This file is indexed.

/usr/include/CGAL/Regular_grid_2.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
// Copyright (c) 2005  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// 
//
// Author(s)     : Abdelkrim Mebarki <Abdelkrim.Mebarki@sophia.inria.fr>

#ifndef CGAL_REGULAR_GRID_2_H_ 
#define CGAL_REGULAR_GRID_2_H_

#include <CGAL/basic.h>
#include <CGAL/streamlines_assertions.h>

namespace CGAL {

// The class  Regular_grid_2 provides a rectangular visualization
// domain, with a vector field defined on a regular grid, and also a
// bilinear interpolation to extract the vector field values

template <class StreamLinesTraits_2>
class Regular_grid_2
{
public:
  typedef Regular_grid_2<StreamLinesTraits_2> Vector_field_2;
  typedef StreamLinesTraits_2 Geom_traits;
  typedef typename StreamLinesTraits_2::FT FT;
  typedef typename StreamLinesTraits_2::Point_2 Point_2;
  typedef typename StreamLinesTraits_2::Vector_2 Vector_2;
protected:
  FT *vector_field;
  inline int get_index(int i,int j) const;
  int number_of_samples_x;
  int number_of_samples_y;
  FT domain_size_x;
  FT domain_size_y;
  Vector_2 get_vector_field(const Point_2 & p) const;
  FT get_density_field(const Point_2 & p) const;
  bool is_in_samples(int i,int j) const;
public:
  Regular_grid_2(int m, int n,const FT & x, const FT & y);
  //   Regular_grid_2();
  ~Regular_grid_2()
    {
      delete [] vector_field;
    }

  inline typename Geom_traits::Iso_rectangle_2 bbox() const;

  std::pair<Vector_2,FT> 
  get_field(const Point_2 & p) const
    {
      CGAL_streamlines_precondition(is_in_domain(p));
      Vector_2 v = get_vector_field(p);
      FT density = get_density_field(p);
      return std::pair<Vector_2, FT>(v,density);
    }

  inline bool is_in_domain(const Point_2 & p) const;
  inline FT get_integration_step(const Point_2 &) const;
  inline FT get_integration_step() const;
  inline void set_field(int i, int j, const Vector_2 & v);
  inline Vector_2 get_field(int i, int j) const;

  inline std::pair<int, int> get_dimension()
    {
      return std::pair<int, int>(number_of_samples_x, number_of_samples_y);
    }
  inline std::pair<FT, FT> get_size()
    {
      return std::pair<FT,
	FT>(domain_size_x,
	    domain_size_y);
    }
    
  inline FT container_value(int i) const
    {
      if (i < 2*number_of_samples_x*number_of_samples_y)
        return vector_field[i];
      else
        return 0.0;
    }
};

template <class StreamLinesTraits_2>
inline
typename Regular_grid_2<StreamLinesTraits_2>::Geom_traits::Iso_rectangle_2
Regular_grid_2<StreamLinesTraits_2>::bbox() const
{
  return typename Geom_traits::Iso_rectangle_2(0.0, 0.0,
					       domain_size_x,
					       domain_size_y);
}

template <class StreamLinesTraits_2>
inline int 
Regular_grid_2<StreamLinesTraits_2>::get_index(int i, int j) const
{
  return 2*(number_of_samples_x*j + i);
}

template <class StreamLinesTraits_2>
Regular_grid_2<StreamLinesTraits_2>::Regular_grid_2(int m,
						    int
						    n,const FT & x,
						    const FT & y)
{
  number_of_samples_x = m;
  number_of_samples_y = n;
  domain_size_x = x;
  domain_size_y = y;
  vector_field = new FT[number_of_samples_x*number_of_samples_y* 2];
}


template <class StreamLinesTraits_2>
inline typename Regular_grid_2<StreamLinesTraits_2>::Vector_2
Regular_grid_2<StreamLinesTraits_2>::get_field(int i, int j) const
{
  CGAL_streamlines_precondition(is_in_samples(i,j));
  int index = get_index(i,j);
  return Vector_2(vector_field[index], vector_field[index+1]);
}

template <class StreamLinesTraits_2>
inline void
Regular_grid_2<StreamLinesTraits_2>::set_field(int i, 
					       int j, const Vector_2
					       & v)
{
  CGAL_streamlines_precondition(is_in_samples(i,j));
  int index = get_index(i,j);
  vector_field[index++] = v.x();
  vector_field[index] = v.y();
}

template <class StreamLinesTraits_2>
inline bool
Regular_grid_2<StreamLinesTraits_2>::is_in_domain(const Point_2 & p)
  const
{
  return ((p.x()>=0.0) && (p.x()<=domain_size_x) && (p.y()>=0.0) &&
	  (p.y()<=domain_size_y));
}

template <class StreamLinesTraits_2>
bool 
Regular_grid_2<StreamLinesTraits_2>::is_in_samples(int i,
						   int j)
  const
{
  return ((i>=0) && (i<=number_of_samples_x-1) && (j>=0) &&
	  (j<=number_of_samples_y-1));
}

template <class StreamLinesTraits_2>
typename Regular_grid_2<StreamLinesTraits_2>::Vector_2 
Regular_grid_2<StreamLinesTraits_2>::get_vector_field(const Point_2 &
						      p) const
{
  FT fXv,fYv;
  FT x = (p.x() / domain_size_x) *  (number_of_samples_x-1);
  FT y = (p.y() / domain_size_y) *  (number_of_samples_y-1);
  int i = (int) x;
  int j = (int) y;
  FT xfract = x - (FT)  i;
  FT yfract = y - (FT)  j;
  int iIndex_1 = get_index(i,j);
  int iIndex_2 = get_index(i+1,j);
  int iIndex_3 = get_index(i,j+1);
  int iIndex_4 = get_index(i+1,j+1);
  FT x00 = container_value(iIndex_1);
  FT x01 = container_value(iIndex_2);
  FT x10 = container_value(iIndex_3);
  FT x11 = container_value(iIndex_4);
  FT x0 = x00 + xfract * (x01 - x00);
  FT x1 = x10 + xfract * (x11 - x10);
  fXv = x0 + yfract * (x1 - x0);
  iIndex_1++;
  iIndex_2++;
  iIndex_3++;
  iIndex_4++;
  FT y00 = container_value(iIndex_1);
  FT y01 = container_value(iIndex_2);
  FT y10 = container_value(iIndex_3);
  FT y11 = container_value(iIndex_4);
  FT y0 = y00 + xfract * (y01 - y00);
  FT y1 = y10 + xfract * (y11 - y10);
  fYv = y0 + yfract * (y1 - y0);
  // normalization step
  FT normal = sqrt((fXv)*(fXv) + (fYv)*(fYv));
  fXv = fXv / normal;
  fYv = fYv / normal;
  Vector_2  v = Vector_2(fXv, fYv);
  return v;
}

template <class StreamLinesTraits_2>
typename Regular_grid_2<StreamLinesTraits_2>::FT
Regular_grid_2<StreamLinesTraits_2>::get_density_field(const Point_2 & ) const
						       
{
  return 1.0;
}

template<class StreamLinesTraits_2>
inline
typename Regular_grid_2<StreamLinesTraits_2>::FT
Regular_grid_2<StreamLinesTraits_2>::get_integration_step(const Point_2 &)
  const
{
  return 1.0;
}

template<class StreamLinesTraits_2>
inline
typename Regular_grid_2<StreamLinesTraits_2>::FT
Regular_grid_2<StreamLinesTraits_2>::get_integration_step() const
{
  return 1.0;
}

} //namespace CGAL

#endif