/usr/include/CGAL/Regular_triangulation_3.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 | // Copyright (c) 1999-2004 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Monique Teillaud <Monique.Teillaud@sophia.inria.fr>
// Sylvain Pion
// Christophe Delage <Christophe.Delage@sophia.inria.fr>
#ifndef CGAL_REGULAR_TRIANGULATION_3_H
#define CGAL_REGULAR_TRIANGULATION_3_H
#include <CGAL/basic.h>
#include <set>
#include <CGAL/Triangulation_3.h>
#include <CGAL/Regular_triangulation_cell_base_3.h>
#include <boost/bind.hpp>
#ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
#include <CGAL/Spatial_sort_traits_adapter_3.h>
#include <CGAL/internal/info_check.h>
#include <boost/iterator/zip_iterator.hpp>
#include <boost/mpl/and.hpp>
#endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
#if defined(BOOST_MSVC)
# pragma warning(push)
# pragma warning(disable:4355) // complaint about using 'this' to
#endif // initialize a member
namespace CGAL {
template < class Gt, class Tds_ = Default >
class Regular_triangulation_3
: public Triangulation_3<Gt,
typename Default::Get<Tds_, Triangulation_data_structure_3 <
Triangulation_vertex_base_3<Gt>,
Regular_triangulation_cell_base_3<Gt> > >::type>
{
typedef Regular_triangulation_3<Gt, Tds_> Self;
typedef typename Default::Get<Tds_, Triangulation_data_structure_3 <
Triangulation_vertex_base_3<Gt>,
Regular_triangulation_cell_base_3<Gt> > >::type Tds;
typedef Triangulation_3<Gt,Tds> Tr_Base;
public:
typedef Tds Triangulation_data_structure;
typedef Gt Geom_traits;
typedef typename Tr_Base::Vertex_handle Vertex_handle;
typedef typename Tr_Base::Cell_handle Cell_handle;
typedef typename Tr_Base::Vertex Vertex;
typedef typename Tr_Base::Cell Cell;
typedef typename Tr_Base::Facet Facet;
typedef typename Tr_Base::Edge Edge;
typedef typename Tr_Base::size_type size_type;
typedef typename Tr_Base::Locate_type Locate_type;
typedef typename Tr_Base::Cell_iterator Cell_iterator;
typedef typename Tr_Base::Facet_iterator Facet_iterator;
typedef typename Tr_Base::Edge_iterator Edge_iterator;
typedef typename Tr_Base::Facet_circulator Facet_circulator;
typedef typename Tr_Base::Finite_vertices_iterator Finite_vertices_iterator;
typedef typename Tr_Base::Finite_cells_iterator Finite_cells_iterator;
typedef typename Tr_Base::Finite_facets_iterator Finite_facets_iterator;
typedef typename Tr_Base::Finite_edges_iterator Finite_edges_iterator;
typedef typename Tr_Base::All_cells_iterator All_cells_iterator;
typedef typename Gt::Weighted_point_3 Weighted_point;
typedef typename Gt::Bare_point Bare_point;
typedef typename Gt::Segment_3 Segment;
typedef typename Gt::Triangle_3 Triangle;
typedef typename Gt::Tetrahedron_3 Tetrahedron;
// types for dual:
typedef typename Gt::Line_3 Line;
typedef typename Gt::Ray_3 Ray;
typedef typename Gt::Plane_3 Plane;
typedef typename Gt::Object_3 Object;
//Tag to distinguish Delaunay from Regular triangulations
typedef Tag_true Weighted_tag;
using Tr_Base::cw;
using Tr_Base::ccw;
#ifndef CGAL_CFG_USING_BASE_MEMBER_BUG_2
using Tr_Base::geom_traits;
#endif
using Tr_Base::number_of_vertices;
using Tr_Base::dimension;
using Tr_Base::finite_facets_begin;
using Tr_Base::finite_facets_end;
using Tr_Base::finite_vertices_begin;
using Tr_Base::finite_vertices_end;
using Tr_Base::finite_cells_begin;
using Tr_Base::finite_cells_end;
using Tr_Base::finite_edges_begin;
using Tr_Base::finite_edges_end;
using Tr_Base::tds;
using Tr_Base::infinite_vertex;
using Tr_Base::next_around_edge;
using Tr_Base::vertex_triple_index;
using Tr_Base::mirror_vertex;
using Tr_Base::mirror_index;
using Tr_Base::orientation;
using Tr_Base::coplanar_orientation;
using Tr_Base::adjacent_vertices;
using Tr_Base::construct_segment;
using Tr_Base::incident_facets;
using Tr_Base::insert_in_conflict;
using Tr_Base::is_infinite;
using Tr_Base::is_valid_finite;
using Tr_Base::locate;
using Tr_Base::side_of_segment;
using Tr_Base::side_of_edge;
using Tr_Base::find_conflicts;
using Tr_Base::is_valid;
Regular_triangulation_3(const Gt & gt = Gt())
: Tr_Base(gt), hidden_point_visitor(this)
{}
Regular_triangulation_3(const Regular_triangulation_3 & rt)
: Tr_Base(rt), hidden_point_visitor(this)
{
CGAL_triangulation_postcondition( is_valid() );
}
//insertion
template < typename InputIterator >
Regular_triangulation_3(InputIterator first, InputIterator last,
const Gt & gt = Gt())
: Tr_Base(gt), hidden_point_visitor(this)
{
insert(first, last);
}
#ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
template < class InputIterator >
std::ptrdiff_t
insert( InputIterator first, InputIterator last,
typename boost::enable_if<
boost::is_convertible<
typename std::iterator_traits<InputIterator>::value_type,
Weighted_point
>
>::type* = NULL
)
#else
template < class InputIterator >
std::ptrdiff_t
insert( InputIterator first, InputIterator last)
#endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
{
size_type n = number_of_vertices();
std::vector<Weighted_point> points(first, last);
spatial_sort (points.begin(), points.end(), geom_traits());
Cell_handle hint;
for (typename std::vector<Weighted_point>::const_iterator p = points.begin(),
end = points.end(); p != end; ++p)
{
Locate_type lt;
Cell_handle c;
int li, lj;
c = locate (*p, lt, li, lj, hint);
Vertex_handle v = insert (*p, lt, c, li, lj);
hint = v == Vertex_handle() ? c : v->cell();
}
return number_of_vertices() - n;
}
#ifndef CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
private:
//top stands for tuple-or-pair
template <class Info>
const Weighted_point& top_get_first(const std::pair<Weighted_point,Info>& pair) const { return pair.first; }
template <class Info>
const Info& top_get_second(const std::pair<Weighted_point,Info>& pair) const { return pair.second; }
template <class Info>
const Weighted_point& top_get_first(const boost::tuple<Weighted_point,Info>& tuple) const { return boost::get<0>(tuple); }
template <class Info>
const Info& top_get_second(const boost::tuple<Weighted_point,Info>& tuple) const { return boost::get<1>(tuple); }
template <class Tuple_or_pair,class InputIterator>
std::ptrdiff_t insert_with_info(InputIterator first,InputIterator last)
{
size_type n = number_of_vertices();
std::vector<std::ptrdiff_t> indices;
std::vector<Weighted_point> points;
std::vector<typename Triangulation_data_structure::Vertex::Info> infos;
std::ptrdiff_t index=0;
for (InputIterator it=first;it!=last;++it){
Tuple_or_pair pair = *it;
points.push_back( top_get_first(pair) );
infos.push_back ( top_get_second(pair) );
indices.push_back(index++);
}
typedef Spatial_sort_traits_adapter_3<Geom_traits,Weighted_point*> Search_traits;
spatial_sort( indices.begin(),indices.end(),Search_traits(&(points[0]),geom_traits()) );
Cell_handle hint;
for (typename std::vector<std::ptrdiff_t>::const_iterator
it = indices.begin(), end = indices.end();
it != end; ++it)
{
Locate_type lt;
Cell_handle c;
int li, lj;
c = locate (points[*it], lt, li, lj, hint);
Vertex_handle v = insert (points[*it], lt, c, li, lj);
if (v!=Vertex_handle()){
v->info()=infos[*it];
hint=v->cell();
}
else
hint=c;
}
return number_of_vertices() - n;
}
public:
template < class InputIterator >
std::ptrdiff_t
insert( InputIterator first,
InputIterator last,
typename boost::enable_if<
boost::is_convertible<
typename std::iterator_traits<InputIterator>::value_type,
std::pair<Weighted_point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type>
>
>::type* = NULL
)
{return insert_with_info< std::pair<Weighted_point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type> >(first,last);}
template <class InputIterator_1,class InputIterator_2>
std::ptrdiff_t
insert( boost::zip_iterator< boost::tuple<InputIterator_1,InputIterator_2> > first,
boost::zip_iterator< boost::tuple<InputIterator_1,InputIterator_2> > last,
typename boost::enable_if<
boost::mpl::and_<
typename boost::is_convertible< typename std::iterator_traits<InputIterator_1>::value_type, Weighted_point >,
typename boost::is_convertible< typename std::iterator_traits<InputIterator_2>::value_type, typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type >
>
>::type* =NULL
)
{return insert_with_info< boost::tuple<Weighted_point,typename internal::Info_check<typename Triangulation_data_structure::Vertex>::type> >(first,last);}
#endif //CGAL_TRIANGULATION_3_DONT_INSERT_RANGE_OF_POINTS_WITH_INFO
Vertex_handle insert(const Weighted_point & p, Vertex_handle hint)
{
return insert(p, hint == Vertex_handle() ? this->infinite_cell() : hint->cell());
}
Vertex_handle insert(const Weighted_point & p,
Cell_handle start = Cell_handle());
Vertex_handle insert(const Weighted_point & p, Locate_type lt,
Cell_handle c, int li, int);
template <class CellIt>
Vertex_handle
insert_in_hole(const Weighted_point & p, CellIt cell_begin, CellIt cell_end,
Cell_handle begin, int i);
template <class CellIt>
Vertex_handle
insert_in_hole(const Weighted_point & p, CellIt cell_begin, CellIt cell_end,
Cell_handle begin, int i, Vertex_handle newv);
template <class OutputIteratorBoundaryFacets,
class OutputIteratorCells,
class OutputIteratorInternalFacets>
Triple<OutputIteratorBoundaryFacets,
OutputIteratorCells,
OutputIteratorInternalFacets>
find_conflicts(const Weighted_point &p, Cell_handle c,
OutputIteratorBoundaryFacets bfit,
OutputIteratorCells cit,
OutputIteratorInternalFacets ifit) const
{
CGAL_triangulation_precondition(dimension() >= 2);
std::vector<Cell_handle> cells;
cells.reserve(32);
std::vector<Facet> facets;
facets.reserve(64);
if (dimension() == 2) {
Conflict_tester_2 tester(p, this);
if (! tester (c)) return make_triple (bfit, cit, ifit);
ifit = Tr_Base::find_conflicts
(c, tester,
make_triple(std::back_inserter(facets),
std::back_inserter(cells),
ifit)).third;
}
else {
Conflict_tester_3 tester(p, this);
if (! tester (c)) return make_triple (bfit, cit, ifit);
ifit = Tr_Base::find_conflicts
(c, tester,
make_triple(std::back_inserter(facets),
std::back_inserter(cells),
ifit)).third;
}
// Reset the conflict flag on the boundary.
for(typename std::vector<Facet>::iterator fit=facets.begin();
fit != facets.end(); ++fit) {
fit->first->neighbor(fit->second)->tds_data().clear();
*bfit++ = *fit;
}
// Reset the conflict flag in the conflict cells.
for(typename std::vector<Cell_handle>::iterator ccit=cells.begin();
ccit != cells.end(); ++ccit) {
(*ccit)->tds_data().clear();
*cit++ = *ccit;
}
return make_triple(bfit, cit, ifit);
}
template <class OutputIteratorBoundaryFacets, class OutputIteratorCells>
std::pair<OutputIteratorBoundaryFacets, OutputIteratorCells>
find_conflicts(const Weighted_point &p, Cell_handle c,
OutputIteratorBoundaryFacets bfit,
OutputIteratorCells cit) const
{
Triple<OutputIteratorBoundaryFacets,
OutputIteratorCells,
Emptyset_iterator> t = find_conflicts(p, c, bfit, cit,
Emptyset_iterator());
return std::make_pair(t.first, t.second);
}
// Returns the vertices on the interior of the conflict hole.
template <class OutputIterator>
OutputIterator
vertices_inside_conflict_zone(const Weighted_point&p, Cell_handle c,
OutputIterator res) const
{
CGAL_triangulation_precondition(dimension() >= 2);
// Get the facets on the boundary of the hole, and the cells of the hole
std::vector<Cell_handle> cells;
std::vector<Facet> facets;
find_conflicts(p, c, std::back_inserter(facets),
std::back_inserter(cells), Emptyset_iterator());
// Put all vertices on the hole in 'vertices'
const int d = dimension();
std::set<Vertex_handle> vertices;
for (typename std::vector<Cell_handle>::const_iterator
it = cells.begin(),
end = cells.end(); it != end; ++it)
{
for(int i = 0; i <= d; ++i) {
vertices.insert((*it)->vertex(i));
}
}
// Then extract the vertices of the boundary and remove them from
// 'vertices'
if (dimension() == 3) {
for (typename std::vector<Facet>::const_iterator i = facets.begin();
i != facets.end(); ++i) {
vertices.erase(i->first->vertex((i->second+1)&3));
vertices.erase(i->first->vertex((i->second+2)&3));
vertices.erase(i->first->vertex((i->second+3)&3));
}
} else {
for (typename std::vector<Facet>::const_iterator i = facets.begin();
i != facets.end(); ++i) {
vertices.erase(i->first->vertex(cw(i->second)));
vertices.erase(i->first->vertex(ccw(i->second)));
}
}
return std::copy(vertices.begin(), vertices.end(), res);
}
#ifndef CGAL_NO_DEPRECATED_CODE
// Returns the vertices on the boundary of the conflict hole.
template <class OutputIterator>
OutputIterator
vertices_in_conflict(const Weighted_point&p, Cell_handle c, OutputIterator res) const
{
return vertices_on_conflict_zone_boundary(p, c, res);
}
#endif // CGAL_NO_DEPRECATED_CODE
// Returns the vertices on the boundary of the conflict hole.
template <class OutputIterator>
OutputIterator
vertices_on_conflict_zone_boundary(const Weighted_point&p, Cell_handle c,
OutputIterator res) const
{
CGAL_triangulation_precondition(dimension() >= 2);
// Get the facets on the boundary of the hole.
std::vector<Facet> facets;
find_conflicts(p, c, std::back_inserter(facets),
Emptyset_iterator(), Emptyset_iterator());
// Then extract uniquely the vertices.
std::set<Vertex_handle> vertices;
if (dimension() == 3) {
for (typename std::vector<Facet>::const_iterator i = facets.begin();
i != facets.end(); ++i) {
vertices.insert(i->first->vertex((i->second+1)&3));
vertices.insert(i->first->vertex((i->second+2)&3));
vertices.insert(i->first->vertex((i->second+3)&3));
}
} else {
for (typename std::vector<Facet>::const_iterator i = facets.begin();
i != facets.end(); ++i) {
vertices.insert(i->first->vertex(cw(i->second)));
vertices.insert(i->first->vertex(ccw(i->second)));
}
}
return std::copy(vertices.begin(), vertices.end(), res);
}
void remove (Vertex_handle v);
template < typename InputIterator >
size_type remove(InputIterator first, InputIterator beyond)
{
CGAL_triangulation_precondition(!this->does_repeat_in_range(first, beyond));
size_type n = number_of_vertices();
while (first != beyond) {
remove (*first);
++first;
}
return n - number_of_vertices();
}
// DISPLACEMENT
Vertex_handle move_point(Vertex_handle v, const Weighted_point & p);
// Displacement works only for Regular triangulation
// without hidden points at any time
Vertex_handle move_if_no_collision(Vertex_handle v, const Weighted_point & p);
Vertex_handle move(Vertex_handle v, const Weighted_point & p);
// REMOVE CLUSTER - works only when Regular has no hidden point at all
// "regular as Delaunay"
template < typename InputIterator >
size_type remove_cluster(InputIterator first, InputIterator beyond)
{
Self tmp;
Vertex_remover<Self> remover (tmp);
return Tr_Base::remove(first, beyond, remover);
}
protected:
Oriented_side
side_of_oriented_power_sphere(const Weighted_point &p0,
const Weighted_point &p1,
const Weighted_point &p2,
const Weighted_point &p3,
const Weighted_point &p,
bool perturb = false) const;
Oriented_side
side_of_oriented_power_circle(const Weighted_point &p0,
const Weighted_point &p1,
const Weighted_point &p2,
const Weighted_point &p,
bool perturb = false) const;
Bounded_side
side_of_bounded_power_circle(const Weighted_point &p0,
const Weighted_point &p1,
const Weighted_point &p2,
const Weighted_point &p,
bool perturb = false) const;
Bounded_side
side_of_bounded_power_segment(const Weighted_point &p0,
const Weighted_point &p1,
const Weighted_point &p,
bool perturb = false) const;
public:
// Queries
Bounded_side
side_of_power_sphere(Cell_handle c, const Weighted_point &p,
bool perturb = false) const;
Bounded_side
side_of_power_circle(const Facet & f, const Weighted_point & p,
bool /* perturb */ = false) const
{
return side_of_power_circle(f.first, f.second, p);
}
Bounded_side
side_of_power_circle(Cell_handle c, int i, const Weighted_point &p,
bool perturb = false) const;
Bounded_side
side_of_power_segment(Cell_handle c, const Weighted_point &p,
bool perturb = false) const;
Vertex_handle
nearest_power_vertex_in_cell(const Bare_point& p,
Cell_handle c) const;
Vertex_handle
nearest_power_vertex(const Bare_point& p, Cell_handle c =
Cell_handle()) const;
bool is_Gabriel(Cell_handle c, int i) const;
bool is_Gabriel(Cell_handle c, int i, int j) const;
bool is_Gabriel(const Facet& f)const ;
bool is_Gabriel(const Edge& e) const;
bool is_Gabriel(Vertex_handle v) const;
// Dual functions
Bare_point dual(Cell_handle c) const;
Object dual(const Facet & f) const
{ return dual( f.first, f.second ); }
Object dual(Cell_handle c, int i) const;
template < class Stream>
Stream& draw_dual(Stream & os)
{
for (Finite_facets_iterator fit = finite_facets_begin(),
end = finite_facets_end();
fit != end; ++fit) {
Object o = dual(*fit);
if (const Segment *s = object_cast<Segment>(&o)) os << *s;
else if (const Ray *r = object_cast<Ray>(&o)) os << *r;
else if (const Bare_point *p = object_cast<Bare_point>(&o)) os << *p;
}
return os;
}
bool is_valid(bool verbose = false, int level = 0) const;
protected:
bool
less_power_distance(const Bare_point &p,
const Weighted_point &q,
const Weighted_point &r) const
{
return
geom_traits().compare_power_distance_3_object()(p, q, r) == SMALLER;
}
Bare_point
construct_weighted_circumcenter(const Weighted_point &p,
const Weighted_point &q,
const Weighted_point &r,
const Weighted_point &s) const
{
return geom_traits().construct_weighted_circumcenter_3_object()(p,q,r,s);
}
Bare_point
construct_weighted_circumcenter(const Weighted_point &p,
const Weighted_point &q,
const Weighted_point &r) const
{
return geom_traits().construct_weighted_circumcenter_3_object()(p,q,r);
}
Line
construct_perpendicular_line(const Plane &pl, const Bare_point &p) const
{
return geom_traits().construct_perpendicular_line_3_object()(pl, p);
}
Plane
construct_plane(const Bare_point &p, const Bare_point &q, const Bare_point &r) const
{
return geom_traits().construct_plane_3_object()(p, q, r);
}
Ray
construct_ray(const Bare_point &p, const Line &l) const
{
return geom_traits().construct_ray_3_object()(p, l);
}
Object
construct_object(const Bare_point &p) const
{
return geom_traits().construct_object_3_object()(p);
}
Object
construct_object(const Segment &s) const
{
return geom_traits().construct_object_3_object()(s);
}
Object
construct_object(const Ray &r) const
{
return geom_traits().construct_object_3_object()(r);
}
Vertex_handle
nearest_power_vertex(const Bare_point &p,
Vertex_handle v,
Vertex_handle w) const
{
// In case of equality, v is returned.
CGAL_triangulation_precondition(v != w);
if (is_infinite(v)) return w;
if (is_infinite(w)) return v;
return less_power_distance(p, w->point(), v->point()) ? w : v;
}
Oriented_side
power_test(const Weighted_point &p, const Weighted_point &q) const
{
CGAL_triangulation_precondition(this->equal(p, q));
return geom_traits().power_test_3_object()(p, q);
}
Oriented_side
power_test(const Weighted_point &p, const Weighted_point &q,
const Weighted_point &r) const
{
CGAL_triangulation_precondition(this->collinear(p, q, r));
return geom_traits().power_test_3_object()(p, q, r);
}
Oriented_side
power_test(const Weighted_point &p, const Weighted_point &q,
const Weighted_point &r, const Weighted_point &s) const
{
CGAL_triangulation_precondition(this->coplanar(p, q, r, s));
return geom_traits().power_test_3_object()(p, q, r, s);
}
Oriented_side
power_test(const Weighted_point &p, const Weighted_point &q,
const Weighted_point &r, const Weighted_point &s,
const Weighted_point &t) const
{
return geom_traits().power_test_3_object()(p, q, r, s, t);
}
bool in_conflict_3(const Weighted_point &p, const Cell_handle c) const
{
return side_of_power_sphere(c, p, true) == ON_BOUNDED_SIDE;
}
bool in_conflict_2(const Weighted_point &p, const Cell_handle c, int i) const
{
return side_of_power_circle(c, i, p, true) == ON_BOUNDED_SIDE;
}
bool in_conflict_1(const Weighted_point &p, const Cell_handle c) const
{
return side_of_power_segment(c, p, true) == ON_BOUNDED_SIDE;
}
bool in_conflict_0(const Weighted_point &p, const Cell_handle c) const
{
return power_test(c->vertex(0)->point(), p) == ON_POSITIVE_SIDE;
}
bool in_conflict(const Weighted_point &p, const Cell_handle c) const
{
switch (dimension()) {
case 0: return in_conflict_0(p, c);
case 1: return in_conflict_1(p, c);
case 2: return in_conflict_2(p, c, 3);
case 3: return in_conflict_3(p, c);
}
return true;
}
class Conflict_tester_3
{
const Weighted_point &p;
const Self *t;
public:
Conflict_tester_3(const Weighted_point &pt, const Self *tr)
: p(pt), t(tr) {}
bool operator()(const Cell_handle c) const {
return t->in_conflict_3(p, c);
}
bool test_initial_cell(const Cell_handle c) const {
return operator()(c);
}
Oriented_side compare_weight(const Weighted_point &wp1,
const Weighted_point &wp2) const
{
return t->power_test (wp1, wp2);
}
};
class Conflict_tester_2
{
const Weighted_point &p;
const Self *t;
public:
Conflict_tester_2(const Weighted_point &pt, const Self *tr)
: p(pt), t(tr) {}
bool operator()(const Cell_handle c) const
{
return t->in_conflict_2(p, c, 3);
}
bool test_initial_cell(const Cell_handle c) const {
return operator()(c);
}
Oriented_side compare_weight(const Weighted_point &wp1,
const Weighted_point &wp2) const
{
return t->power_test (wp1, wp2);
}
};
class Conflict_tester_1
{
const Weighted_point &p;
const Self *t;
public:
Conflict_tester_1(const Weighted_point &pt, const Self *tr)
: p(pt), t(tr) {}
bool operator()(const Cell_handle c) const
{
return t->in_conflict_1(p, c);
}
bool test_initial_cell(const Cell_handle c) const {
return operator()(c);
}
Oriented_side compare_weight(const Weighted_point &wp1,
const Weighted_point &wp2) const
{
return t->power_test (wp1, wp2);
}
};
class Conflict_tester_0
{
const Weighted_point &p;
const Self *t;
public:
Conflict_tester_0(const Weighted_point &pt, const Self *tr)
: p(pt), t(tr) {}
bool operator()(const Cell_handle c) const
{
return t->in_conflict_0(p, c);
}
bool test_initial_cell(const Cell_handle c) const {
return operator()(c);
}
int compare_weight(const Weighted_point &wp1,
const Weighted_point &wp2) const
{
return t->power_test (wp1, wp2);
}
};
class Hidden_point_visitor
{
Self *t;
mutable std::vector<Vertex_handle> vertices;
mutable std::vector<Weighted_point> hidden_points;
public:
Hidden_point_visitor(Self *tr) : t(tr) {}
template <class InputIterator>
void process_cells_in_conflict(InputIterator start, InputIterator end) const
{
int dim = t->dimension();
while (start != end) {
std::copy((*start)->hidden_points_begin(),
(*start)->hidden_points_end(),
std::back_inserter(hidden_points));
for (int i=0; i<=dim; i++) {
Vertex_handle v = (*start)->vertex(i);
if (v->cell() != Cell_handle()) {
vertices.push_back(v);
v->set_cell(Cell_handle());
}
}
start ++;
}
}
void reinsert_vertices(Vertex_handle v) {
Cell_handle hc = v->cell();
for (typename std::vector<Vertex_handle>::iterator
vi = vertices.begin(); vi != vertices.end(); ++vi) {
if ((*vi)->cell() != Cell_handle()) continue;
hc = t->locate ((*vi)->point(), hc);
hide_point(hc, (*vi)->point());
t->tds().delete_vertex(*vi);
}
vertices.clear();
for (typename std::vector<Weighted_point>::iterator
hp = hidden_points.begin(); hp != hidden_points.end(); ++hp) {
hc = t->locate (*hp, hc);
hide_point (hc, *hp);
}
hidden_points.clear();
}
Vertex_handle replace_vertex(Cell_handle c, int index,
const Weighted_point &p) {
Vertex_handle v = c->vertex(index);
hide_point(c, v->point());
v->set_point(p);
return v;
}
void hide_point(Cell_handle c, const Weighted_point &p) {
c->hide_point(p);
}
};
template < class RegularTriangulation_3 >
class Vertex_remover;
template < class RegularTriangulation_3 >
class Vertex_inserter;
Hidden_point_visitor hidden_point_visitor;
};
template < class Gt, class Tds >
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
Regular_triangulation_3<Gt,Tds>::
nearest_power_vertex_in_cell(const Bare_point& p,
Cell_handle c) const
// Returns the finite vertex of the cell c with smaller
// power distance to p.
{
CGAL_triangulation_precondition(dimension() >= 1);
Vertex_handle nearest = nearest_power_vertex(p,
c->vertex(0),
c->vertex(1));
if (dimension() >= 2) {
nearest = nearest_power_vertex(p, nearest, c->vertex(2));
if (dimension() == 3)
nearest = nearest_power_vertex(p, nearest, c->vertex(3));
}
return nearest;
}
template < class Gt, class Tds >
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
Regular_triangulation_3<Gt,Tds>::
nearest_power_vertex(const Bare_point& p, Cell_handle start) const
{
if (number_of_vertices() == 0)
return Vertex_handle();
// Use a brute-force algorithm if dimension < 3.
if (dimension() < 3) {
Finite_vertices_iterator vit = finite_vertices_begin();
Vertex_handle res = vit;
++vit;
for (Finite_vertices_iterator end = finite_vertices_end(); vit != end; ++vit)
res = nearest_power_vertex(p, res, vit);
return res;
}
Locate_type lt;
int li, lj;
// I put the cast here temporarily
// until we solve the traits class pb of regular triangulation
Cell_handle c = locate(static_cast<Weighted_point>(p), lt, li, lj, start);
// - start with the closest vertex from the located cell.
// - repeatedly take the nearest of its incident vertices if any
// - if not, we're done.
Vertex_handle nearest = nearest_power_vertex_in_cell(p, c);
std::vector<Vertex_handle> vs;
vs.reserve(32);
while (true) {
Vertex_handle tmp = nearest;
adjacent_vertices(nearest, std::back_inserter(vs));
for (typename std::vector<Vertex_handle>::const_iterator
vsit = vs.begin(); vsit != vs.end(); ++vsit)
tmp = nearest_power_vertex(p, tmp, *vsit);
if (tmp == nearest)
break;
vs.clear();
nearest = tmp;
}
return nearest;
}
template < class Gt, class Tds >
typename Regular_triangulation_3<Gt,Tds>::Bare_point
Regular_triangulation_3<Gt,Tds>::
dual(Cell_handle c) const
{
CGAL_triangulation_precondition(dimension()==3);
CGAL_triangulation_precondition( ! is_infinite(c) );
return construct_weighted_circumcenter( c->vertex(0)->point(),
c->vertex(1)->point(),
c->vertex(2)->point(),
c->vertex(3)->point() );
}
template < class Gt, class Tds >
typename Regular_triangulation_3<Gt,Tds>::Object
Regular_triangulation_3<Gt,Tds>::
dual(Cell_handle c, int i) const
{
CGAL_triangulation_precondition(dimension()>=2);
CGAL_triangulation_precondition( ! is_infinite(c,i) );
if ( dimension() == 2 ) {
CGAL_triangulation_precondition( i == 3 );
return construct_object(
construct_weighted_circumcenter(c->vertex(0)->point(),
c->vertex(1)->point(),
c->vertex(2)->point()) );
}
// dimension() == 3
Cell_handle n = c->neighbor(i);
if ( ! is_infinite(c) && ! is_infinite(n) )
return construct_object(construct_segment( dual(c), dual(n) ));
// either n or c is infinite
int in;
if ( is_infinite(c) )
in = n->index(c);
else {
n = c;
in = i;
}
// n now denotes a finite cell, either c or c->neighbor(i)
int ind[3] = {(in+1)&3,(in+2)&3,(in+3)&3};
if ( (in&1) == 1 )
std::swap(ind[0], ind[1]);
const Weighted_point& p = n->vertex(ind[0])->point();
const Weighted_point& q = n->vertex(ind[1])->point();
const Weighted_point& r = n->vertex(ind[2])->point();
Line l =
construct_perpendicular_line( construct_plane(p,q,r),
construct_weighted_circumcenter(p,q,r) );
return construct_object(construct_ray( dual(n), l));
}
template < class Gt, class Tds >
Oriented_side
Regular_triangulation_3<Gt,Tds>::
side_of_oriented_power_sphere(const Weighted_point &p0,
const Weighted_point &p1,
const Weighted_point &p2,
const Weighted_point &p3,
const Weighted_point &p, bool perturb) const
{
CGAL_triangulation_precondition( orientation(p0, p1, p2, p3) == POSITIVE );
using namespace boost;
Oriented_side os = power_test(p0, p1, p2, p3, p);
if (os != ON_ORIENTED_BOUNDARY || !perturb)
return os;
// We are now in a degenerate case => we do a symbolic perturbation.
// We sort the points lexicographically.
const Weighted_point * points[5] = {&p0, &p1, &p2, &p3, &p};
std::sort(points, points + 5,
boost::bind(geom_traits().compare_xyz_3_object(),
boost::bind(Dereference<Weighted_point>(), _1),
boost::bind(Dereference<Weighted_point>(), _2)) == SMALLER);
// We successively look whether the leading monomial, then 2nd monomial
// of the determinant has non null coefficient.
for (int i=4; i>1; --i) {
if (points[i] == &p)
return ON_NEGATIVE_SIDE; // since p0 p1 p2 p3 are non coplanar
// and positively oriented
Orientation o;
if (points[i] == &p3 && (o = orientation(p0,p1,p2,p)) != COPLANAR )
return o;
if (points[i] == &p2 && (o = orientation(p0,p1,p,p3)) != COPLANAR )
return o;
if (points[i] == &p1 && (o = orientation(p0,p,p2,p3)) != COPLANAR )
return o;
if (points[i] == &p0 && (o = orientation(p,p1,p2,p3)) != COPLANAR )
return o;
}
CGAL_triangulation_assertion(false);
return ON_NEGATIVE_SIDE;
}
template < class Gt, class Tds >
Bounded_side
Regular_triangulation_3<Gt,Tds>::
side_of_power_sphere(Cell_handle c, const Weighted_point &p,
bool perturb) const
{
CGAL_triangulation_precondition( dimension() == 3 );
int i3;
if ( ! c->has_vertex( infinite_vertex(), i3 ) ) {
return Bounded_side( side_of_oriented_power_sphere(c->vertex(0)->point(),
c->vertex(1)->point(),
c->vertex(2)->point(),
c->vertex(3)->point(),
p, perturb) );
}
// else infinite cell :
int i0,i1,i2;
if ( (i3%2) == 1 ) {
i0 = (i3+1)&3;
i1 = (i3+2)&3;
i2 = (i3+3)&3;
}
else {
i0 = (i3+2)&3;
i1 = (i3+1)&3;
i2 = (i3+3)&3;
}
// general case
Orientation o = orientation(c->vertex(i0)->point(),
c->vertex(i1)->point(),
c->vertex(i2)->point(), p);
if (o != ZERO)
return Bounded_side(o);
// else p coplanar with i0,i1,i2
return side_of_bounded_power_circle(c->vertex(i0)->point(),
c->vertex(i1)->point(),
c->vertex(i2)->point(),
p, perturb);
}
template < class Gt, class Tds >
Bounded_side
Regular_triangulation_3<Gt,Tds>::
side_of_bounded_power_circle(const Weighted_point &p0,
const Weighted_point &p1,
const Weighted_point &p2,
const Weighted_point &p, bool perturb) const
{
CGAL_triangulation_precondition(coplanar_orientation(p0, p1, p2) != 0);
if (coplanar_orientation(p0, p1, p2) == POSITIVE)
return Bounded_side (side_of_oriented_power_circle(p0, p1, p2, p, perturb));
// Wrong because the low level power test already does a coplanar orientation
// test.
// return Bounded_side (- side_of_oriented_power_circle (p0, p2, p1, p,
// perturb));
return Bounded_side (side_of_oriented_power_circle(p0, p2, p1, p, perturb));
}
template < class Gt, class Tds >
Oriented_side
Regular_triangulation_3<Gt,Tds>::
side_of_oriented_power_circle(const Weighted_point &p0,
const Weighted_point &p1,
const Weighted_point &p2,
const Weighted_point &p, bool perturb) const
{
CGAL_triangulation_precondition( coplanar_orientation(p0, p1, p2) == POSITIVE );
using namespace boost;
Oriented_side os = power_test(p0, p1, p2, p);
if (os != ON_ORIENTED_BOUNDARY || !perturb)
return os;
// We are now in a degenerate case => we do a symbolic perturbation.
// We sort the points lexicographically.
const Weighted_point * points[4] = {&p0, &p1, &p2, &p};
std::sort(points, points + 4,
boost::bind(geom_traits().compare_xyz_3_object(),
boost::bind(Dereference<Weighted_point>(), _1),
boost::bind(Dereference<Weighted_point>(), _2)) == SMALLER);
// We successively look whether the leading monomial, then 2nd monomial
// of the determinant has non null coefficient.
// 2 iterations are enough (cf paper)
for (int i=3; i>1; --i) {
if (points[i] == &p)
return ON_NEGATIVE_SIDE; // since p0 p1 p2 are non collinear
// and positively oriented
Orientation o;
if (points[i] == &p2 && (o = coplanar_orientation(p0,p1,p)) != COPLANAR )
return o;
if (points[i] == &p1 && (o = coplanar_orientation(p0,p,p2)) != COPLANAR )
return o;
if (points[i] == &p0 && (o = coplanar_orientation(p,p1,p2)) != COPLANAR )
return o;
}
CGAL_triangulation_assertion(false);
return ON_NEGATIVE_SIDE;
}
template < class Gt, class Tds >
Bounded_side
Regular_triangulation_3<Gt,Tds>::
side_of_power_circle(Cell_handle c, int i, const Weighted_point &p,
bool perturb) const
{
CGAL_triangulation_precondition( dimension() >= 2 );
int i3 = 5;
if ( dimension() == 2 ) {
CGAL_triangulation_precondition( i == 3 );
// the triangulation is supposed to be valid, ie the facet
// with vertices 0 1 2 in this order is positively oriented
if ( ! c->has_vertex( infinite_vertex(), i3 ) )
return Bounded_side( side_of_oriented_power_circle(c->vertex(0)->point(),
c->vertex(1)->point(),
c->vertex(2)->point(),
p, perturb) );
// else infinite facet
// v1, v2 finite vertices of the facet such that v1,v2,infinite
// is positively oriented
Vertex_handle v1 = c->vertex( ccw(i3) ),
v2 = c->vertex( cw(i3) );
CGAL_triangulation_assertion(coplanar_orientation(v1->point(), v2->point(),
mirror_vertex(c, i3)->point()) == NEGATIVE);
Orientation o = coplanar_orientation(v1->point(), v2->point(), p);
if ( o != ZERO )
return Bounded_side( o );
// case when p collinear with v1v2
return side_of_bounded_power_segment(v1->point(),
v2->point(),
p, perturb);
}// dim 2
// else dimension == 3
CGAL_triangulation_precondition( (i >= 0) && (i < 4) );
if ( ( ! c->has_vertex(infinite_vertex(),i3) ) || ( i3 != i ) ) {
// finite facet
// initialization of i0 i1 i2, vertices of the facet positively
// oriented (if the triangulation is valid)
int i0 = (i>0) ? 0 : 1;
int i1 = (i>1) ? 1 : 2;
int i2 = (i>2) ? 2 : 3;
CGAL_triangulation_precondition(this->coplanar(c->vertex(i0)->point(),
c->vertex(i1)->point(),
c->vertex(i2)->point(), p));
return side_of_bounded_power_circle(c->vertex(i0)->point(),
c->vertex(i1)->point(),
c->vertex(i2)->point(),
p, perturb);
}
//else infinite facet
// v1, v2 finite vertices of the facet such that v1,v2,infinite
// is positively oriented
Vertex_handle v1 = c->vertex( next_around_edge(i3,i) ),
v2 = c->vertex( next_around_edge(i,i3) );
Orientation o = (Orientation)
(coplanar_orientation( v1->point(), v2->point(),
c->vertex(i)->point()) *
coplanar_orientation( v1->point(), v2->point(), p));
// then the code is duplicated from 2d case
if ( o != ZERO )
return Bounded_side( -o );
// because p is in f iff
// it is not on the same side of v1v2 as c->vertex(i)
// case when p collinear with v1v2 :
return side_of_bounded_power_segment(v1->point(),
v2->point(),
p, perturb);
}
template < class Gt, class Tds >
Bounded_side
Regular_triangulation_3<Gt,Tds>::
side_of_bounded_power_segment(const Weighted_point &p0,
const Weighted_point &p1,
const Weighted_point &p, bool perturb) const
{
Oriented_side os = power_test(p0, p1, p);
if (os != ON_ORIENTED_BOUNDARY || !perturb)
return Bounded_side(os);
// We are now in a degenerate case => we do a symbolic perturbation.
switch (this->collinear_position(p0, p, p1)) {
case Tr_Base::BEFORE: case Tr_Base::AFTER:
return ON_UNBOUNDED_SIDE;
case Tr_Base::MIDDLE:
return ON_BOUNDED_SIDE;
default:
;
}
CGAL_triangulation_assertion(false);
return ON_UNBOUNDED_SIDE;
}
template < class Gt, class Tds >
Bounded_side
Regular_triangulation_3<Gt,Tds>::
side_of_power_segment(Cell_handle c, const Weighted_point &p,
bool perturb) const
{
CGAL_triangulation_precondition( dimension() == 1 );
if ( ! is_infinite(c,0,1) )
return side_of_bounded_power_segment(c->vertex(0)->point(),
c->vertex(1)->point(),
p, perturb);
Locate_type lt; int i;
Bounded_side soe = side_of_edge( p, c, lt, i );
if (soe != ON_BOUNDARY)
return soe;
// Either we compare weights, or we use the finite neighboring edge
Cell_handle finite_neighbor = c->neighbor(c->index(infinite_vertex()));
CGAL_triangulation_assertion(!is_infinite(finite_neighbor,0,1));
return side_of_bounded_power_segment(finite_neighbor->vertex(0)->point(),
finite_neighbor->vertex(1)->point(),
p, perturb);
}
template < class Gt, class Tds >
bool
Regular_triangulation_3<Gt,Tds>::
is_Gabriel(const Facet& f) const
{
return is_Gabriel(f.first, f.second);
}
template < class Gt, class Tds >
bool
Regular_triangulation_3<Gt,Tds>::
is_Gabriel(Cell_handle c, int i) const
{
CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i));
typename Geom_traits::Side_of_bounded_orthogonal_sphere_3
side_of_bounded_orthogonal_sphere =
geom_traits().side_of_bounded_orthogonal_sphere_3_object();
if ((!is_infinite(c->vertex(i))) &&
side_of_bounded_orthogonal_sphere(
c->vertex(vertex_triple_index(i,0))->point(),
c->vertex(vertex_triple_index(i,1))->point(),
c->vertex(vertex_triple_index(i,2))->point(),
c->vertex(i)->point()) == ON_BOUNDED_SIDE ) return false;
Cell_handle neighbor = c->neighbor(i);
int in = neighbor->index(c);
if ((!is_infinite(neighbor->vertex(in))) &&
side_of_bounded_orthogonal_sphere(
c->vertex(vertex_triple_index(i,0))->point(),
c->vertex(vertex_triple_index(i,1))->point(),
c->vertex(vertex_triple_index(i,2))->point(),
neighbor->vertex(in)->point()) == ON_BOUNDED_SIDE ) return false;
return true;
}
template < class Gt, class Tds >
bool
Regular_triangulation_3<Gt,Tds>::
is_Gabriel(const Edge& e) const
{
return is_Gabriel(e.first, e.second, e.third);
}
template < class Gt, class Tds >
bool
Regular_triangulation_3<Gt,Tds>::
is_Gabriel(Cell_handle c, int i, int j) const
{
CGAL_triangulation_precondition(dimension() == 3 && !is_infinite(c,i,j));
typename Geom_traits::Side_of_bounded_orthogonal_sphere_3
side_of_bounded_orthogonal_sphere =
geom_traits().side_of_bounded_orthogonal_sphere_3_object();
Facet_circulator fcirc = incident_facets(c,i,j),
fdone(fcirc);
Vertex_handle v1 = c->vertex(i);
Vertex_handle v2 = c->vertex(j);
do {
// test whether the vertex of cc opposite to *fcirc
// is inside the sphere defined by the edge e = (s, i,j)
Cell_handle cc = (*fcirc).first;
int ii = (*fcirc).second;
if (!is_infinite(cc->vertex(ii)) &&
side_of_bounded_orthogonal_sphere( v1->point(),
v2->point(),
cc->vertex(ii)->point())
== ON_BOUNDED_SIDE ) return false;
} while(++fcirc != fdone);
return true;
}
template < class Gt, class Tds >
bool
Regular_triangulation_3<Gt,Tds>::
is_Gabriel(Vertex_handle v) const
{
return nearest_power_vertex( v->point().point(), v->cell()) == v;
}
template < class Gt, class Tds >
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
Regular_triangulation_3<Gt,Tds>::
insert(const Weighted_point & p, Cell_handle start)
{
Locate_type lt;
int li, lj;
Cell_handle c = locate(p, lt, li, lj, start);
return insert(p, lt, c, li, lj);
}
template < class Gt, class Tds >
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
Regular_triangulation_3<Gt,Tds>::
insert(const Weighted_point & p, Locate_type lt, Cell_handle c, int li, int lj)
{
switch (dimension()) {
case 3:
{
Conflict_tester_3 tester (p, this);
return insert_in_conflict(p, lt,c,li,lj, tester, hidden_point_visitor);
}
case 2:
{
Conflict_tester_2 tester (p, this);
return insert_in_conflict(p, lt,c,li,lj, tester, hidden_point_visitor);
}
case 1:
{
Conflict_tester_1 tester (p, this);
return insert_in_conflict(p, lt,c,li,lj, tester, hidden_point_visitor);
}
}
Conflict_tester_0 tester (p, this);
return insert_in_conflict(p, lt,c,li,lj, tester, hidden_point_visitor);
}
template < class Gt, class Tds >
template <class CellIt>
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
Regular_triangulation_3<Gt,Tds>::
insert_in_hole(const Weighted_point & p, CellIt cell_begin, CellIt cell_end,
Cell_handle begin, int i)
{
CGAL_triangulation_precondition(cell_begin != cell_end);
hidden_point_visitor.process_cells_in_conflict(cell_begin,cell_end);
Vertex_handle v =
Tr_Base::insert_in_hole(p, cell_begin, cell_end, begin, i);
// Store the hidden points in their new cells and hide vertices that
// have to be hidden
hidden_point_visitor.reinsert_vertices(v);
return v;
}
template < class Gt, class Tds >
template <class CellIt>
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
Regular_triangulation_3<Gt,Tds>::
insert_in_hole(const Weighted_point & p, CellIt cell_begin, CellIt cell_end,
Cell_handle begin, int i, Vertex_handle newv)
{
CGAL_triangulation_precondition(cell_begin != cell_end);
hidden_point_visitor.process_cells_in_conflict(cell_begin,cell_end);
Vertex_handle v =
Tr_Base::insert_in_hole(p, cell_begin, cell_end, begin, i, newv);
// Store the hidden points in their new cells and hide vertices that
// have to be hidden
hidden_point_visitor.reinsert_vertices(v);
return v;
}
template <class Gt, class Tds >
template <class RegularTriangulation_3>
class Regular_triangulation_3<Gt, Tds>::Vertex_remover {
typedef RegularTriangulation_3 Regular;
typedef typename Gt::Point_3 Point;
public:
typedef typename std::vector<Point>::iterator
Hidden_points_iterator;
Vertex_remover(Regular &tmp_) : tmp(tmp_) {}
Regular &tmp;
void add_hidden_points(Cell_handle ch) {
std::copy (ch->hidden_points_begin(), ch->hidden_points_end(),
std::back_inserter(hidden));
}
Hidden_points_iterator hidden_points_begin() {
return hidden.begin();
}
Hidden_points_iterator hidden_points_end() {
return hidden.end();
}
Bounded_side side_of_bounded_circle(const Point &p, const Point &q,
const Point &r, const Point &s, bool perturb = false) const {
return tmp.side_of_bounded_power_circle(p,q,r,s,perturb);
}
private:
// The removal of v may un-hide some points,
// Space functions output them.
std::vector<Point> hidden;
};
// The displacement method works only
// on regular triangulation without hidden points at any time
// the vertex inserter is used only
// for the purpose of displacements
template <class Gt, class Tds >
template <class RegularTriangulation_3>
class Regular_triangulation_3<Gt, Tds>::Vertex_inserter {
typedef RegularTriangulation_3 Regular;
public:
typedef Nullptr_t Hidden_points_iterator;
Vertex_inserter(Regular &tmp_) : tmp(tmp_) {}
Regular &tmp;
void add_hidden_points(Cell_handle) {}
Hidden_points_iterator hidden_points_begin() { return NULL; }
Hidden_points_iterator hidden_points_end() { return NULL; }
Vertex_handle insert(const Weighted_point& p,
Locate_type lt, Cell_handle c, int li, int lj) {
return tmp.insert(p, lt, c, li, lj);
}
Vertex_handle insert(const Weighted_point& p, Cell_handle c) {
return tmp.insert(p, c);
}
Vertex_handle insert(const Weighted_point& p) {
return tmp.insert(p);
}
};
template < class Gt, class Tds >
void
Regular_triangulation_3<Gt,Tds>::
remove(Vertex_handle v)
{
Cell_handle c;
if (dimension() > 0)
c = v->cell()->neighbor(v->cell()->index(v));
Self tmp;
Vertex_remover<Self> remover(tmp);
Tr_Base::remove(v,remover);
// Re-insert the points that v was hiding.
for (typename Vertex_remover<Self>::Hidden_points_iterator
hi = remover.hidden_points_begin();
hi != remover.hidden_points_end(); ++hi) {
Vertex_handle hv = insert (*hi, c);
if (hv != Vertex_handle()) c = hv->cell();
}
CGAL_triangulation_expensive_postcondition (is_valid());
}
// Again, verbatim copy from Delaunay.
template < class Gt, class Tds >
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
Regular_triangulation_3<Gt,Tds>::
move_point(Vertex_handle v, const Weighted_point & p)
{
CGAL_triangulation_precondition(! is_infinite(v));
CGAL_triangulation_expensive_precondition(is_vertex(v));
// Dummy implementation for a start.
// Remember an incident vertex to restart
// the point location after the removal.
Cell_handle c = v->cell();
Vertex_handle old_neighbor = c->vertex(c->index(v) == 0 ? 1 : 0);
CGAL_triangulation_assertion(old_neighbor != v);
remove(v);
if (dimension() <= 0)
return insert(p);
return insert(p, old_neighbor->cell());
}
// Displacement works only for Regular triangulation
// without hidden points at any time
template < class Gt, class Tds >
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
Regular_triangulation_3<Gt,Tds>::
move_if_no_collision(Vertex_handle v, const Weighted_point &p)
{
Self tmp;
Vertex_remover<Self> remover (tmp);
Vertex_inserter<Self> inserter (*this);
Vertex_handle res = Tr_Base::move_if_no_collision(v,p,remover,inserter);
CGAL_triangulation_expensive_postcondition(is_valid());
return res;
}
template <class Gt, class Tds >
typename Regular_triangulation_3<Gt,Tds>::Vertex_handle
Regular_triangulation_3<Gt,Tds>::
move(Vertex_handle v, const Weighted_point &p) {
CGAL_triangulation_precondition(!is_infinite(v));
if(v->point() == p) return v;
Self tmp;
Vertex_remover<Self> remover (tmp);
Vertex_inserter<Self> inserter (*this);
return Tr_Base::move(v,p,remover,inserter);
}
template < class Gt, class Tds >
bool
Regular_triangulation_3<Gt,Tds>::
is_valid(bool verbose, int level) const
{
if ( ! Tr_Base::is_valid(verbose,level) ) {
if (verbose)
std::cerr << "invalid base triangulation" << std::endl;
CGAL_triangulation_assertion(false);
return false;
}
switch ( dimension() ) {
case 3:
{
for(Finite_cells_iterator it = finite_cells_begin(), end = finite_cells_end(); it != end; ++it) {
is_valid_finite(it, verbose, level);
for(int i=0; i<4; i++) {
if ( !is_infinite
(it->neighbor(i)->vertex(it->neighbor(i)->index(it))) ) {
if ( side_of_power_sphere
(it,
it->neighbor(i)->vertex(it->neighbor(i)->index(it))->point())
== ON_BOUNDED_SIDE ) {
if (verbose)
std::cerr << "non-empty sphere " << std::endl;
CGAL_triangulation_assertion(false);
return false;
}
}
}
}
break;
}
case 2:
{
for(Finite_facets_iterator it = finite_facets_begin(), end = finite_facets_end(); it!= end; ++it) {
is_valid_finite((*it).first, verbose, level);
for(int i=0; i<3; i++) {
if( !is_infinite
((*it).first->neighbor(i)->vertex( (((*it).first)->neighbor(i))
->index((*it).first))) ) {
if ( side_of_power_circle
( (*it).first, 3,
(*it).first->neighbor(i)->
vertex( (((*it).first)->neighbor(i))
->index((*it).first) )->point() )
== ON_BOUNDED_SIDE ) {
if (verbose)
std::cerr << "non-empty circle " << std::endl;
CGAL_triangulation_assertion(false);
return false;
}
}
}
}
break;
}
case 1:
{
for(Finite_edges_iterator it = finite_edges_begin(), end = finite_edges_end(); it != end; ++it) {
is_valid_finite((*it).first, verbose, level);
for(int i=0; i<2; i++) {
if( !is_infinite
((*it).first->neighbor(i)->vertex( (((*it).first)->neighbor(i))
->index((*it).first))) ) {
if ( side_of_power_segment
( (*it).first,
(*it).first->neighbor(i)->
vertex( (((*it).first)->neighbor(i))
->index((*it).first) )->point() )
== ON_BOUNDED_SIDE ) {
if (verbose)
std::cerr << "non-empty edge " << std::endl;
CGAL_triangulation_assertion(false);
return false;
}
}
}
}
break;
}
}
if (verbose)
std::cerr << "valid Regular triangulation" << std::endl;
return true;
}
} //namespace CGAL
#if defined(BOOST_MSVC)
# pragma warning(pop)
#endif
#endif // CGAL_REGULAR_TRIANGULATION_3_H
|