  Base;

  // Auxiliary class to build an iterator over input points.
  class Is_steiner_point
  {
  public:
      typedef typename Base::Finite_vertices_iterator Finite_vertices_iterator;

      bool operator()(const Finite_vertices_iterator& v) const
      {
        return (v->type() == Reconstruction_triangulation_3::STEINER);
      }
  };

// Public types
public:

  /// Geometric traits class / Point_3 is a typedef to Point_with_normal_3<BaseGt>.
  typedef Gt  Geom_traits;

  // Repeat base class' types
  /// \cond SKIP_IN_MANUAL
  typedef Tds_ Triangulation_data_structure;
  typedef typename Base::Segment      Segment;
  typedef typename Base::Triangle     Triangle;
  typedef typename Base::Tetrahedron  Tetrahedron;
  typedef typename Base::Line         Line;
  typedef typename Base::Ray          Ray;
  typedef typename Base::Object       Object;
  typedef typename Base::Cell_handle   Cell_handle;
  typedef typename Base::Vertex_handle Vertex_handle;
  typedef typename Base::Cell   Cell;
  typedef typename Base::Vertex Vertex;
  typedef typename Base::Facet  Facet;
  typedef typename Base::Edge   Edge;
  typedef typename Base::Cell_circulator  Cell_circulator;
  typedef typename Base::Facet_circulator Facet_circulator;
  typedef typename Base::Cell_iterator    Cell_iterator;
  typedef typename Base::Facet_iterator   Facet_iterator;
  typedef typename Base::Edge_iterator    Edge_iterator;
  typedef typename Base::Vertex_iterator  Vertex_iterator;
  typedef typename Base::Point_iterator Point_iterator;
  typedef typename Base::Finite_vertices_iterator Finite_vertices_iterator;
  typedef typename Base::Finite_cells_iterator    Finite_cells_iterator;
  typedef typename Base::Finite_facets_iterator   Finite_facets_iterator;
  typedef typename Base::Finite_edges_iterator    Finite_edges_iterator;
  typedef typename Base::All_cells_iterator       All_cells_iterator;
  typedef typename Base::All_vertices_iterator       All_vertices_iterator;
  typedef typename Base::Locate_type Locate_type;
  /// \endcond

  // Geometric types
  typedef typename Geom_traits::FT FT;
  typedef typename Geom_traits::Vector_3 Vector; ///< typedef to Vector_3<BaseGt>
  typedef typename Geom_traits::Point_3 Point;  ///< typedef to Point_with_normal_3<BaseGt>
  typedef typename Geom_traits::Point_3 Point_with_normal; ///< Point_with_normal_3<BaseGt>
  typedef typename Geom_traits::Sphere_3 Sphere;

  /// Point type
  enum Point_type {
    INPUT=0,    ///< Input point.
    STEINER=1   ///< Steiner point created by Delaunay refinement.
  };

  /// Iterator over input vertices.
  typedef Filter_iterator<Finite_vertices_iterator, Is_steiner_point>
                                                    Input_vertices_iterator;

  /// Iterator over input points.
  typedef Iterator_project<Input_vertices_iterator,
                           Project_point<Vertex> >  Input_point_iterator;

  mutable Sphere sphere;
  std::vector<Point_with_normal> points;
  std::size_t fraction;
  std::list<double> fractions;
  Vertex_handle constrained_vertex;


public:

  /// Default constructor.
  Reconstruction_triangulation_3()
  {}

  ~Reconstruction_triangulation_3()
  {}

  // Default copy constructor and operator =() are fine.

  // Repeat base class' public methods used below
  /// \cond SKIP_IN_MANUAL
  using Base::points_begin;
  using Base::points_end;
  using Base::number_of_vertices;
  using Base::finite_vertices_begin;
  using Base::finite_vertices_end;
  using Base::all_vertices_begin;
  using Base::all_vertices_end;

  using Base::geom_traits;
  /// \endcond

  /// Gets first iterator over input vertices.
  Input_vertices_iterator input_vertices_begin() const
  {
      return Input_vertices_iterator(finite_vertices_end(), Is_steiner_point(),
                                     finite_vertices_begin());
  }
  /// Gets past-the-end iterator over input vertices.
  Input_vertices_iterator input_vertices_end() const
  {
      return Input_vertices_iterator(finite_vertices_end(), Is_steiner_point());
  }

  /// Gets iterator over the first input point.
  Input_point_iterator input_points_begin() const
  {
      return Input_point_iterator(input_vertices_begin());
  }
  /// Gets past-the-end iterator over the input points.
  Input_point_iterator input_points_end() const
  {
      return Input_point_iterator(input_vertices_end());
  }

  /// Gets the bounding sphere of input points.


  Sphere bounding_sphere() const
  {
    return sphere;
  }

  void initialize_bounding_sphere() const
  {
    typedef Min_sphere_of_points_d_traits_3<Gt,FT> Traits;
    typedef Min_sphere_of_spheres_d<Traits> Min_sphere;
   
    // Computes min sphere
    Min_sphere ms(points.begin(),points.end());

    typename Min_sphere::Cartesian_const_iterator coord = ms.center_cartesian_begin();
    FT cx = *coord++;
    FT cy = *coord++;
    FT cz = *coord;

    sphere = Sphere(Point(cx,cy,cz), ms.radius()*ms.radius());
  }

  /// Insert point in the triangulation.
  /// Default type is INPUT.
  template <typename Visitor>
  Vertex_handle insert(const Point_with_normal& p,
                       Point_type type,// = INPUT,
                       Cell_handle start,// = Cell_handle(),
                       Visitor visitor)
  {

    if(type == INPUT){
      visitor.before_insertion();
    }
    if(this->dimension() < 3){
      Vertex_handle v = Base::insert(p, start);
      v->type() = type;
      return v;
    }
    typename Base::Locate_type lt;
    int li, lj;
    Cell_handle ch = Base::locate(p, lt, li, lj, start);

    Vertex_handle v = Base::insert(p, lt, ch, li, lj);
    v->type() = type;
    return v;
    
  }

  /// Insert the [first, beyond) range of points in the triangulation using a spatial sort.
  /// Default type is INPUT.
  ///
  /// @commentheading Template Parameters:
  /// @param InputIterator iterator over input points.
  /// @param PointPMap is a model of `ReadablePropertyMap` with a value_type = Point_3.
  ///        It can be omitted if InputIterator value_type is convertible to Point_3.
  /// @param NormalPMap is a model of `ReadablePropertyMap` with a value_type = Vector_3.
  ///
  /// @return the number of inserted points.

  // This variant requires all parameters.
  template <typename InputIterator,
            typename PointPMap,
            typename NormalPMap,
            typename Visitor
  >
  int insert(
    InputIterator first,  ///< iterator over the first input point.
    InputIterator beyond, ///< past-the-end iterator over the input points.
    PointPMap point_pmap, ///< property map to access the position of an input point.
    NormalPMap normal_pmap, ///< property map to access the *oriented* normal of an input point.
    Visitor visitor)
  {
    if(! points.empty()){
      std::cerr << "WARNING: not all points inserted yet" << std::endl;
    }
    // Convert input points to Point_with_normal_3
    //std::vector<Point_with_normal> points;
    for (InputIterator it = first; it != beyond; ++it)
    {
        Point_with_normal pwn(get(point_pmap,it), get(normal_pmap,it));
        points.push_back(pwn);
    }
    std::size_t n = points.size();

    initialize_bounding_sphere();

    boost::rand48 random;
    boost::random_number_generator<boost::rand48> rng(random);
    std::random_shuffle (points.begin(), points.end(), rng);
    fraction = 0;

    fractions.clear();
    fractions.push_back(1.0);
    
    double m = static_cast<double>(n);
    
    while(m > 500){
      m /= 2;
      fractions.push_front(m/n);
    }
    
    insert_fraction(visitor);
    return 0;
  }

  template <typename Visitor>
  bool insert_fraction(Visitor visitor)
  {
    if(fractions.empty()){
      points.clear();
      return false;
    }
    double frac = fractions.front();
    fractions.pop_front();
    std::size_t more = (std::size_t)(points.size() * frac) - fraction;
    if((fraction+more) > points.size()){
      more = points.size() - fraction;
    }
    Cell_handle hint;
    spatial_sort (points.begin()+fraction, points.begin()+fraction+more, geom_traits());
    for (typename std::vector<Point_with_normal>::const_iterator p = points.begin()+fraction;
         p != points.begin()+fraction+more; ++p)
    {
      Vertex_handle v = insert(*p, INPUT, hint, visitor);
      hint = v->cell();
    }
    fraction += more;
    return true;
  }

  /// \cond SKIP_IN_MANUAL
  // This variant creates a default point property map = Dereference_property_map.
  template <typename InputIterator,
            typename NormalPMap,
            typename Visitor
  >
  int insert(
    InputIterator first,  ///< iterator over the first input point.
    InputIterator beyond, ///< past-the-end iterator over the input points.
    NormalPMap normal_pmap, ///< property map to access the *oriented* normal of an input point.
    Visitor visitor)
  {
    return insert(
      first,beyond,
      make_dereference_property_map(first),
      normal_pmap,
      visitor);
  }
  /// \endcond

  /// Delaunay refinement callback:
  /// insert STEINER point in the triangulation.
  template <class CellIt>
  Vertex_handle
  insert_in_hole(const Point_with_normal& p, CellIt cell_begin, CellIt cell_end,
	         Cell_handle begin, int i,
                 Point_type type = STEINER)
  {
      Vertex_handle v = Base::insert_in_hole(p, cell_begin, cell_end, begin, i);
      v->type() = type;
      return v;
  }

  /// Index unconstrained vertices following the order of Finite_vertices_iterator.
  /// @return the number of unconstrained vertices.
  unsigned int index_unconstrained_vertices()
  {
    unsigned int index = 0;
    for (Finite_vertices_iterator v = finite_vertices_begin(),
         e = finite_vertices_end();
         v!= e;
         ++v)
    {
      if(! is_constrained(v))
        v->index() = index++;
    }
    return index;
  }

  /// Is vertex constrained, i.e.
  /// does it contribute to the right or left member of the linear system?

  bool is_constrained(Vertex_handle v) const
  {
    return v == constrained_vertex;
  }

  void constrain(Vertex_handle v)
  {
    constrained_vertex = v;
  }
  

}; // end of Reconstruction_triangulation_3

} //namespace CGAL

#endif // CGAL_IMPLICIT_FCT_DELAUNAY_TRIANGULATION_H