/usr/include/CGAL/Regular_triangulation_2.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 | // Copyright (c) 1997 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Frederic Fichel, Mariette Yvinec, Julia Floetotto
#ifndef CGAL_REGULAR_TRIANGULATION_2_H
#define CGAL_REGULAR_TRIANGULATION_2_H
#include <CGAL/Triangulation_2.h>
#include <CGAL/Regular_triangulation_face_base_2.h>
#include <CGAL/Regular_triangulation_vertex_base_2.h>
#include <CGAL/utility.h>
#include <boost/bind.hpp>
#ifndef CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
#include <CGAL/Spatial_sort_traits_adapter_2.h>
#include <CGAL/internal/info_check.h>
#include <boost/iterator/zip_iterator.hpp>
#include <boost/mpl/and.hpp>
#endif //CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
namespace CGAL {
template < typename K_ >
struct Weighted_point_mapper_2
: public K_
{
typedef typename K_::Weighted_point_2 Point_2;
Weighted_point_mapper_2() {}
Weighted_point_mapper_2(const K_& k) : K_(k) {}
};
template < class Gt,
class Tds = Triangulation_data_structure_2 <
Regular_triangulation_vertex_base_2<Gt>,
Regular_triangulation_face_base_2<Gt> > >
class Regular_triangulation_2
: public Triangulation_2<Weighted_point_mapper_2<Gt>,Tds>
{
typedef Regular_triangulation_2<Gt, Tds> Self;
typedef Triangulation_2<Weighted_point_mapper_2<Gt>,Tds> Base;
public:
typedef Tds Triangulation_data_structure;
typedef Gt Geom_traits;
typedef typename Gt::Point_2 Bare_point;
typedef typename Gt::Weighted_point_2 Weighted_point;
typedef typename Gt::Weight Weight;
typedef typename Base::size_type size_type;
typedef typename Base::Face_handle Face_handle;
typedef typename Base::Vertex_handle Vertex_handle;
typedef typename Base::Vertex Vertex;
typedef typename Base::Edge Edge;
typedef typename Base::Locate_type Locate_type;
typedef typename Base::Face_circulator Face_circulator;
typedef typename Base::Edge_circulator Edge_circulator;
typedef typename Base::Vertex_circulator Vertex_circulator;
typedef typename Base::Finite_edges_iterator Finite_edges_iterator;
typedef typename Base::All_edges_iterator All_edges_iterator;
typedef typename Base::Finite_faces_iterator Finite_faces_iterator;
typedef typename Base::All_faces_iterator All_faces_iterator;
typedef typename Base::Face::Vertex_list Vertex_list;
typedef typename Vertex_list::iterator Vertex_list_iterator;
#ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2
using Base::cw;
using Base::ccw;
using Base::dimension;
using Base::geom_traits;
using Base::infinite_vertex;
using Base::create_face;
using Base::number_of_faces;
using Base::all_faces_begin;
using Base::all_faces_end;
using Base::all_edges_begin;
using Base::all_edges_end;
using Base::finite_faces_begin;
using Base::finite_faces_end;
using Base::finite_edges_begin;
using Base::finite_edges_end;
using Base::OUTSIDE_AFFINE_HULL;
using Base::VERTEX;
using Base::FACE;
using Base::EDGE;
using Base::OUTSIDE_CONVEX_HULL;
using Base::orientation;
using Base::locate;
using Base::incident_faces;
using Base::is_infinite;
using Base::degree;
using Base::delete_vertex;
using Base::incident_vertices;
using Base::make_hole;
using Base::mirror_index;
using Base::show_vertex;
using Base::test_dim_down;
#endif
private:
typedef std::list<Face_handle> Faces_around_stack;
class Hidden_tester {
public:
bool operator()(const typename Base::All_vertices_iterator& it){
return it->is_hidden();
}
bool operator()(const typename Base::Finite_vertices_iterator& it){
return it->is_hidden();
}
};
class Unhidden_tester {
public:
bool operator()(const typename Base::Finite_vertices_iterator& it){
return ! it->is_hidden();
}
};
typedef typename Base::All_vertices_iterator All_vib;
typedef typename Base::Finite_vertices_iterator Finite_vib;
public:
// We derive in order to add a conversion to handle.
class All_vertices_iterator :
public Filter_iterator<All_vib, Hidden_tester> {
typedef Filter_iterator<All_vib, Hidden_tester> Base;
typedef All_vertices_iterator Self;
public:
All_vertices_iterator() : Base() {}
All_vertices_iterator(const Base &b) : Base(b) {}
Self & operator++() { Base::operator++(); return *this; }
Self & operator--() { Base::operator--(); return *this; }
Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
operator Vertex_handle() const { return Base::base(); }
};
class Finite_vertices_iterator :
public Filter_iterator<Finite_vib, Hidden_tester> {
typedef Filter_iterator<Finite_vib, Hidden_tester> Base;
typedef Finite_vertices_iterator Self;
public:
Finite_vertices_iterator() : Base() {}
Finite_vertices_iterator(const Base &b) : Base(b) {}
Self & operator++() { Base::operator++(); return *this; }
Self & operator--() { Base::operator--(); return *this; }
Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
operator Vertex_handle() const { return Base::base(); }
};
class Hidden_vertices_iterator :
public Filter_iterator<Finite_vib, Unhidden_tester> {
typedef Filter_iterator<Finite_vib, Unhidden_tester> Base;
typedef Hidden_vertices_iterator Self;
public:
Hidden_vertices_iterator() : Base() {}
Hidden_vertices_iterator(const Base &b) : Base(b) {}
Self & operator++() { Base::operator++(); return *this; }
Self & operator--() { Base::operator--(); return *this; }
Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
operator Vertex_handle() const { return Base::base(); }
};
//for backward compatibility
typedef Finite_faces_iterator Face_iterator;
typedef Finite_edges_iterator Edge_iterator;
typedef Finite_vertices_iterator Vertex_iterator;
//Tag to distinguish Delaunay from Regular triangulations
typedef Tag_true Weighted_tag;
private:
size_type _hidden_vertices;
public:
Regular_triangulation_2(const Gt& gt=Gt())
: Base(Weighted_point_mapper_2<Gt>(gt)), _hidden_vertices(0) {}
Regular_triangulation_2(const Regular_triangulation_2 &rt);
template < class InputIterator >
Regular_triangulation_2(InputIterator first, InputIterator last,
const Gt& gt=Gt())
: Base(Weighted_point_mapper_2<Gt>(gt)), _hidden_vertices(0)
{
insert(first, last);
}
Regular_triangulation_2 & operator=(const Regular_triangulation_2 &tr);
size_type number_of_vertices() const {
return Base::number_of_vertices() - _hidden_vertices;
}
size_type number_of_hidden_vertices() const {
return _hidden_vertices;
}
// CHECK - QUERY
Oriented_side power_test(const Weighted_point &p,
const Weighted_point &q,
const Weighted_point &r,
const Weighted_point &s, bool perturb) const;
Oriented_side power_test(const Weighted_point &p,
const Weighted_point &q,
const Weighted_point &r) const;
Oriented_side power_test(const Weighted_point &p,
const Weighted_point &r) const;
Oriented_side power_test(const Face_handle &f,
const Weighted_point &p, bool perturb=false) const;
Oriented_side power_test(const Face_handle& f, int i,
const Weighted_point &p) const;
bool is_valid(bool verbose = false, int level = 0) const;
bool test_conflict(const Weighted_point &p, Face_handle fh) const;
void show_face(Face_handle fh) const;
void show_all() const;
// //template member functions, declared and defined at the end
// template <class OutputItFaces, class OutputItBoundaryEdges,
// class OutputItHiddenVertices>
// Triple<OutputItFaces,OutputItBoundaryEdges, OutputItHiddenVertices>
// get_conflicts_and_boundary_and_hidden_vertices (const
// Weighted_point &p,
// OutputItFaces fit,
// OutputItBoundaryEdges eit,
// OutputItHiddenVertices vit,
// Face_handle start =
// Face_handle()) const;
// template <class OutputItFaces, class OutputItBoundaryEdges>
// std::pair<OutputItFaces,OutputItBoundaryEdges>
// get_conflicts_and_boundary(const Weighted_point &p,
// OutputItFaces fit,
// OutputItBoundaryEdges eit,
// Face_handle start) const;
// template <class OutputItFaces>
// OutputItFaces
// get_conflicts (const Weighted_point &p,
// OutputItFaces fit,
// Face_handle start ) const;
// template <class OutputItBoundaryEdges>
// OutputItBoundaryEdges
// get_boundary_of_conflicts(const Weighted_point &p,
// OutputItBoundaryEdges eit,
// Face_handle start ) const;
// template <class OutputItBoundaryEdges, class OutputItHiddenVertices>
// std::pair<OutputItBoundaryEdges, OutputItHiddenVertices>
// get_boundary_of_conflicts_and_hidden_vertices(const Weighted_point &p,
// OutputItBoundaryEdges eit,
// OutputItHiddenVertices vit,
// Face_handle start=
// Face_handle()) const;
// template <class OutputItHiddenVertices>
// OutputItHiddenVertices
// get_hidden_vertices(const Weighted_point &p,
// OutputItHiddenVertices vit,
// Face_handle start=
// Face_handle()) const;
// DUAL
Bare_point dual (Face_handle f) const;
Object dual(const Edge &e) const ;
Object dual(const Edge_circulator& ec) const;
Object dual(const Finite_edges_iterator& ei) const;
Bare_point weighted_circumcenter(Face_handle f) const;
Bare_point weighted_circumcenter(const Weighted_point& p0,
const Weighted_point& p1,
const Weighted_point& p2) const;
// Insertion, Deletion and Flip
Vertex_handle push_back(const Weighted_point &p);
Vertex_handle insert(const Weighted_point &p,
Face_handle f = Face_handle() );
Vertex_handle insert(const Weighted_point &p,
Locate_type lt,
Face_handle loc, int li );
Vertex_handle insert_in_face(const Weighted_point &p, Face_handle f);
Vertex_handle insert_in_edge(const Weighted_point &p, Face_handle f, int i);
void flip(Face_handle f, int i);
void remove_degree_3(Vertex_handle v,
Face_handle f = Face_handle());
void remove(Vertex_handle v);
All_vertices_iterator all_vertices_begin () const;
All_vertices_iterator all_vertices_end () const;
Finite_vertices_iterator finite_vertices_begin () const;
Finite_vertices_iterator finite_vertices_end () const;
Vertex_handle finite_vertex() const;
Hidden_vertices_iterator hidden_vertices_begin () const;
Hidden_vertices_iterator hidden_vertices_end () const;
// Vertex_handle file_input(std::istream& is);
// void file_output(std::ostream& os) const;
public:
void clear();
void copy_triangulation(const Self& tr);
private:
void copy_triangulation_();
Vertex_handle reinsert(Vertex_handle v, Face_handle start);
void regularize(Vertex_handle v);
void remove_hidden(Vertex_handle v);
void remove_2D(Vertex_handle v);
void fill_hole_regular(std::list<Edge> & hole);
void set_face(Vertex_list& vl, const Face_handle& fh);
void update_hidden_points_3_1(const Face_handle& f1, const Face_handle& f2,
const Face_handle& f3);
void update_hidden_points_2_2(const Face_handle& f1, const Face_handle& f2);
void update_hidden_points_1_3(const Face_handle& f1, const Face_handle& f2,
const Face_handle& f3);
Vertex_handle hide_new_vertex(Face_handle f, const Weighted_point& p);
void hide_remove_degree_3(Face_handle fh, Vertex_handle vh);
void hide_vertex(Face_handle f, Vertex_handle v);
void exchange_incidences(Vertex_handle va, Vertex_handle vb);
void exchange_hidden(Vertex_handle va, Vertex_handle vb);
void stack_flip(Vertex_handle v, Faces_around_stack &faces_around);
void stack_flip_4_2(Face_handle f, int i, int j,
Faces_around_stack &faces_around);
void stack_flip_3_1(Face_handle f, int i, int j,
Faces_around_stack &faces_around);
void stack_flip_2_2(Face_handle f, int i,
Faces_around_stack &faces_around);
void stack_flip_dim1(Face_handle f, int i,
Faces_around_stack &faces_around);
bool is_valid_face(Face_handle fh) const;
bool is_valid_vertex(Vertex_handle fh) const;
public:
#ifndef CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
template < class InputIterator >
std::ptrdiff_t
insert( InputIterator first, InputIterator last,
typename boost::enable_if<
boost::is_convertible<
typename std::iterator_traits<InputIterator>::value_type,
Weighted_point
>
>::type* = NULL
)
#else
template < class InputIterator >
std::ptrdiff_t
insert(InputIterator first, InputIterator last)
#endif //CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
{
size_type n = number_of_vertices();
std::vector<Weighted_point> points (first, last);
spatial_sort (points.begin(), points.end(), geom_traits());
Face_handle hint;
for (typename std::vector<Weighted_point>::const_iterator p = points.begin(),
end = points.end();
p != end; ++p)
hint = insert (*p, hint)->face();
return number_of_vertices() - n;
}
#ifndef CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
private:
//top stands for tuple-or-pair
template <class Info>
const Weighted_point& top_get_first(const std::pair<Weighted_point,Info>& pair) const { return pair.first; }
template <class Info>
const Info& top_get_second(const std::pair<Weighted_point,Info>& pair) const { return pair.second; }
template <class Info>
const Weighted_point& top_get_first(const boost::tuple<Weighted_point,Info>& tuple) const { return boost::get<0>(tuple); }
template <class Info>
const Info& top_get_second(const boost::tuple<Weighted_point,Info>& tuple) const { return boost::get<1>(tuple); }
template <class Tuple_or_pair,class InputIterator>
std::ptrdiff_t insert_with_info(InputIterator first,InputIterator last)
{
size_type n = number_of_vertices();
std::vector<std::ptrdiff_t> indices;
std::vector<Weighted_point> points;
std::vector<typename Triangulation_data_structure::Vertex::Info> infos;
std::ptrdiff_t index=0;
for (InputIterator it=first;it!=last;++it){
Tuple_or_pair pair = *it;
points.push_back( top_get_first(pair) );
infos.push_back ( top_get_second(pair) );
indices.push_back(index++);
}
typedef Spatial_sort_traits_adapter_2<Geom_traits,Weighted_point*> Search_traits;
spatial_sort(indices.begin(),indices.end(),Search_traits(&(points[0]),geom_traits()));
Face_handle hint;
Vertex_handle v_hint;
for (typename std::vector<std::ptrdiff_t>::const_iterator
it = indices.begin(), end = indices.end();
it != end; ++it)
{
v_hint = insert (points[*it], hint);
if (v_hint!=Vertex_handle()){
v_hint->info()=infos[*it];
hint=v_hint->face();
}
}
return number_of_vertices() - n;
}
public:
template < class InputIterator >
std::ptrdiff_t
insert( InputIterator first,
InputIterator last,
typename boost::enable_if<
boost::is_convertible<
typename std::iterator_traits<InputIterator>::value_type,
std::pair<Weighted_point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type>
>
>::type* = NULL
)
{return insert_with_info< std::pair<Weighted_point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type> >(first,last);}
template <class InputIterator_1,class InputIterator_2>
std::ptrdiff_t
insert( boost::zip_iterator< boost::tuple<InputIterator_1,InputIterator_2> > first,
boost::zip_iterator< boost::tuple<InputIterator_1,InputIterator_2> > last,
typename boost::enable_if<
boost::mpl::and_<
typename boost::is_convertible< typename std::iterator_traits<InputIterator_1>::value_type, Weighted_point >,
typename boost::is_convertible< typename std::iterator_traits<InputIterator_2>::value_type, typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type >
>
>::type* =NULL
)
{return insert_with_info< boost::tuple<Weighted_point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type> >(first,last);}
#endif //CGAL_TRIANGULATION_2_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
template < class Stream>
Stream& draw_dual(Stream & ps) const
{
Finite_edges_iterator eit = finite_edges_begin();
for (; eit != finite_edges_end(); ++eit) {
Object o = dual(eit);
typename Geom_traits::Line_2 l;
typename Geom_traits::Ray_2 r;
typename Geom_traits::Segment_2 s;
if (CGAL::assign(s,o)) ps << s;
if (CGAL::assign(r,o)) ps << r;
if (CGAL::assign(l,o)) ps << l;
}
return ps;
}
template <class OutputItFaces, class OutputItBoundaryEdges,
class OutputItHiddenVertices>
Triple<OutputItFaces,OutputItBoundaryEdges, OutputItHiddenVertices>
get_conflicts_and_boundary_and_hidden_vertices(const Weighted_point &p,
OutputItFaces fit,
OutputItBoundaryEdges eit,
OutputItHiddenVertices vit,
Face_handle start =
Face_handle()) const
{
CGAL_triangulation_precondition( dimension() == 2);
int li;
Locate_type lt;
Face_handle fh = locate(p,lt,li, start);
switch(lt) {
case OUTSIDE_AFFINE_HULL:
return make_triple(fit, eit, vit);
case VERTEX:
case FACE:
case EDGE:
case OUTSIDE_CONVEX_HULL:
//test whether p is not in conflict
// with the first face:
// this includes the cases that p is located
// on a vertex and either equal or no conflict
if (!test_conflict(p,fh))
return make_triple(fit, eit, vit);
// region includes all faces in conflict so far detected
// stack includes the faces in the region whose neighbors
// have not yet been looked at
std::set<Face_handle> region;
std::stack<Edge> st;
//collection of all boundary_vertices:
std::set< Vertex_handle> boundary_vertices;
//collection of potential_intern_vertices = vertices incident
// to an edge incident to two faces in conflict and met
// twice during the "walk":
std::set< Vertex_handle> potential_intern_vertices;
*fit++ = fh; //put fh in OutputItFaces
region.insert(fh);
st.push(Edge(fh,2));
st.push(Edge(fh,1));
st.push(Edge(fh,0));
while (! st.empty()){
Edge e = st.top();
st.pop();
Face_handle fh = e.first;
Face_handle fn = fh->neighbor(e.second);
int i = fn->index(fh);
if( region.find(fn) == region.end() ){
if (test_conflict(p,fn))
{
region.insert(fn);
st.push(Edge(fn, cw(i)));
st.push(Edge(fn,ccw(i)));
*fit++ = fn;
}
else{
e = Edge(fn,i);
*eit++ = e;
if(!is_infinite(fn->vertex(cw(i))))
boundary_vertices.insert(fn->vertex(cw(i)));
if(!is_infinite(fn->vertex(ccw(i))))
boundary_vertices.insert(fn->vertex(ccw(i)));
}
}
else {
//insert the vertices of the last edge into the set of
// potential intern vertices:
potential_intern_vertices.insert(fn->vertex(ccw(i)));
potential_intern_vertices.insert(fn->vertex(cw(i)));
}
}
if(!potential_intern_vertices.empty()){
//determine the hidden vertices:
std::set_difference (potential_intern_vertices.begin(),
potential_intern_vertices.end(),
boundary_vertices.begin(),
boundary_vertices.end(),
vit);
}
return make_triple(fit, eit, vit);
}
CGAL_triangulation_assertion(false);
return make_triple(fit, eit, vit);
}
template <class OutputItFaces, class OutputItBoundaryEdges>
std::pair<OutputItFaces,OutputItBoundaryEdges>
get_conflicts_and_boundary (const Weighted_point &p,
OutputItFaces fit,
OutputItBoundaryEdges eit,
Face_handle start = Face_handle()) const
{
Triple<OutputItFaces,OutputItBoundaryEdges,Emptyset_iterator>
pp =
get_conflicts_and_boundary_and_hidden_vertices(p, fit, eit,
Emptyset_iterator(),
start);
return std::make_pair(pp.first, pp.second);
}
template <class OutputItFaces, class OutputItHiddenVertices>
std::pair<OutputItFaces, OutputItHiddenVertices>
get_conflicts_and_hidden_vertices(const Weighted_point &p,
OutputItFaces fit,
OutputItHiddenVertices vit,
Face_handle start =
Face_handle()) const
{
Triple<OutputItFaces, Emptyset_iterator,OutputItHiddenVertices>
pp =
get_conflicts_and_boundary_and_hidden_vertices(p,fit,
Emptyset_iterator(),
vit,
start);
return std::make_pair(pp.first,pp.third);
}
template <class OutputItBoundaryEdges, class OutputItHiddenVertices>
std::pair<OutputItBoundaryEdges, OutputItHiddenVertices>
get_boundary_of_conflicts_and_hidden_vertices(const Weighted_point &p,
OutputItBoundaryEdges eit,
OutputItHiddenVertices vit,
Face_handle start =
Face_handle()) const
{
Triple<Emptyset_iterator,OutputItBoundaryEdges,
OutputItHiddenVertices>
pp =
get_conflicts_and_boundary_and_hidden_vertices(p,
Emptyset_iterator(),
eit,vit,
start);
return std::make_pair(pp.second,pp.third);
}
template <class OutputItFaces>
OutputItFaces
get_conflicts (const Weighted_point &p,
OutputItFaces fit,
Face_handle start= Face_handle()) const
{
Triple<OutputItFaces,Emptyset_iterator,Emptyset_iterator>
pp =
get_conflicts_and_boundary_and_hidden_vertices(p, fit,
Emptyset_iterator(),
Emptyset_iterator(),
start);
return pp.first;
}
template <class OutputItBoundaryEdges>
OutputItBoundaryEdges
get_boundary_of_conflicts(const Weighted_point &p,
OutputItBoundaryEdges eit,
Face_handle start= Face_handle()) const
{
Triple<Emptyset_iterator, OutputItBoundaryEdges,Emptyset_iterator>
pp =
get_conflicts_and_boundary_and_hidden_vertices(p,
Emptyset_iterator(),
eit,
Emptyset_iterator(),
start);
return pp.second;
}
template <class OutputItHiddenVertices>
OutputItHiddenVertices
get_hidden_vertices(const Weighted_point &p, OutputItHiddenVertices vit,
Face_handle start= Face_handle()) const
{
Triple<Emptyset_iterator,Emptyset_iterator,
OutputItHiddenVertices>
pp =
get_conflicts_and_boundary_and_hidden_vertices(p,Emptyset_iterator(),
Emptyset_iterator(),vit,
start);
return pp.third;
}
// nearest power vertex query
Vertex_handle nearest_power_vertex(const Bare_point& p) const;
};
template < class Gt, class Tds >
inline bool
Regular_triangulation_2<Gt,Tds>::
test_conflict(const Weighted_point &p, Face_handle fh) const
{
return(power_test(fh,p) == ON_POSITIVE_SIDE);
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
clear()
{
Base::clear();
_hidden_vertices = 0;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
copy_triangulation_()
{
// the list of vertices have been copied member for member and are
// not good
// clear them and next
// scan the hidden vertices to retablish the list in faces
typename Tds::Face_iterator
baseit= this->_tds.face_iterator_base_begin();
for( ; baseit != this->_tds.face_iterator_base_end(); baseit++){
baseit->vertex_list().clear();
}
Hidden_vertices_iterator hvit = hidden_vertices_begin();
for( ; hvit != hidden_vertices_end() ; ++hvit){
hvit->face()->vertex_list().push_back(hvit);
}
CGAL_triangulation_postcondition(is_valid());
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
copy_triangulation(const Self &tr )
{
Base::copy_triangulation(tr);
_hidden_vertices = tr._hidden_vertices;
copy_triangulation_();
}
template < class Gt, class Tds >
Regular_triangulation_2<Gt,Tds>::
Regular_triangulation_2(const Self &tr)
: Base(tr), _hidden_vertices(tr._hidden_vertices)
{
copy_triangulation_();
}
template <class Gt, class Tds >
Regular_triangulation_2<Gt,Tds> &
Regular_triangulation_2<Gt, Tds>::
operator=(const Self &tr)
{
copy_triangulation(tr);
return *this;
}
template < class Gt, class Tds >
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Face_handle &f, const Weighted_point &p, bool perturb) const
{
// p is supposed to be a finite point
// if f is a finite face,
// return ON_NEGATIVE_SIDE if p is above f
// (p has to be hidden)
if (dimension() == 1) return power_test(f->vertex(0)->point(),
f->vertex(1)->point(),p);
int i;
if ( ! f->has_vertex(infinite_vertex(), i) )
return power_test(f->vertex(0)->point(),
f->vertex(1)->point(),
f->vertex(2)->point(),p, perturb);
Orientation o = orientation(f->vertex(ccw(i))->point(),
f->vertex( cw(i))->point(),
p);
if (o==COLLINEAR)
return power_test(f->vertex(ccw(i))->point(),
f->vertex( cw(i))->point(),p);
return o;
}
template < class Gt, class Tds >
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Face_handle& f, int i,
const Weighted_point &p) const
{
// f,i is supposed to be a finite edge
// p is supposed to be on edge (f,i)
// return ON_NEGATIVE_SIDE if p is above (f,i)
// (p has to be hidden)
CGAL_triangulation_precondition (!is_infinite(f,i) &&
orientation(f->vertex(ccw(i))->point(),
f->vertex( cw(i))->point(),
p) == COLLINEAR);
return power_test(f->vertex(ccw(i))->point(),
f->vertex( cw(i))->point(),
p);
}
template < class Gt, class Tds >
inline
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Weighted_point &p0,
const Weighted_point &p1,
const Weighted_point &p2,
const Weighted_point &p,
bool perturb) const
{
CGAL_triangulation_precondition( orientation(p0, p1, p2) == POSITIVE );
using namespace boost;
Oriented_side os = geom_traits().power_test_2_object()(p0, p1, p2, p);
if ( (os != ON_ORIENTED_BOUNDARY) || (! perturb))
return os;
// We are now in a degenerate case => we do a symbolic perturbation.
// We sort the points lexicographically.
const Weighted_point * points[4] = {&p0, &p1, &p2, &p};
std::sort(points, points + 4,
boost::bind(&Self::compare_xy, this,
boost::bind(Dereference<Weighted_point>(), _1),
boost::bind(Dereference<Weighted_point>(), _2)) == SMALLER);
// We successively look whether the leading monomial, then 2nd monomial
// of the determinant has non null coefficient.
// 2 iterations are enough (cf paper)
for (int i=3; i>1; --i) {
if (points[i] == &p)
return ON_NEGATIVE_SIDE; // since p0 p1 p2 are non collinear
// and positively oriented
Orientation o;
if (points[i] == &p2 && (o = orientation(p0,p1,p)) != COLLINEAR )
return o;
if (points[i] == &p1 && (o = orientation(p0,p,p2)) != COLLINEAR )
return o;
if (points[i] == &p0 && (o = orientation(p,p1,p2)) != COLLINEAR )
return o;
}
CGAL_triangulation_assertion(false);
return ON_NEGATIVE_SIDE;
}
template < class Gt, class Tds >
inline
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Weighted_point &p,
const Weighted_point &q,
const Weighted_point &r) const
{
return geom_traits().power_test_2_object()(p,q,r);
}
template < class Gt, class Tds >
inline
Oriented_side
Regular_triangulation_2<Gt,Tds>::
power_test(const Weighted_point &p,
const Weighted_point &r) const
{
return geom_traits().power_test_2_object()(p,r);
}
template < class Gt, class Tds >
bool
Regular_triangulation_2<Gt,Tds>::
is_valid_face(Face_handle fh) const
{
bool result = true;
if(is_infinite(fh)) result = result && fh->vertex_list().empty();
if (!result) { show_face(fh);}
CGAL_triangulation_assertion(result);
typename Vertex_list::iterator vlit = fh->vertex_list().begin(),
vldone = fh->vertex_list().end();
for (; vlit != vldone; vlit++) {
result = result && power_test(fh, (*vlit)->point()) == ON_NEGATIVE_SIDE;
result = result && ((*vlit)->face() == fh);
if (!result) show_face(fh);
CGAL_triangulation_assertion(result);
}
return result;
}
template < class Gt, class Tds >
bool
Regular_triangulation_2<Gt,Tds>::
is_valid_vertex(Vertex_handle vh) const
{
bool result = true;
if (vh->is_hidden()) {
Locate_type lt;
int li;
Face_handle loc = locate(vh->point(), lt, li, vh->face());
if (dimension() == 0) {
result = result && lt == Base::VERTEX;
result = result && power_test (vh->face()->vertex(0)->point(), vh->point()) <= 0;
} else {
result = result && (!is_infinite(vh->face()));
result = result && (loc == vh->face() ||
(lt == Base::VERTEX &&
vh->face()->has_vertex(loc->vertex(li))) ||
(lt == Base::EDGE && vh->face() ==
loc->neighbor(li)) );
result = result &&
power_test(vh->face(),vh->point()) == ON_NEGATIVE_SIDE;
// if ( !result) {
// std::cerr << " from is_valid_vertex " << std::endl;
// std::cerr << "sommet cache " << &*(vh)
// << "vh_point " <<vh->point() << " " << std::endl;
// std::cerr << "vh_>face " << &*(vh->face()) << " " << std::endl;
// std::cerr << "loc " << &*(loc )
// << " lt " << lt << " li " << li << std::endl;
// show_face(vh->face());
// show_face(loc);
// }
}
}
else { // normal vertex
result = result && vh->face()->has_vertex(vh);
// if ( !result) {
// std::cerr << " from is_valid_vertex " << std::endl;
// std::cerr << "normal vertex " << &(*vh) << std::endl;
// std::cerr << vh->point() << " " << std::endl;
// std::cerr << "vh_>face " << &*(vh->face()) << " " << std::endl;
// show_face(vh->face());
// }
}
CGAL_triangulation_assertion(result);
return result;
}
template < class Gt, class Tds >
bool
Regular_triangulation_2<Gt,Tds>::
is_valid(bool verbose, int /* level */) const
{
// cannot call for is_valid() of Base Triangulation class
// because 1) number of vertices of base class does not match
// tds.is_valid calls is_valid for each vertex
// and the test is not fullfilled by hidden vertices ...
// result = result && Triangulation_2<Gt,Tds>::is_valid(verbose, level);
bool result = true;
for(All_faces_iterator fit = all_faces_begin();
fit != all_faces_end(); ++fit) {
result = result && is_valid_face(fit);
}
for(All_vertices_iterator vit = all_vertices_begin();
vit != all_vertices_end(); ++vit) {
result = result && is_valid_vertex(vit);
}
for(Hidden_vertices_iterator hvit = hidden_vertices_begin();
hvit != hidden_vertices_end(); ++hvit) {
result = result && is_valid_vertex(hvit);
}
switch(dimension()) {
case 0 :
break;
case 1:
if (number_of_vertices() > 2 ) {
Finite_vertices_iterator it1 = finite_vertices_begin(),
it2(it1), it3(it1);
++it2;
++it3; ++it3;
while( it3 != finite_vertices_end()) {
Orientation s = orientation(it1->point(),
it2->point(),
it3->point());
result = result && s == COLLINEAR ;
CGAL_triangulation_assertion(result);
++it1 ; ++it2; ++it3;
}
}
break;
case 2 :
for(Finite_faces_iterator it=finite_faces_begin();
it!=finite_faces_end(); it++) {
CGAL_triangulation_assertion( ! is_infinite(it));
Orientation s = orientation(it->vertex(0)->point(),
it->vertex(1)->point(),
it->vertex(2)->point());
CGAL_triangulation_assertion( s == LEFT_TURN );
result = result && ( s == LEFT_TURN );
for (int i = 0 ; i < 3 ; i++) {
if (!is_infinite(it->vertex(i)))
result = result && ON_POSITIVE_SIDE !=
power_test(it->neighbor(i), it->vertex(i)->point());
CGAL_triangulation_assertion(result);
}
}
Vertex_circulator start = incident_vertices(infinite_vertex());
Vertex_circulator pc(start);
Vertex_circulator qc(start); ++qc;
Vertex_circulator rc(start); ++rc; ++rc;
do{
Orientation s = orientation(pc->point(),
qc->point(),
rc->point());
CGAL_triangulation_assertion( s != LEFT_TURN );
result = result && ( s != LEFT_TURN );
++pc ; ++qc ; ++rc;
} while(pc != start);
// check number of faces. This cannot be done by the Tds
// which does not know the number of components nor the genus
result = result && (number_of_faces() == 2*(number_of_vertices()+1)
- 4
- degree(infinite_vertex()));
CGAL_triangulation_assertion( result);
break;
}
// in any dimension
if(verbose) {
std::cerr << " nombres de sommets " << number_of_vertices() << "\t"
<< "nombres de sommets caches " << number_of_hidden_vertices()
<< std::endl;
}
result = result && ( Base::number_of_vertices() ==
number_of_vertices() + number_of_hidden_vertices());
CGAL_triangulation_assertion( result);
return result;
}
template <class Gt, class Tds >
void
Regular_triangulation_2<Gt, Tds>::
show_face(Face_handle fh) const
{
Base::show_face(fh);
typename Vertex_list::iterator current;
std::cerr << " +++++>>> ";
for (current= fh->vertex_list().begin();
current!= fh->vertex_list().end() ; current++ ) {
std::cerr <<"[ "<< ((*current)->point()) << " ] , ";
}
std::cerr <<std::endl;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
show_all() const
{
std::cerr<< "AFFICHE TOUTE LA TRIANGULATION :" << std::endl;
std::cerr << std::endl<<"====> "<< this ;
std::cerr << " dimension " << dimension() << std::endl;
std::cerr << "nb of vertices " << number_of_vertices()
<< " nb of hidden vertices " << number_of_hidden_vertices()
<< std::endl;
if (dimension() < 1) return;
if(dimension() == 1) {
std::cerr<<" all edges "<<std::endl;
All_edges_iterator aeit;
for(aeit = all_edges_begin(); aeit != all_edges_end(); aeit++){
show_face(aeit->first);
}
}
else{ //dimension ==2
std::cerr<<" faces finies "<<std::endl;
Finite_faces_iterator fi;
for(fi = finite_faces_begin(); fi != finite_faces_end(); fi++) {
show_face(fi);
}
std::cerr <<" faces infinies "<<std::endl;
All_faces_iterator afi;
for(afi = all_faces_begin(); afi != all_faces_end(); afi++) {
if(is_infinite(afi)) show_face(afi);
}
}
if (number_of_vertices()>1) {
std::cerr << "affichage des sommets de la triangulation reguliere"
<<std::endl;
All_vertices_iterator vi;
for( vi = all_vertices_begin(); vi != all_vertices_end(); vi++){
show_vertex(vi);
std::cerr << " / face associee : "
<< &*(vi->face()) << std::endl;
}
std::cerr<<std::endl;
}
std::cerr << "sommets caches " << std::endl;
Hidden_vertices_iterator hvi = hidden_vertices_begin();
for( ; hvi != hidden_vertices_end(); hvi++) {
show_vertex(hvi);
std::cerr << " / face associee : "
<< &*(hvi->face()) << std::endl;
}
return;
}
//DUALITY
template < class Gt, class Tds >
inline
typename Regular_triangulation_2<Gt,Tds>::Bare_point
Regular_triangulation_2<Gt,Tds>::
dual (Face_handle f) const
{
return weighted_circumcenter(f);
}
template < class Gt, class Tds >
inline
typename Regular_triangulation_2<Gt,Tds>::Bare_point
Regular_triangulation_2<Gt,Tds>::
weighted_circumcenter(Face_handle f) const
{
CGAL_triangulation_precondition (dimension()==2 || !is_infinite(f));
return weighted_circumcenter(f->vertex(0)->point(),
f->vertex(1)->point(),
f->vertex(2)->point());
}
template<class Gt, class Tds>
inline
typename Regular_triangulation_2<Gt,Tds>::Bare_point
Regular_triangulation_2<Gt,Tds>::
weighted_circumcenter(const Weighted_point& p0,
const Weighted_point& p1,
const Weighted_point& p2) const
{
return
geom_traits().construct_weighted_circumcenter_2_object()(p0,p1,p2);
}
template < class Gt, class Tds >
inline
Object
Regular_triangulation_2<Gt,Tds>::
dual(const Edge &e) const
{
typedef typename Geom_traits::Line_2 Line;
typedef typename Geom_traits::Ray_2 Ray;
typedef typename Geom_traits::Segment_2 Segment;
CGAL_triangulation_precondition (! is_infinite(e));
if( dimension()== 1 ){
const Weighted_point& p = (e.first)->vertex(cw(e.second))->point();
const Weighted_point& q = (e.first)->vertex(ccw(e.second))->point();
Line l = geom_traits().construct_radical_axis_2_object()(p,q);
return make_object(l);
}
// dimension==2
if( (! is_infinite(e.first)) &&
(! is_infinite(e.first->neighbor(e.second))) ) {
Segment s = geom_traits().construct_segment_2_object()
(dual(e.first),dual(e.first->neighbor(e.second)));
return make_object(s);
}
// one of the adjacent faces is infinite
Face_handle f; int i;
if ( is_infinite(e.first)) {
f=e.first->neighbor(e.second); i=f->index(e.first);
}
else {
f=e.first; i=e.second;
}
const Weighted_point& p = f->vertex( cw(i))->point();
const Weighted_point& q = f->vertex( ccw(i))->point();
Line l = geom_traits().construct_radical_axis_2_object()(p,q);
Ray r = geom_traits().construct_ray_2_object()(dual(f), l);
return make_object(r);
}
template < class Gt, class Tds >
inline
Object
Regular_triangulation_2<Gt,Tds>::
dual(const Edge_circulator& ec) const
{
return dual(*ec);
}
template < class Gt, class Tds >
inline
Object
Regular_triangulation_2<Gt,Tds>::
dual(const Finite_edges_iterator& ei) const
{
return dual(*ei);
}
//INSERTION-REMOVAL
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
push_back(const Weighted_point &p)
{
return insert(p);
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert(const Weighted_point &p, Face_handle start)
{
Locate_type lt;
int li;
Face_handle loc = locate(p, lt, li, start);
return insert(p, lt, loc, li);
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert(const Weighted_point &p, Locate_type lt, Face_handle loc, int li)
{
Vertex_handle v;
switch (lt) {
case Base::VERTEX:
{
CGAL_precondition (dimension() >= 0);
if (dimension() == 0) {
// in this case locate() oddly returns loc = NULL and li = 4,
// so we work around it.
loc = finite_vertex()->face();
li = 0;
}
Vertex_handle vv = loc->vertex(li);
CGAL::Oriented_side side = power_test (vv->point(), p);
switch(side) {
case ON_NEGATIVE_SIDE:
return hide_new_vertex (loc, p);
case ON_POSITIVE_SIDE:
v = this->_tds.create_vertex();
v->set_point(p);
exchange_incidences(v,vv);
hide_vertex(loc, vv);
regularize (v);
return v;
case ON_ORIENTED_BOUNDARY:
return vv;
}
}
case Base::EDGE:
{
CGAL_precondition (dimension() >= 1);
Oriented_side os = dimension() == 1 ? power_test (loc, li, p) :
power_test (loc, p, true);
if (os < 0) {
if (is_infinite (loc)) loc = loc->neighbor (li);
return hide_new_vertex (loc, p);
}
v = insert_in_edge (p, loc, li);
break;
}
case Base::FACE:
{
CGAL_precondition (dimension() >= 2);
if (power_test (loc, p, true) < 0) {
return hide_new_vertex(loc,p);
}
v = insert_in_face (p, loc);
break;
}
default:
v = Base::insert (p, lt, loc, li);
}
if (lt == OUTSIDE_AFFINE_HULL) {
//clear vertex list of infinite faces which have been copied
for ( All_faces_iterator afi = all_faces_begin();
afi != all_faces_end(); afi++)
if (is_infinite (afi))
afi->vertex_list().clear();
}
regularize (v);
return v;
}
/*
The reinsert function insert a weighted point which was in a hidden
vertex.
The new and old vertices are then exchanged ; this is required
if the regular triangulation is used with a hierarchy because
the old vertex has its up and down pointers set and other vertices
pointing on him
*/
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
reinsert(Vertex_handle v, Face_handle start)
{
CGAL_triangulation_assertion(v->is_hidden());
v->set_hidden(false);
_hidden_vertices--;
// //to debug
// std::cerr << "from reinsert " << std::endl;
// show_vertex(v);
// Locate_type lt;
// int li;
// Face_handle loc = locate(v->point(), lt, li, start);
// std::cerr << "locate " << &(*loc) << "\t" << lt << "\t" << li <<
// std::endl;
// show_face(loc);
// std::cerr << std::endl;
Vertex_handle vh = insert(v->point(), start);
if(vh->is_hidden()) exchange_hidden(v,vh);
else exchange_incidences(v,vh);
this->_tds.delete_vertex(vh);
return v;
}
//push va instead of vb in the list of the face fb hiding vb
// vb must be the last inserted vertex in the list of fb
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
exchange_hidden(Vertex_handle va, Vertex_handle vb)
{
CGAL_triangulation_assertion (vb->is_hidden());
CGAL_triangulation_assertion (vb == vb->face()->vertex_list().back());
// //to debug
// std::cerr << "from exchange hidden 1" << std::endl;
// show_vertex(vb);
// std::cerr << " / face associee : "
// << &*(vb->face()) << std::endl;
vb->face()->vertex_list().pop_back();
_hidden_vertices--;
hide_vertex(vb->face(), va);
// //to debug
// std::cerr << "from exchange hidden 1" << std::endl;
// show_vertex(va);
// std::cerr << " / face associee : "
// << &*(va->face()) << std::endl << std::endl;
}
// set to va the incidences of vb
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
exchange_incidences(Vertex_handle va, Vertex_handle vb)
{
CGAL_triangulation_assertion ( !vb->is_hidden());
std::list<Face_handle> faces;
if (dimension() == 0) {
faces.push_back (vb->face());
} else if (dimension() == 1) {
faces.push_back(vb->face());
int i = vb->face()->index(vb);
faces.push_back(vb->face()->neighbor(1-i));
}
else {
CGAL_triangulation_assertion (dimension() == 2);
Face_circulator fc = incident_faces(vb), done(fc);
do {
faces.push_back(fc);
fc++;
}while(fc != done);
}
va->set_face(*(faces.begin()));
for(typename std::list<Face_handle>::iterator it = faces.begin();
it != faces.end(); it++){
Face_handle fh = *it;
fh->set_vertex(fh->index(vb), va);
}
return;
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert_in_face(const Weighted_point &p, Face_handle f)
{
Vertex_handle v = Base::insert_in_face(p,f);
update_hidden_points_1_3(f,
f->neighbor(ccw(f->index(v))),
f->neighbor( cw(f->index(v))) );
return v;
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
insert_in_edge(const Weighted_point &p, Face_handle f, int i)
{
Vertex_handle v;
if (dimension() == 1) {
v = Base::insert_in_edge(p,f,i);
Face_handle g = f->neighbor(1 - f->index(v));
update_hidden_points_2_2(f,g);
}
else { //dimension()==2
// don't use update_hidden_points_2_2 any more to split
// hidden vertices list because new affectation of f and n
// around new vertex is unknown
Face_handle n = f->neighbor(i);
Vertex_list p_list;
p_list.splice(p_list.begin(),f->vertex_list());
p_list.splice(p_list.begin(),n->vertex_list());
v = Base::insert_in_edge(p,f,i);
Face_handle loc;
while ( ! p_list.empty() ){
loc = locate(p_list.front()->point(), n);
if (is_infinite(loc)) loc = loc->neighbor(loc->index(infinite_vertex()));
hide_vertex(loc, p_list.front());
p_list.pop_front();
}
}
return v;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
regularize(Vertex_handle v)
{
CGAL_triangulation_precondition( v != infinite_vertex());
Faces_around_stack faces_around;
if (dimension() < 1) return;
//initialise faces_around
if (dimension() == 1) {
faces_around.push_back(v->face());
faces_around.push_back(v->face()->neighbor(1- v->face()->index(v)));
}
else{ //dimension==2
Face_circulator fit = incident_faces(v), done(fit);
do {
faces_around.push_back(fit++);
} while(fit != done);
}
while( ! faces_around.empty() )
stack_flip(v, faces_around);
return;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
flip(Face_handle f, int i)
{
Face_handle n = f->neighbor(i);
Base::flip(f,i);
update_hidden_points_2_2(f,n);
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove_degree_3(Vertex_handle v, Face_handle f)
{
if (f == Face_handle()) f=v->face();
update_hidden_points_3_1(f, f->neighbor( cw(f->index(v))),
f->neighbor(ccw(f->index(v))));
Base::remove_degree_3(v,f);
if (is_infinite(f)) { //the list of f is given to its finite neighbor
Face_handle fn = f->neighbor(f->index(infinite_vertex()));
set_face(f->vertex_list(),fn);
fn->vertex_list().splice(fn->vertex_list().begin(),f->vertex_list());
}
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove_hidden(Vertex_handle v )
{
_hidden_vertices--;
v->face()->vertex_list().remove(v);
delete_vertex(v);
return;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove(Vertex_handle v )
{
CGAL_triangulation_precondition( v != Vertex_handle() );
CGAL_triangulation_precondition(!is_infinite(v));
if (v->is_hidden())
return remove_hidden (v);
Face_handle hint;
int ihint = 0;
Vertex_list to_reinsert;
switch (dimension()) {
case 0:
to_reinsert.splice (to_reinsert.begin(), v->face()->vertex_list());
break;
case 1:
{
Face_handle f1 = v->face();
ihint = f1->index(v);
hint = f1->neighbor(ihint);
Face_handle f2 = f1->neighbor(1 - ihint);
ihint = mirror_index (f1, ihint);
to_reinsert.splice (to_reinsert.begin(), f1->vertex_list());
to_reinsert.splice (to_reinsert.begin(), f2->vertex_list());
break;
}
case 2:
{
Face_circulator f = incident_faces (v), end = f;
ihint = f->index(v);
hint = f->neighbor(ihint);
ihint = mirror_index (f, ihint);
do to_reinsert.splice (to_reinsert.begin(), f->vertex_list());
while (++f != end);
break;
}
}
if (number_of_vertices() <= 2) {
this->_tds.remove_dim_down(v);
} else if (dimension() < 2) {
Base::remove (v);
} else {
remove_2D (v);
}
if (hint != Face_handle()) hint = hint->neighbor(ihint);
for (typename Vertex_list::iterator i = to_reinsert.begin();
i != to_reinsert.end(); ++i)
{
hint = reinsert (*i, hint)->face();
}
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
remove_2D(Vertex_handle v)
{
if (test_dim_down(v)) { this->_tds.remove_dim_down(v); }
else {
std::list<Edge> hole;
make_hole(v, hole);
fill_hole_regular(hole);
delete_vertex(v);
}
return;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
fill_hole_regular(std::list<Edge> & first_hole)
{
typedef std::list<Edge> Hole;
typedef std::list<Hole> Hole_list;
Hole hole;
Hole_list hole_list;
Face_handle ff, fn;
int i, ii, in;
hole_list.push_front(first_hole);
while (! hole_list.empty())
{
hole = hole_list.front();
hole_list.pop_front();
typename Hole::iterator hit = hole.begin();
// if the hole has only three edges, create the triangle
if (hole.size() == 3)
{
Face_handle newf = create_face();
hit = hole.begin();
for(int j=0; j<3; j++)
{
ff = (*hit).first;
ii = (*hit).second;
hit++;
ff->set_neighbor(ii,newf);
newf->set_neighbor(j,ff);
newf->set_vertex(newf->ccw(j),ff->vertex(ff->cw(ii)));
}
continue;
}
// else find an edge with two finite vertices
// on the hole boundary
// and the new triangle adjacent to that edge
// cut the hole and push it back
// first, ensure that a neighboring face
// whose vertices on the hole boundary are finite
// is the first of the hole
bool finite = false;
while (!finite)
{
ff = hole.front().first;
ii = hole.front().second;
if ( is_infinite(ff->vertex(cw(ii))) ||
is_infinite(ff->vertex(ccw(ii))))
{
hole.push_back(hole.front());
hole.pop_front();
}
else
finite = true;
}
// take the first neighboring face and pop it;
ff = hole.front().first;
ii = hole.front().second;
hole.pop_front();
Vertex_handle v0 = ff->vertex(ff->cw(ii));
const Weighted_point& p0 = v0->point();
Vertex_handle v1 = ff->vertex(ff->ccw(ii));
const Weighted_point& p1 = v1->point();
Vertex_handle v2 = infinite_vertex();
Weighted_point p2;
Vertex_handle vv;
Weighted_point p;
typename Hole::iterator hdone = hole.end();
hit = hole.begin();
typename Hole::iterator cut_after(hit);
// if tested vertex is c with respect to the vertex opposite
// to NULL neighbor,
// stop at the before last face;
hdone--;
while (hit != hdone)
{
fn = (*hit).first;
in = (*hit).second;
vv = fn->vertex(ccw(in));
if (is_infinite(vv))
{
if (is_infinite(v2))
cut_after = hit;
}
else
{ // vv is a finite vertex
p = vv->point();
if (orientation(p0,p1,p) ==
COUNTERCLOCKWISE)
{
if (is_infinite(v2))
{
v2=vv;
p2=p;
cut_after=hit;
}
else if (power_test(p0,p1,p2,p,true) ==
ON_POSITIVE_SIDE)
{
v2=vv;
p2=p;
cut_after=hit;
}
}
}
++hit;
}
// create new triangle and update adjacency relations
Face_handle newf = create_face(v0,v1,v2);
newf->set_neighbor(2,ff);
ff->set_neighbor(ii, newf);
//update the hole and push back in the Hole_List stack
// if v2 belongs to the neighbor following or preceding *f
// the hole remain a single hole
// otherwise it is split in two holes
fn = hole.front().first;
in = hole.front().second;
if (fn->has_vertex(v2, i) && i == (int)fn->ccw(in))
{
newf->set_neighbor(0,fn);
fn->set_neighbor(in,newf);
hole.pop_front();
hole.push_front(Edge(newf,1));
hole_list.push_front(hole);
}
else
{
fn = hole.back().first;
in = hole.back().second;
if (fn->has_vertex(v2, i) && i == (int)fn->cw(in))
{
newf->set_neighbor(1,fn);
fn->set_neighbor(in,newf);
hole.pop_back();
hole.push_back(Edge(newf,0));
hole_list.push_front(hole);
}
else
{ // split the hole in two holes
Hole new_hole;
++cut_after;
while (hole.begin() != cut_after)
{
new_hole.push_back(hole.front());
hole.pop_front();
}
hole.push_front(Edge(newf,1));
new_hole.push_front(Edge(newf,0));
hole_list.push_front(hole);
hole_list.push_front(new_hole);
}
}
}
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
set_face(Vertex_list& vl, const Face_handle& fh)
{
for(typename Vertex_list::iterator it = vl.begin(); it != vl.end(); it++)
(*it)->set_face(fh);
}
// add the vertex_list of f2 and f3 to the point list of f1
// for the 3-1 flip
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
update_hidden_points_3_1(const Face_handle& f1, const Face_handle& f2,
const Face_handle& f3)
{
set_face(f2->vertex_list(), f1);
set_face(f3->vertex_list(), f1);
(f1->vertex_list()).splice(f1->vertex_list().begin(),f2->vertex_list());
(f1->vertex_list()).splice(f1->vertex_list().begin(),f3->vertex_list());
return;
}
// the points of the lists of 2 faces are sorted
// because of a 2-2 flip
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
update_hidden_points_2_2(const Face_handle& f1, const Face_handle& f2)
{
CGAL_triangulation_assertion(f1->has_neighbor(f2));
Vertex_list p_list;
p_list.splice(p_list.begin(),f1->vertex_list());
p_list.splice(p_list.begin(),f2->vertex_list());
// if one of the face is infinite,
// the other face hide all the points
if ( is_infinite(f1)) {
set_face(p_list, f2);
(f2->vertex_list()).splice(f2->vertex_list().begin(),p_list);
return;
}
if ( is_infinite(f2)) {
set_face(p_list, f1);
(f1->vertex_list()).splice(f1->vertex_list().begin(),p_list);
return;
}
if (dimension() == 1) {
const Weighted_point& a1 = f1->vertex(f1->index(f2))->point();
const Weighted_point& a = f1->vertex(1-f1->index(f2))->point();
while ( ! p_list.empty() ) {
if ( compare_x(a, p_list.front()->point()) ==
compare_x(a, a1) &&
compare_y(a, p_list.front()->point()) ==
compare_y(a, a1))
{
hide_vertex(f1, p_list.front());
} else {
hide_vertex(f2, p_list.front());
}
p_list.pop_front();
}
return;
}
// from here f1 and f2 are finite 2-dimensional faces
int idx2 = f1->index(f2);
Vertex_handle v0=f1->vertex(ccw(idx2));
Vertex_handle v1=f1->vertex(cw(idx2));
CGAL_triangulation_assertion( !is_infinite(v0) && !is_infinite(v1));
while ( ! p_list.empty() )
{
if (orientation(v0->point(), v1->point(), p_list.front()->point()) ==
COUNTERCLOCKWISE)
hide_vertex(f1, p_list.front());
else
hide_vertex(f2, p_list.front());
p_list.pop_front();
}
}
// The point list of f1 is separated into 3 lists
// for a 1-3 flip
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
update_hidden_points_1_3(const Face_handle& f1, const Face_handle& f2,
const Face_handle& f3)
{
CGAL_triangulation_assertion(f1->has_neighbor(f2) &&
f2->has_neighbor(f3) &&
f3->has_neighbor(f1));
Vertex_list p_list;
p_list.splice(p_list.begin(),f1->vertex_list());
if (p_list.empty())
return;
// the following does not work if
// two of f1,f2 and f3 are twice neighbors
// but this cannot appear taking the assertion into account;
int idx2 = f1->index(f2),
idx3 = f1->index(f3);
Vertex_handle v2 = f1->vertex(idx2),
v3 = f1->vertex(idx3),
v0 = f1->vertex(3-(idx2+idx3)),
v1 = f2->vertex(f2->index(f1));
CGAL_triangulation_assertion(f2->has_vertex(v0) && f1->has_vertex(v0));
CGAL_triangulation_assertion(f3->has_vertex(v1));
CGAL_triangulation_assertion( ! is_infinite(v0));
// if two of f1, f2,and f3 are infinite
// the list goes entirely to the third finite face
// no orientation test necessary
// because the point list of an infinite face
// is only made of point projecting on its finite edge
if ( is_infinite(f1 ) && is_infinite(f2)) {
set_face(p_list, f3);
f3->vertex_list().splice(f3->vertex_list().begin(), p_list);
return;
}
if ( is_infinite(f1) && is_infinite(f3)) {
set_face(p_list, f2);
f2->vertex_list().splice(f2->vertex_list().begin(), p_list);
return;
}
if ( is_infinite(f2) && is_infinite(f3)){
set_face(p_list, f1);
f1->vertex_list().splice(f1->vertex_list().begin(), p_list);
return;
}
// if here, v1,v2,v3 and v0 are finite vertices
while(! p_list.empty())
{
Vertex_handle v(p_list.front());
// if(orientation(v2->point(),v0->point(), v->point()) !=
// orientation(v2->point(),v0->point(),v3->point()) )
// { // not in f1
// if (orientation(v1->point(), v0->point(), v->point() ) !=
// orientation(v1->point(), v0->point(), v3->point() ) )
// // not in f2
// hide_vertex(f3, v);
// else
// hide_vertex(f2, v);
// }
// else
// hide_vertex(f1, v);
if(orientation(v2->point(),v0->point(), v->point()) ==
orientation(v2->point(),v0->point(),v3->point()) &&
orientation(v3->point(),v0->point(), v->point()) ==
orientation(v3->point(),v0->point(), v2->point()))
hide_vertex(f1, v);
else if (orientation(v1->point(), v0->point(), v->point()) ==
orientation(v1->point(), v0->point(), v3->point()) )
hide_vertex(f2,v);
else hide_vertex(f3,v);
p_list.pop_front();
}
}
// the vertex is a degree three vertex which has to removed
// and hidden
// create first a new hidden vertex and exchange with the vertex
// to be removed by the tds :
// this is required to keep up and down pointers right when using a hierarchy
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
hide_remove_degree_3(Face_handle fh, Vertex_handle vh)
{
Vertex_handle vnew= this->_tds.create_vertex();
exchange_incidences(vnew,vh);
remove_degree_3(vnew, fh);
hide_vertex(fh,vh);
}
// create a vertex and hide it
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
hide_new_vertex(Face_handle f, const Weighted_point& p)
{
Vertex_handle v = this->_tds.create_vertex();
v->set_point(p);
hide_vertex(f, v);
return v;
}
// insert the vertex to the hidden vertex list
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
hide_vertex(Face_handle f, Vertex_handle vh)
{
// no hidden vertex in infinite face
if(is_infinite(f) && dimension() > 0) f = f->neighbor(f->index(infinite_vertex()));
if(! vh->is_hidden()) {
vh->set_hidden(true);
_hidden_vertices++;
}
vh->set_face(f);
f->vertex_list().push_back(vh);
}
// template < class Gt, class Tds >
// void
// Regular_triangulation_2<Gt,Tds>::
// hide_vertex(Face_handle f, void* ptr)
// {
// Vertex_handle v(static_cast<Vertex*>(ptr));
// hide_vertex(f, v);
// }
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip(Vertex_handle v, Faces_around_stack &faces_around)
{
Face_handle f=faces_around.front();
faces_around.pop_front();
int i = f->index(v);
Face_handle n = f->neighbor(i);
if (dimension() == 1 ) {
if ( is_infinite(f) || is_infinite(n) ) return;
if ( power_test( v->point(),
n->vertex(n->index(f))->point(),
f->vertex(1-i)->point()) == ON_NEGATIVE_SIDE)
stack_flip_dim1(f,i,faces_around);
return;
}
// now dimension() == 2
//test the regularity of edge (f,i)
//if( power_test(n, v->point()) == ON_NEGATIVE_SIDE)
if( power_test(n, v->point(), true) != ON_POSITIVE_SIDE)
return;
if(is_infinite(f,i))
{
int j = 3 - ( i + f->index(infinite_vertex()));
if ( degree(f->vertex(j)) == 4)
stack_flip_4_2(f,i,j,faces_around);
return;
}
// now f and n are both finite faces
int ni = n->index(f);
Orientation occw = orientation(f->vertex(i)->point(),
f->vertex(ccw(i))->point(),
n->vertex(ni)->point());
Orientation ocw = orientation(f->vertex(i)->point(),
f->vertex(cw(i))->point(),
n->vertex(ni)->point());
if (occw == LEFT_TURN && ocw == RIGHT_TURN) {
// quadrilater (f,n) is convex
stack_flip_2_2(f,i, faces_around);
return;
}
if (occw == RIGHT_TURN && degree(f->vertex(ccw(i))) == 3) {
stack_flip_3_1(f,i,ccw(i),faces_around);
return;
}
if (ocw == LEFT_TURN && degree(f->vertex(cw(i))) == 3) {
stack_flip_3_1(f,i,cw(i),faces_around);
return;
}
if (occw == COLLINEAR && degree(f->vertex(ccw(i))) == 4) {
stack_flip_4_2(f,i,ccw(i),faces_around);
return;
}
if (ocw == COLLINEAR && degree(f->vertex(cw(i))) == 4)
stack_flip_4_2(f,i,cw(i),faces_around);
return;
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_4_2(Face_handle f, int i, int j, Faces_around_stack & faces_around)
{
int k = 3-(i+j);
Face_handle g=f->neighbor(k);
if (!faces_around.empty())
{
if (faces_around.front() == g)
faces_around.pop_front();
else if (faces_around.back() == g)
faces_around.pop_back();
}
//union f with g and f->neihgbor(i) with g->f->neihgbor(i)
Face_handle fn = f->neighbor(i);
//Face_handle gn = g->neighbor(g->index(f->vertex(i)));
Vertex_handle vq = f->vertex(j);
this->_tds.flip( f, i); //not using flip because the vertex j is flat.
update_hidden_points_2_2(f,fn);
Face_handle h1 = ( j == ccw(i) ? fn : f);
//hide_vertex(h1, vq);
hide_remove_degree_3(g,vq);
if(j == ccw(i)) {
faces_around.push_front(h1);
faces_around.push_front(g);
}
else {
faces_around.push_front(g);
faces_around.push_front(h1);
}
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_3_1(Face_handle f, int i, int j, Faces_around_stack & faces_around)
{
int k = 3-(i+j);
Face_handle g=f->neighbor(k);
if (!faces_around.empty())
{
if (faces_around.front()== g)
faces_around.pop_front();
else if ( faces_around.back() == g)
faces_around.pop_back();
}
Vertex_handle vq= f->vertex(j);
//hide_vertex(f,vq);
hide_remove_degree_3(f,vq);
faces_around.push_front(f);
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_2_2(Face_handle f, int i, Faces_around_stack & faces_around)
{
Vertex_handle vq = f->vertex(ccw(i));
flip(f,i);
if(f->has_vertex(vq)) {
faces_around.push_front(f->neighbor(ccw(i)));
faces_around.push_front(f);
}
else {
faces_around.push_front(f);
faces_around.push_front(f->neighbor(cw(i)));
}
}
template < class Gt, class Tds >
void
Regular_triangulation_2<Gt,Tds>::
stack_flip_dim1(Face_handle f, int i, Faces_around_stack &faces_around)
{
Vertex_handle va = f->vertex(1-i);
Face_handle n= f->neighbor(i);
int in = n->index(f);
Vertex_handle vb = n->vertex(in);
f->set_vertex(1-i, n->vertex(in));
vb->set_face(f);
f->set_neighbor(i, n->neighbor(1-in));
n->neighbor(1-in)->set_neighbor(n->neighbor(1-in)->index(n), f);
(f->vertex_list()).splice(f->vertex_list().begin(),n->vertex_list());
set_face(f->vertex_list(),f);
this->delete_face(n);
hide_vertex(f,va);
faces_around.push_front(f);
return;
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::All_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
all_vertices_begin () const
{
return CGAL::filter_iterator(Base::all_vertices_end(),
Hidden_tester(),
Base::all_vertices_begin());
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::All_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
all_vertices_end () const
{
return CGAL::filter_iterator(Base::all_vertices_end(),
Hidden_tester() );
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Finite_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
finite_vertices_begin () const
{
return CGAL::filter_iterator(Base::finite_vertices_end(),
Hidden_tester(),
Base::finite_vertices_begin());
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
finite_vertex () const
{
CGAL_triangulation_precondition (number_of_vertices() >= 1);
return (finite_vertices_begin());
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Finite_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
finite_vertices_end () const
{
return CGAL::filter_iterator(Base::finite_vertices_end(),
Hidden_tester() );
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Hidden_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
hidden_vertices_begin () const
{
return CGAL::filter_iterator(Base::finite_vertices_end(),
Unhidden_tester(),
Base::finite_vertices_begin() );
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Hidden_vertices_iterator
Regular_triangulation_2<Gt,Tds>::
hidden_vertices_end () const
{
return CGAL::filter_iterator(Base::finite_vertices_end(),
Unhidden_tester() );
}
template < class Gt, class Tds >
typename Regular_triangulation_2<Gt,Tds>::Vertex_handle
Regular_triangulation_2<Gt,Tds>::
nearest_power_vertex(const Bare_point& p) const
{
if ( dimension() == -1 ) { return Vertex_handle(); }
if ( dimension() == 0 ) { return this->finite_vertex(); }
typename Geom_traits::Compare_power_distance_2 cmp_power_distance =
geom_traits().compare_power_distance_2_object();
Vertex_handle vclosest;
Vertex_handle v = this->finite_vertex();
// if ( dimension() == 1 ) {
// }
do {
vclosest = v;
Weighted_point wp = v->point();
Vertex_circulator vc_start = incident_vertices(v);
Vertex_circulator vc = vc_start;
do {
if ( !is_infinite(vc) ) {
if ( cmp_power_distance(p, vc->point(), wp) == SMALLER ) {
v = vc;
break;
}
}
++vc;
} while ( vc != vc_start );
} while ( vclosest != v );
return vclosest;
}
} //namespace CGAL
#endif // CGAL_REGULAR_TRIANGULATION_2_H
|