/usr/include/CGAL/Reconstruction_triangulation_3.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 | // Copyright (c) 2007 INRIA (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Laurent Saboret, Pierre Alliez
#ifndef CGAL_IMPLICIT_FCT_DELAUNAY_TRIANGULATION_H
#define CGAL_IMPLICIT_FCT_DELAUNAY_TRIANGULATION_H
#include <CGAL/Point_with_normal_3.h>
#include <CGAL/Lightweight_vector_3.h>
#include <CGAL/property_map.h>
#include <CGAL/surface_reconstruction_points_assertions.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Triangulation_cell_base_with_info_3.h>
#include <CGAL/Min_sphere_of_spheres_d.h>
#include <CGAL/Min_sphere_of_points_d_traits_3.h>
#include <CGAL/centroid.h>
#include <boost/random/random_number_generator.hpp>
#include <boost/random/linear_congruential.hpp>
#include <vector>
namespace CGAL {
/// \internal
/// The Reconstruction_vertex_base_3 class is the default
/// vertex class of the Reconstruction_triangulation_3 class.
///
/// It provides the interface requested by the Poisson_reconstruction_function class:
/// - Each vertex stores a normal vector.
/// - A vertex is either an input point or a Steiner point added by Delaunay refinement.
/// - In order to solve a linear system over the triangulation, a vertex may be constrained
/// or not (i.e. may contribute to the right or left member of the linear system),
/// and has a unique index.
///
/// @param Gt Geometric traits class / Point_3 is a typedef to Point_with_normal_3.
/// @param Cb Vertex base class, model of TriangulationVertexBase_3.
template < typename Gt,
typename Vb = Triangulation_vertex_base_3<Gt> >
class Reconstruction_vertex_base_3 : public Vb
{
// Public types
public:
/// Geometric traits class / Point_3 is a typedef to Point_with_normal_3.
typedef Gt Geom_traits;
// Repeat Triangulation_vertex_base_3 public types
/// \cond SKIP_IN_MANUAL
typedef typename Vb::Cell_handle Cell_handle;
template < typename TDS2 >
struct Rebind_TDS {
typedef typename Vb::template Rebind_TDS<TDS2>::Other Vb2;
typedef Reconstruction_vertex_base_3<Geom_traits, Vb2> Other;
};
/// \endcond
// Geometric types
typedef typename Geom_traits::FT FT;
typedef typename Geom_traits::Vector_3 Vector; ///< typedef to Vector_3
typedef typename Geom_traits::Point_3 Point; ///< typedef to Point_with_normal_3
typedef typename Geom_traits::Point_3 Point_with_normal; ///< typedef to Point_with_normal_3
// data members
private:
// TODO: reduce memory footprint
FT m_f; // value of the implicit function // float precise enough?
bool m_constrained; // is vertex constrained? // combine constrained and type
unsigned char m_type; // INPUT or STEINER
unsigned int m_index; // index in matrix (to be stored outside)
// Public methods
public:
Reconstruction_vertex_base_3()
: Vb(), m_f(FT(0.0)), m_type(0), m_index(0)
{}
Reconstruction_vertex_base_3(const Point_with_normal& p)
: Vb(p), m_f(FT(0.0)), m_type(0), m_index(0)
{}
Reconstruction_vertex_base_3(const Point_with_normal& p, Cell_handle c)
: Vb(p,c), m_f(FT(0.0)), m_type(0), m_index(0)
{}
Reconstruction_vertex_base_3(Cell_handle c)
: Vb(c), m_f(FT(0.0)), m_type(0), m_index(0)
{}
/// Gets/sets the value of the implicit function.
/// Default value is 0.0.
FT f() const { return m_f; }
FT& f() { return m_f; }
/// Gets/sets the type = INPUT or STEINER.
unsigned char type() const { return m_type; }
unsigned char& type() { return m_type; }
/// Gets/sets the index in matrix.
unsigned int index() const { return m_index; }
unsigned int& index() { return m_index; }
/// Gets/sets normal vector.
/// Default value is null vector.
const Vector& normal() const { return this->point().normal(); }
Vector& normal() { return this->point().normal(); }
// Private methods
private:
/// Copy constructor and operator =() are not implemented.
Reconstruction_vertex_base_3(const Reconstruction_vertex_base_3& toCopy);
Reconstruction_vertex_base_3& operator =(const Reconstruction_vertex_base_3& toCopy);
}; // end of Reconstruction_vertex_base_3
/// \internal
/// Helper class:
/// Reconstruction_triangulation_default_geom_traits_3
/// changes in a geometric traits class the Point_3 type to
/// Point_with_normal_3<BaseGt>.
///
/// @param BaseGt Geometric traits class.
template <class BaseGt>
struct Reconstruction_triangulation_default_geom_traits_3 : public BaseGt
{
typedef Point_with_normal_3<BaseGt> Point_3;
};
/// \internal
/// The Reconstruction_triangulation_3 class
/// provides the interface requested by the Poisson_reconstruction_function class:
/// - Each vertex stores a normal vector.
/// - A vertex is either an input point or a Steiner point added by Delaunay refinement.
/// - In order to solve a linear system over the triangulation, a vertex may be constrained
/// or not (i.e. may contribute to the right or left member of the linear system),
/// and has a unique index.
/// The vertex class must derive from Reconstruction_vertex_base_3.
///
/// @param BaseGt Geometric traits class.
/// @param Gt Geometric traits class / Point_3 is a typedef to Point_with_normal_3<BaseGt>.
/// @param Tds Model of TriangulationDataStructure_3. The vertex class
/// must derive from Reconstruction_vertex_base_3.
template <class BaseGt,
class Gt = Reconstruction_triangulation_default_geom_traits_3<BaseGt>,
class Tds_ = Triangulation_data_structure_3<Reconstruction_vertex_base_3<Gt>, Triangulation_cell_base_with_info_3<int,Gt> > >
class Reconstruction_triangulation_3 : public Delaunay_triangulation_3<Gt,Tds_>
{
// Private types
private:
// Base class
typedef Delaunay_triangulation_3<Gt,Tds_> Base;
// Auxiliary class to build an iterator over input points.
class Is_steiner_point
{
public:
typedef typename Base::Finite_vertices_iterator Finite_vertices_iterator;
bool operator()(const Finite_vertices_iterator& v) const
{
return (v->type() == Reconstruction_triangulation_3::STEINER);
}
};
// Public types
public:
/// Geometric traits class / Point_3 is a typedef to Point_with_normal_3<BaseGt>.
typedef Gt Geom_traits;
// Repeat base class' types
/// \cond SKIP_IN_MANUAL
typedef Tds_ Triangulation_data_structure;
typedef typename Base::Segment Segment;
typedef typename Base::Triangle Triangle;
typedef typename Base::Tetrahedron Tetrahedron;
typedef typename Base::Line Line;
typedef typename Base::Ray Ray;
typedef typename Base::Object Object;
typedef typename Base::Cell_handle Cell_handle;
typedef typename Base::Vertex_handle Vertex_handle;
typedef typename Base::Cell Cell;
typedef typename Base::Vertex Vertex;
typedef typename Base::Facet Facet;
typedef typename Base::Edge Edge;
typedef typename Base::Cell_circulator Cell_circulator;
typedef typename Base::Facet_circulator Facet_circulator;
typedef typename Base::Cell_iterator Cell_iterator;
typedef typename Base::Facet_iterator Facet_iterator;
typedef typename Base::Edge_iterator Edge_iterator;
typedef typename Base::Vertex_iterator Vertex_iterator;
typedef typename Base::Point_iterator Point_iterator;
typedef typename Base::Finite_vertices_iterator Finite_vertices_iterator;
typedef typename Base::Finite_cells_iterator Finite_cells_iterator;
typedef typename Base::Finite_facets_iterator Finite_facets_iterator;
typedef typename Base::Finite_edges_iterator Finite_edges_iterator;
typedef typename Base::All_cells_iterator All_cells_iterator;
typedef typename Base::All_vertices_iterator All_vertices_iterator;
typedef typename Base::Locate_type Locate_type;
/// \endcond
// Geometric types
typedef typename Geom_traits::FT FT;
typedef typename Geom_traits::Vector_3 Vector; ///< typedef to Vector_3<BaseGt>
typedef typename Geom_traits::Point_3 Point; ///< typedef to Point_with_normal_3<BaseGt>
typedef typename Geom_traits::Point_3 Point_with_normal; ///< Point_with_normal_3<BaseGt>
typedef typename Geom_traits::Sphere_3 Sphere;
/// Point type
enum Point_type {
INPUT=0, ///< Input point.
STEINER=1 ///< Steiner point created by Delaunay refinement.
};
/// Iterator over input vertices.
typedef Filter_iterator<Finite_vertices_iterator, Is_steiner_point>
Input_vertices_iterator;
/// Iterator over input points.
typedef Iterator_project<Input_vertices_iterator,
Project_point<Vertex> > Input_point_iterator;
mutable Sphere sphere;
std::vector<Point_with_normal> points;
std::size_t fraction;
std::list<double> fractions;
Vertex_handle constrained_vertex;
public:
/// Default constructor.
Reconstruction_triangulation_3()
{}
~Reconstruction_triangulation_3()
{}
// Default copy constructor and operator =() are fine.
// Repeat base class' public methods used below
/// \cond SKIP_IN_MANUAL
using Base::points_begin;
using Base::points_end;
using Base::number_of_vertices;
using Base::finite_vertices_begin;
using Base::finite_vertices_end;
using Base::all_vertices_begin;
using Base::all_vertices_end;
using Base::geom_traits;
/// \endcond
/// Gets first iterator over input vertices.
Input_vertices_iterator input_vertices_begin() const
{
return Input_vertices_iterator(finite_vertices_end(), Is_steiner_point(),
finite_vertices_begin());
}
/// Gets past-the-end iterator over input vertices.
Input_vertices_iterator input_vertices_end() const
{
return Input_vertices_iterator(finite_vertices_end(), Is_steiner_point());
}
/// Gets iterator over the first input point.
Input_point_iterator input_points_begin() const
{
return Input_point_iterator(input_vertices_begin());
}
/// Gets past-the-end iterator over the input points.
Input_point_iterator input_points_end() const
{
return Input_point_iterator(input_vertices_end());
}
/// Gets the bounding sphere of input points.
Sphere bounding_sphere() const
{
return sphere;
}
void initialize_bounding_sphere() const
{
typedef Min_sphere_of_points_d_traits_3<Gt,FT> Traits;
typedef Min_sphere_of_spheres_d<Traits> Min_sphere;
// Computes min sphere
Min_sphere ms(points.begin(),points.end());
typename Min_sphere::Cartesian_const_iterator coord = ms.center_cartesian_begin();
FT cx = *coord++;
FT cy = *coord++;
FT cz = *coord;
sphere = Sphere(Point(cx,cy,cz), ms.radius()*ms.radius());
}
/// Insert point in the triangulation.
/// Default type is INPUT.
template <typename Visitor>
Vertex_handle insert(const Point_with_normal& p,
Point_type type,// = INPUT,
Cell_handle start,// = Cell_handle(),
Visitor visitor)
{
if(type == INPUT){
visitor.before_insertion();
}
if(this->dimension() < 3){
Vertex_handle v = Base::insert(p, start);
v->type() = type;
return v;
}
typename Base::Locate_type lt;
int li, lj;
Cell_handle ch = Base::locate(p, lt, li, lj, start);
Vertex_handle v = Base::insert(p, lt, ch, li, lj);
v->type() = type;
return v;
}
/// Insert the [first, beyond) range of points in the triangulation using a spatial sort.
/// Default type is INPUT.
///
/// @commentheading Template Parameters:
/// @param InputIterator iterator over input points.
/// @param PointPMap is a model of `ReadablePropertyMap` with a value_type = Point_3.
/// It can be omitted if InputIterator value_type is convertible to Point_3.
/// @param NormalPMap is a model of `ReadablePropertyMap` with a value_type = Vector_3.
///
/// @return the number of inserted points.
// This variant requires all parameters.
template <typename InputIterator,
typename PointPMap,
typename NormalPMap,
typename Visitor
>
int insert(
InputIterator first, ///< iterator over the first input point.
InputIterator beyond, ///< past-the-end iterator over the input points.
PointPMap point_pmap, ///< property map to access the position of an input point.
NormalPMap normal_pmap, ///< property map to access the *oriented* normal of an input point.
Visitor visitor)
{
if(! points.empty()){
std::cerr << "WARNING: not all points inserted yet" << std::endl;
}
// Convert input points to Point_with_normal_3
//std::vector<Point_with_normal> points;
for (InputIterator it = first; it != beyond; ++it)
{
Point_with_normal pwn(get(point_pmap,it), get(normal_pmap,it));
points.push_back(pwn);
}
std::size_t n = points.size();
initialize_bounding_sphere();
boost::rand48 random;
boost::random_number_generator<boost::rand48> rng(random);
std::random_shuffle (points.begin(), points.end(), rng);
fraction = 0;
fractions.clear();
fractions.push_back(1.0);
double m = static_cast<double>(n);
while(m > 500){
m /= 2;
fractions.push_front(m/n);
}
insert_fraction(visitor);
return 0;
}
template <typename Visitor>
bool insert_fraction(Visitor visitor)
{
if(fractions.empty()){
points.clear();
return false;
}
double frac = fractions.front();
fractions.pop_front();
std::size_t more = (std::size_t)(points.size() * frac) - fraction;
if((fraction+more) > points.size()){
more = points.size() - fraction;
}
Cell_handle hint;
spatial_sort (points.begin()+fraction, points.begin()+fraction+more, geom_traits());
for (typename std::vector<Point_with_normal>::const_iterator p = points.begin()+fraction;
p != points.begin()+fraction+more; ++p)
{
Vertex_handle v = insert(*p, INPUT, hint, visitor);
hint = v->cell();
}
fraction += more;
return true;
}
/// \cond SKIP_IN_MANUAL
// This variant creates a default point property map = Dereference_property_map.
template <typename InputIterator,
typename NormalPMap,
typename Visitor
>
int insert(
InputIterator first, ///< iterator over the first input point.
InputIterator beyond, ///< past-the-end iterator over the input points.
NormalPMap normal_pmap, ///< property map to access the *oriented* normal of an input point.
Visitor visitor)
{
return insert(
first,beyond,
make_dereference_property_map(first),
normal_pmap,
visitor);
}
/// \endcond
/// Delaunay refinement callback:
/// insert STEINER point in the triangulation.
template <class CellIt>
Vertex_handle
insert_in_hole(const Point_with_normal& p, CellIt cell_begin, CellIt cell_end,
Cell_handle begin, int i,
Point_type type = STEINER)
{
Vertex_handle v = Base::insert_in_hole(p, cell_begin, cell_end, begin, i);
v->type() = type;
return v;
}
/// Index unconstrained vertices following the order of Finite_vertices_iterator.
/// @return the number of unconstrained vertices.
unsigned int index_unconstrained_vertices()
{
unsigned int index = 0;
for (Finite_vertices_iterator v = finite_vertices_begin(),
e = finite_vertices_end();
v!= e;
++v)
{
if(! is_constrained(v))
v->index() = index++;
}
return index;
}
/// Is vertex constrained, i.e.
/// does it contribute to the right or left member of the linear system?
bool is_constrained(Vertex_handle v) const
{
return v == constrained_vertex;
}
void constrain(Vertex_handle v)
{
constrained_vertex = v;
}
}; // end of Reconstruction_triangulation_3
} //namespace CGAL
#endif // CGAL_IMPLICIT_FCT_DELAUNAY_TRIANGULATION_H
|