/usr/include/CGAL/Stream_lines_2.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 | // Copyright (c) 2005 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Abdelkrim Mebarki <Abdelkrim.Mebarki@sophia.inria.fr>
#ifndef CGAL_STREAM_LINES_2_H_
#define CGAL_STREAM_LINES_2_H_
#include <CGAL/basic.h>
#include <CGAL/Cartesian.h>
#include <CGAL/Filtered_kernel.h>
#include <CGAL/Delaunay_triangulation_2.h>
#include <queue>
#include <cmath>
#include <fstream>
#include <iostream>
#include <CGAL/squared_distance_2.h>
#include <CGAL/streamlines_assertions.h>
#include <boost/tuple/tuple.hpp>
#include <boost/random/uniform_real.hpp> // undocumented class
#include <boost/random/linear_congruential.hpp>
#include <boost/random/uniform_smallint.hpp>
namespace CGAL {
template <class VectorField_2, class Integrator_2>
class Stream_lines_2
{
public:
typedef typename VectorField_2::Vector_field_2 Vector_field_2;
typedef typename VectorField_2::Geom_traits Geom_traits;
typedef typename VectorField_2::FT FT;
typedef typename VectorField_2::Point_2 Point_2;
typedef typename VectorField_2::Vector_2 Vector_2;
protected:
typedef Geom_traits Kernel;
typedef CGAL::Triangulation_vertex_base_2<Kernel> Vb;
typedef CGAL::Triangulation_face_base_2<Kernel> Fb;
typedef CGAL::Triangulation_data_structure_2<Vb,Fb> TDS;
typedef CGAL::Delaunay_triangulation_2<Kernel,TDS> DT;
typedef typename DT::Vertex_handle Vertex_handle;
typedef typename DT::Face_handle Face_handle;
typedef typename DT::Face_circulator Face_circulator;
typedef typename DT::Edge_iterator Edge_iterator;
typedef std::pair<Point_2,FT> Circle;
typedef boost::tuple<Vertex_handle,Vertex_handle,Vertex_handle,Circle> Pq_element;
Pq_element Biggest_circle;
FT distance(const Point_2 & p, const Point_2 & q)
{
return sqrt(squared_distance(p, q));
}
int ir;
int il;
Pq_element Pq_element_max_r;
Pq_element Pq_previous_r,Pq_current_r,Pq_next_r;
Pq_element Pq_element_max_l;
Pq_element Pq_previous_l,Pq_current_l,Pq_next_l;
public:
DT m_DT;
typedef std::list<Point_2> Point_container_2;
typedef typename Point_container_2::iterator Point_iterator_2;
typedef std::list<std::pair<Point_iterator_2, Point_iterator_2> > Iterator_container_2;
Iterator_container_2 iterator_container;
typedef std::list<Vertex_handle> Vertex_container_2;
typedef typename Iterator_container_2::iterator Stream_line_iterator_2;
typedef std::list<Point_container_2> Stream_line_container_2;
protected:
Stream_line_container_2 stl_container;
class C
{
public:
bool operator()(const Pq_element &a1, const Pq_element
&a2)
{
return a1.template get<3>().second < a2.template get<3>().second ;
}
};
std::priority_queue<Pq_element, std::vector<Pq_element>, C> pq;
int iOrder_insertion;
FT fSepStl_seed;
FT separating_distance;
FT saturation_ratio;
Point_2 seed_point;
int samp_step;
unsigned int _number_of_lines;
Vector_field_2 * vf_2;
Integrator_2 * int_2;
public:
void set_separating_distance(FT new_value){separating_distance = new_value;}
void set_saturation_ratio(FT new_value){ saturation_ratio = new_value;}
FT get_separating_distance() const
{
return separating_distance;
}
FT get_saturation_ratio() const
{
return saturation_ratio;
}
void update()
{
ir = il = 0; // initialization
fSepStl_seed = separating_distance*saturation_ratio;
m_DT.clear();
Point_2 pPoint;
pPoint = Point_2(min_x-separating_distance,min_y-separating_distance);
m_DT.insert(pPoint);
pPoint = Point_2(min_x-separating_distance,max_y+separating_distance);
m_DT.insert(pPoint);
pPoint = Point_2(max_x+separating_distance,min_y-separating_distance);
m_DT.insert(pPoint);
pPoint = Point_2(max_x+separating_distance,max_y+separating_distance);
m_DT.insert(pPoint);
for (int i=(int) (min_x-separating_distance);i<max_x+(int)
separating_distance;i=i+(int) (fSepStl_seed))
{
pPoint = Point_2((FT)i,(FT)max_y+separating_distance);
m_DT.insert(pPoint);
pPoint = Point_2((FT)max_x+separating_distance,(FT)i);
m_DT.insert(pPoint);
pPoint = Point_2((FT)i,min_y-separating_distance);
m_DT.insert(pPoint);
pPoint = Point_2(min_x-separating_distance,(FT)i);
m_DT.insert(pPoint);
}
_number_of_lines = 0;
place_stream_lines(*vf_2, *int_2,
samp_step);
}
protected:
void place_stream_lines(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator,
const int & sampling_step, const bool & step_by_step = false);
bool get_next_seed_point(FT & distanceg, Point_2 & seed_point_);
FT find_smallest_circle(const Vertex_handle & pVertex_handle);
Vertex_handle insert_point(const Point_2 & pPoint, FT& fDist,bool bDistanceCalculation);
Vertex_handle insert_point(const Point_2 & pPoint, const Face_handle & m_Face_handle, FT& fDist,
bool bDistanceCalculation);
void integrate_streamline(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator,
Point_container_2& stl, Point_2& seed_point_, Vertex_container_2& stl_vertices, const int & sampling_step);
void integrate_forward(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator,
Point_container_2& stl,Point_2& seed_point,
Vertex_container_2& stl_vertices, const int & sampling_step);
void integrate_backward(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator, Point_container_2&
stl, Vertex_container_2& stl_vertices, const int & sampling_step);
void insert_streamline(const Vector_field_2 & vector_field_2, Point_container_2 stl,
Vertex_container_2 stl_vertices);
void pq_elements(const Vector_field_2 & vector_field_2, Vertex_container_2 stl_vertices, int i,
const Vertex_handle & m_Vertex_handle, int before_end);
void make_iterator();
public:
Stream_lines_2(const Vector_field_2 & m_vector_field_2, const Integrator_2 & m_integrator, const FT
& m_separating_distance, const FT & m_saturation_ratio, const int & sampling_insertion = 0, const bool &
step_by_step = false);
bool continue_next(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator, const int & sampling_step);
Stream_line_iterator_2 begin();
Stream_line_iterator_2 end();
// for visualizing streamlines
void print_stream_lines(std::ofstream & fw);
void print_stream_lines_eps(std::ofstream & fw);
std::list<Point_2> get_pq();
unsigned int number_of_lines() { return _number_of_lines; }
std::list< std::pair<Point_2, Point_2> > get_tr()
{
std::list< std::pair<Point_2, Point_2> > _list;
Edge_iterator eit = m_DT.edges_begin();
for (;eit != m_DT.edges_end();eit++)
{
Point_2 p1 = (*eit).first->vertex(m_DT.ccw((*eit).second))->point();
Point_2 p2 = (*eit).first->vertex(m_DT.cw((*eit).second))->point();
_list.push_front(std::pair<Point_2, Point_2>(p1, p2));
}
return _list;
}
std::pair<Point_2, FT> get_biggest_circle()
{
Pq_element m_Pq = Biggest_circle;
std::pair<Point_2, FT> circle(m_Pq.template get<3>().first, m_Pq.template get<3>().second);
return circle;
}
protected:
FT max_x;
FT min_x;
FT max_y;
FT min_y;
protected:
Stream_line_iterator_2 begin_iterator;
Stream_line_iterator_2 end_iterator;
private:
int number_of_points;
};
template <class VectorField_2, class Integrator_2>
Stream_lines_2<VectorField_2, Integrator_2>::Stream_lines_2(const Vector_field_2 &
vector_field_2, const Integrator_2 & m_integrator, const FT & m_separating_distance, const FT
& m_saturation_ratio, const int & sampling_step, const bool &
step_by_step)
{
separating_distance = m_separating_distance;
saturation_ratio = m_saturation_ratio;
ir = il = 0; // initialization
fSepStl_seed = separating_distance*saturation_ratio;
max_x = vector_field_2.bbox().xmax();
min_x = vector_field_2.bbox().xmin();
max_y = vector_field_2.bbox().ymax();
min_y = vector_field_2.bbox().ymin();
m_DT.clear();
Point_2 pPoint;
pPoint = Point_2(min_x-separating_distance,min_y-separating_distance);
m_DT.insert(pPoint);
pPoint = Point_2(min_x-separating_distance,max_y+separating_distance);
m_DT.insert(pPoint);
pPoint = Point_2(max_x+separating_distance,min_y-separating_distance);
m_DT.insert(pPoint);
pPoint = Point_2(max_x+separating_distance,max_y+separating_distance);
m_DT.insert(pPoint);
for (int i=(int) (min_x-separating_distance);i<max_x+(int)
separating_distance;i=i+(int) (fSepStl_seed))
{
pPoint = Point_2((FT)i,(FT)max_y+separating_distance);
m_DT.insert(pPoint);
pPoint = Point_2((FT)max_x+separating_distance,(FT)i);
m_DT.insert(pPoint);
pPoint = Point_2((FT)i,min_y-separating_distance);
m_DT.insert(pPoint);
pPoint = Point_2(min_x-separating_distance,(FT)i);
m_DT.insert(pPoint);
}
_number_of_lines = 0;
vf_2 = new Vector_field_2(vector_field_2);
int_2 = new Integrator_2(m_integrator);
samp_step = sampling_step;
stl_container.clear();
place_stream_lines(vector_field_2, m_integrator,
sampling_step, step_by_step);
}
template <class VectorField_2, class Integrator_2>
void Stream_lines_2<VectorField_2, Integrator_2>::place_stream_lines(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator, const int & sampling_step, const bool & step_by_step)
{
seed_point = Point_2((max_x+min_x)/2.0,(max_y+min_y)/2.0);
// the first chosen point can be not valid
boost::rand48 rng;
boost::uniform_real<> ur_x(min_x, max_x);
boost::uniform_real<> ur_y(min_y, max_y);
boost::variate_generator<boost::rand48&, boost::uniform_real<> > die_x(rng, ur_x);
boost::variate_generator<boost::rand48&, boost::uniform_real<> > die_y(rng, ur_y);
while(!vector_field_2.is_in_domain(seed_point))
{
// std::cout << "searching valid seed point..\n";
seed_point = Point_2(die_x(), die_y());
}
// std::cout << seed_point << " first seed point\n";
// std::cout << "creating the placement..\n";
FT distance = (FT) max_x * (1.0/2.0);
bool b = (distance>fSepStl_seed);
// int i=0;
if (!step_by_step)
while(b)
{
Point_container_2 stl;
Vertex_container_2 stl_vertices;
integrate_streamline(vector_field_2, integrator, stl, seed_point, stl_vertices, sampling_step);
insert_streamline(vector_field_2, stl, stl_vertices);
_number_of_lines++;
b = get_next_seed_point(distance,seed_point);
}
else
{
Point_container_2 stl;
Vertex_container_2 stl_vertices;
integrate_streamline(vector_field_2, integrator, stl, seed_point, stl_vertices, sampling_step);
insert_streamline(vector_field_2, stl, stl_vertices);
_number_of_lines++;
b = get_next_seed_point(distance,seed_point);
}
make_iterator();
}
template <class VectorField_2, class Integrator_2>
bool Stream_lines_2<VectorField_2, Integrator_2>::continue_next(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator, const int & sampling_step)
{
FT distance;
Point_container_2 stl;
Vertex_container_2 stl_vertices;
integrate_streamline(vector_field_2, integrator, stl, seed_point, stl_vertices, sampling_step);
insert_streamline(vector_field_2, stl, stl_vertices);
_number_of_lines++;
make_iterator();
return get_next_seed_point(distance,seed_point);
}
// get the next seed point
template <class VectorField_2, class Integrator_2>
void
Stream_lines_2<VectorField_2,Integrator_2>::integrate_streamline(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator, Point_container_2& stl, Point_2&
seed_point_, Vertex_container_2& stl_vertices, const int & sampling_step)
{
integrate_forward(vector_field_2, integrator, stl, seed_point_, stl_vertices, sampling_step);
integrate_backward(vector_field_2, integrator, stl, stl_vertices, sampling_step);
}
template <class VectorField_2, class Integrator_2>
inline
typename Stream_lines_2<VectorField_2, Integrator_2>::FT
Stream_lines_2<VectorField_2, Integrator_2>::find_smallest_circle(const Vertex_handle & pVertex_handle)
{
Face_circulator pFace_handle = m_DT.incident_faces(pVertex_handle);
Face_circulator pEnd = pFace_handle;
FT fMin = max_x;
CGAL_For_all(pFace_handle,pEnd)
{
FT fDist =
CGAL::squared_radius(
pFace_handle->vertex(0)->point(),
pFace_handle->vertex(1)->point(),
pFace_handle->vertex(2)->point()) * 4.0;
fDist = sqrt(fDist);
if (fDist < fMin)
{
fMin = fDist;
}
}
return fMin;
}
template <class VectorField_2, class Integrator_2>
inline
typename Stream_lines_2<VectorField_2, Integrator_2>::Vertex_handle
Stream_lines_2<VectorField_2, Integrator_2>::insert_point(const Point_2 & pPoint, FT& fDist,bool bDistanceCalculation)
{
Vertex_handle pVertex_handle = m_DT.insert(pPoint);
if (bDistanceCalculation)
fDist = find_smallest_circle(pVertex_handle);
else
fDist = 0.0;
return (pVertex_handle);
}
template <class VectorField_2, class Integrator_2>
inline
typename Stream_lines_2<VectorField_2, Integrator_2>::Vertex_handle
Stream_lines_2<VectorField_2,Integrator_2>::insert_point(const Point_2 & pPoint, const Face_handle & m_Face_handle, FT& fDist,bool bDistanceCalculation)
{
Vertex_handle pVertex_handle = m_DT.insert(pPoint,m_Face_handle);
if (bDistanceCalculation)
fDist = find_smallest_circle(pVertex_handle);
else
fDist = 0.0;
return (pVertex_handle);
}
template <class VectorField_2, class Integrator_2>
void
Stream_lines_2<VectorField_2, Integrator_2>::integrate_forward(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator, Point_container_2& stl, Point_2& seed_point_, Vertex_container_2& stl_vertices, const int & sampling_step)
{
int sampling = 0; // sampling step;
int insertion = 0; // insertion order;
int insertion_step = 0;
Point_container_2 list_of_point;
Vertex_container_2 list_of_vertex;
number_of_points = 0;
Point_2 pPoint1;
bool bEnd = false;
FT dist;
Point_2 new_point = Point_2 (seed_point_.x(), seed_point_.y());
Vertex_handle m_Vertex_handle = insert_point(new_point, dist, true);
stl_vertices.push_front(m_Vertex_handle);
stl.push_front(new_point);
number_of_points++;
Point_2 old_point = seed_point_;
insertion_step = (int) (((dist)-fSepStl_seed) / (std::max)((FT) sampling_step,vector_field_2.get_integration_step()));
if (insertion_step < 0) insertion_step = 0;
while (!bEnd)
{
Point_2 ex_old_point = old_point;
old_point = new_point;
CGAL_streamlines_precondition(vector_field_2.is_in_domain(old_point));
new_point = integrator(old_point,vector_field_2,true);
bEnd = !vector_field_2.is_in_domain(new_point);
bEnd = bEnd || (new_point == old_point);/* to review */
if(number_of_points > 30)
bEnd = bEnd || ((distance(stl.front(), stl.back()))<vector_field_2.get_integration_step());
FT dist_ = distance(ex_old_point,new_point);
bEnd = bEnd || dist_ < 0.9*vector_field_2.get_integration_step();
if (!bEnd)
{
if(sampling != sampling_step)
{
stl.push_front(new_point);
number_of_points ++;
sampling++;
}
else
{
if (insertion != insertion_step)
{
stl.push_front(new_point);
number_of_points++;
insertion++;
list_of_point.push_front(new_point);
}
else
{
stl.push_front(new_point);
number_of_points++;
list_of_point.push_front(new_point);
list_of_point.pop_front();
m_Vertex_handle = insert_point(new_point, stl_vertices.front()->face(), dist, true);
while ((dist <= separating_distance)&&(!list_of_point.empty()))
{
m_DT.remove(m_Vertex_handle);
for (int i=0;i<=sampling_step;i++){
stl.pop_front();
number_of_points--;}
new_point = list_of_point.front();
list_of_point.pop_front();
m_Vertex_handle = insert_point(new_point, stl_vertices.front()->face(), dist,true);
}
// adaptive insertion order coefficient
insertion_step = (int) (((dist)-fSepStl_seed) /
(std::max)((FT) sampling_step,vector_field_2.get_integration_step()));
if (insertion_step < 0) insertion_step = 0;
list_of_vertex.push_front(m_Vertex_handle);
(bEnd) = (((bEnd))||(dist<separating_distance));
while (!list_of_point.empty())
{
Point_2 p = list_of_point.front();
m_Vertex_handle = insert_point(p, stl_vertices.front()->face(), dist, false);
list_of_vertex.push_front(m_Vertex_handle);
list_of_point.pop_front();
}
while(!list_of_vertex.empty())
{
stl_vertices.push_front(list_of_vertex.front());
list_of_vertex.pop_front();
}
insertion = 0;
}
sampling = 0;
}
}
else
{
if (!list_of_point.empty())
{
new_point = list_of_point.front();
list_of_point.pop_front();
Vertex_handle m_Vertex_handle = insert_point(new_point, dist, true);
while ((dist <= separating_distance)&&(!list_of_point.empty()))
{
m_DT.remove(m_Vertex_handle);
for (int i=0;i<=sampling_step;i++)
{
stl.pop_front();
number_of_points--;
}
new_point = list_of_point.front();
list_of_point.pop_front();
m_Vertex_handle = insert_point(new_point, stl_vertices.front()->face(), dist, true);
}
insertion_step = (int) (((dist)-fSepStl_seed) /
(std::max)((FT) sampling_step,vector_field_2.get_integration_step()));
if (insertion_step < 0) insertion_step = 0;
(bEnd) = (((bEnd))||(dist<separating_distance));
}
while (!list_of_point.empty())
{
Point_2 p = list_of_point.front();
m_Vertex_handle = insert_point(p, stl_vertices.front()->face(), dist, false);
list_of_vertex.push_front(m_Vertex_handle);
list_of_point.pop_front();
}
while(!list_of_vertex.empty())
{
stl_vertices.push_front(list_of_vertex.front());
list_of_vertex.pop_front();
}
}
}
}
template <class VectorField_2, class Integrator_2>
void Stream_lines_2<VectorField_2, Integrator_2>::integrate_backward(const Vector_field_2 & vector_field_2, const Integrator_2 & integrator, Point_container_2& stl, Vertex_container_2& stl_vertices, const int & sampling_step)
{
int sampling = 0; // sampling step;
int insertion = 0; // insertion order;
int insertion_step = 0;
Point_container_2 list_of_point;
Vertex_container_2 list_of_vertex;
Point_2 pPoint1;
bool bEnd = false;
FT dist;
Point_2 new_point = Point_2 (stl.back().x(),stl.back().y());
// to not have duplicate points in the streamline
stl.pop_back();
Vertex_handle m_Vertex_handle = insert_point(new_point, stl_vertices.back()->face(), dist,true);
stl_vertices.push_back(m_Vertex_handle);
stl.push_back(new_point);
number_of_points++;
Point_2 old_point = new_point;
while (!bEnd)
{
Point_2 ex_old_point = old_point;
old_point = new_point;
std::pair<Vector_2, FT> field_vector;
CGAL_streamlines_precondition(vector_field_2.is_in_domain(old_point));
new_point = integrator(old_point,vector_field_2,false);
bEnd = !vector_field_2.is_in_domain(new_point);
FT dist_ = distance(ex_old_point,new_point);
bEnd = bEnd || dist_ < 0.9*vector_field_2.get_integration_step() || (new_point == old_point);/* to review */
if(number_of_points > 30)
bEnd = bEnd || ((distance(stl.front(), stl.back()))<vector_field_2.get_integration_step());
// bEnd = bEnd || (number_of_points > 3000);
if (!bEnd)
{
if(sampling != sampling_step)
{
stl.push_back(new_point);
number_of_points ++;
sampling++;
}
else
{
if (insertion != insertion_step)
{
stl.push_back(new_point);
number_of_points++;
insertion++;
list_of_point.push_back(new_point);
}
else
{
stl.push_back(new_point);
number_of_points++;
list_of_point.push_back(new_point);
list_of_point.pop_back();
m_Vertex_handle = insert_point(new_point, stl_vertices.back()->face(), dist,true);
while ((dist <= separating_distance)&&(!list_of_point.empty()))
{
m_DT.remove(m_Vertex_handle);
for (int i=0;i<=sampling_step;i++)
{
stl.pop_back();
number_of_points--;
}
new_point = list_of_point.back();
list_of_point.pop_back();
m_Vertex_handle = insert_point(new_point, stl_vertices.back()->face(), dist,true);
}
// adaptive insertion order coefficient
insertion_step = (int) (((dist)-fSepStl_seed) /
(std::max)((FT) sampling_step,vector_field_2.get_integration_step()));
if (insertion_step < 0) insertion_step = 0;
list_of_vertex.push_back(m_Vertex_handle);
(bEnd) = (((bEnd))||(dist<separating_distance));
while (!list_of_point.empty())
{
Point_2 p = list_of_point.back();
m_Vertex_handle = insert_point(p, stl_vertices.back()->face(), dist, false);
list_of_vertex.push_front(m_Vertex_handle);
list_of_point.pop_back();
}
while(!list_of_vertex.empty())
{
stl_vertices.push_back(list_of_vertex.back());
list_of_vertex.pop_back();
}
insertion = 0;
}
sampling = 0;
}
}
else
{
if (!list_of_point.empty())
{
new_point = list_of_point.back();
list_of_point.pop_back();
Vertex_handle m_Vertex_handle = insert_point(new_point, stl_vertices.back()->face(), dist, true);
while ((dist <= separating_distance)&&(!list_of_point.empty()))
{
m_DT.remove(m_Vertex_handle);
for (int i=0;i<=sampling_step;i++)
{
stl.pop_back();
number_of_points--;
}
new_point = list_of_point.back();
list_of_point.pop_back();
m_Vertex_handle = insert_point(new_point, stl_vertices.back()->face(), dist, true);
}
// adaptive insertion order coefficient
insertion_step = (int) (((dist)-fSepStl_seed) /
(std::max)((FT) sampling_step,vector_field_2.get_integration_step()));
if (insertion_step < 0) insertion_step = 0;
// list_of_vertex.push_front(m_Vertex_handle);
(bEnd) = (((bEnd))||(dist<separating_distance));
}
while (!list_of_point.empty())
{
Point_2 p = list_of_point.back();
m_Vertex_handle = insert_point(p, stl_vertices.back()->face(), dist, false);
list_of_vertex.push_back(m_Vertex_handle);
list_of_point.pop_back();
}
while(!list_of_vertex.empty())
{
stl_vertices.push_back(list_of_vertex.back());
list_of_vertex.pop_back();
}
}
}
}
template <class VectorField_2, class Integrator_2>
inline void
Stream_lines_2<VectorField_2, Integrator_2>::
insert_streamline(const Vector_field_2 & vector_field_2,
Point_container_2 stl, Vertex_container_2
stl_vertices)
{
stl_container.push_back(stl);
Vertex_handle m_Vertex_handle = NULL;
int i = 1;
unsigned int size_ = (int) (stl_vertices.size());
ir = il = 0;
while (!stl_vertices.empty())
{
pq_elements(vector_field_2, stl_vertices, i, m_Vertex_handle, size_);
m_Vertex_handle = stl_vertices.front();
stl_vertices.pop_front();
i++;
}
}
template <class VectorField_2, class Integrator_2>
void Stream_lines_2<VectorField_2, Integrator_2>::
pq_elements(const Vector_field_2 & vector_field_2, Vertex_container_2 stl_vertices, int i,
const Vertex_handle & m_Vertex_handle, int size_)
{
if ((i!=0) && (i!=(size_))){// && (std::div(i,10).rem!=0)){
Vertex_handle pVertex_handle = stl_vertices.front();
Face_handle pFace_handle;
int iIndex;
if
(m_DT.is_edge(pVertex_handle,m_Vertex_handle,pFace_handle,iIndex))
{
Point_2 p0 = pVertex_handle->point();
Point_2 c = m_DT.circumcenter(pFace_handle);
FT fDist = distance(p0,c);
bool b = vector_field_2.is_in_domain(c) && (fDist >= fSepStl_seed);
if (b)
{
Circle pCircle(c,fDist);
Pq_element m_Pq_element = Pq_element(
pFace_handle->vertex(0),
pFace_handle->vertex(1),
pFace_handle->vertex(2),
pCircle);
if (ir == 0)
{
Pq_previous_r = m_Pq_element;
Pq_element_max_r = m_Pq_element;
ir++;
}
else if (ir == 1)
{
Pq_current_r =
m_Pq_element;ir++;
}
else
{
Pq_next_r = m_Pq_element;
if (Pq_element_max_r.template get<3>().second <= Pq_next_r.template get<3>().second)
Pq_element_max_r = Pq_next_r;
if ((Pq_current_r.template get<3>().second>=Pq_previous_r.template get<3>().second)
&&(Pq_current_r.template get<3>().second>=Pq_next_r.template get<3>().second))
{
pq.push(Pq_current_r);
}
Pq_previous_r = Pq_current_r;
Pq_current_r = Pq_next_r;
ir++;
}
}
p0 = pFace_handle->neighbor(iIndex)->vertex(0)->point();
c = m_DT.circumcenter(pFace_handle->neighbor(iIndex));
fDist = distance(p0,c);
b = vector_field_2.is_in_domain(c) && (fDist >= fSepStl_seed);
if (b)
{
Circle pCircle(c,fDist);
Pq_element m_Pq_element = Pq_element(
pFace_handle->neighbor(iIndex)->vertex(0),
pFace_handle->neighbor(iIndex)->vertex(1),
pFace_handle->neighbor(iIndex)->vertex(2),
pCircle);
if (il == 0)
{
Pq_previous_l = m_Pq_element;
Pq_element_max_l = m_Pq_element;
il++;
}
else if (il == 1)
{
Pq_current_l =
m_Pq_element;il++;
}
else
{
Pq_next_l = m_Pq_element;
if (Pq_element_max_l.template get<3>().second <= Pq_next_l.template get<3>().second)
Pq_element_max_l = Pq_next_l;
if ((Pq_current_l.template get<3>().second>=Pq_previous_l.template get<3>().second)
&&(Pq_current_l.template get<3>().second>=Pq_next_l.template get<3>().second))
{
pq.push(Pq_current_l);
}
Pq_previous_l = Pq_current_l;
Pq_current_l = Pq_next_l;
il++;
}
}
}
if ((ir+il == (int) size_-2)&&(size_>2))
{
pq.push(Pq_element_max_l);
pq.push(Pq_element_max_r);
}
}
else{
Vertex_handle pVertex_handle = stl_vertices.front();
Face_circulator pFace_handle = m_DT.incident_faces(pVertex_handle);
Face_circulator pEnd = pFace_handle;
CGAL_For_all(pFace_handle,pEnd)
{
Point_2 p0 = pFace_handle->vertex(0)->point();
Point_2 c = m_DT.circumcenter(pFace_handle);
bool b = vector_field_2.is_in_domain(c);
if (b){
FT fDist = distance(p0,c);
if (fDist >= fSepStl_seed)
{
Circle pCircle(c,fDist);
Pq_element m_Pq_element = Pq_element(
pFace_handle->vertex(0),
pFace_handle->vertex(1),
pFace_handle->vertex(2),
pCircle);
pq.push(m_Pq_element);
}
}
}
}
}
// get the next seed point
template <class VectorField_2, class Integrator_2>
inline
bool
Stream_lines_2<VectorField_2, Integrator_2>::get_next_seed_point(FT &
distance, Point_2 & seed_point_)
{
Vertex_handle v0, v1, v2;
Face_handle fr;
bool b0,b;
Pq_element m_Pq_element;
do{
CGAL_assertion(!pq.empty());
m_Pq_element = pq.top();
v0 = m_Pq_element.template get<0>();
v1 = m_Pq_element.template get<1>();
v2 = m_Pq_element.template get<2>();
distance = m_Pq_element.template get<3>().second;
pq.pop();
b0 = m_DT.is_face(v0,v1,v2,fr);
if (b0){
seed_point_ = m_Pq_element.template get<3>().first;}
b = (!pq.empty());
}while ((b)&&(!b0));
Biggest_circle = m_Pq_element;
return b;
}
template <class VectorField_2, class Integrator_2>
typename Stream_lines_2<VectorField_2, Integrator_2>::Stream_line_iterator_2
Stream_lines_2<VectorField_2, Integrator_2>::begin()
{
return begin_iterator;
}
template <class VectorField_2, class Integrator_2>
typename Stream_lines_2<VectorField_2, Integrator_2>::Stream_line_iterator_2
Stream_lines_2<VectorField_2, Integrator_2>::end()
{
return end_iterator;
}
template <class VectorField_2, class Integrator_2>
inline
void Stream_lines_2<VectorField_2, Integrator_2>::make_iterator()
{
iterator_container.clear();
for(typename Stream_line_container_2::iterator
begin=stl_container.begin();
begin!=stl_container.end();begin++)
{
std::pair<Point_iterator_2, Point_iterator_2>
iterator_pair((*begin).begin(), (*begin).end());
iterator_container.push_front(iterator_pair);
}
begin_iterator = iterator_container.begin();
end_iterator = iterator_container.end();
}
// output an eps file
template <class VectorField_2, class Integrator_2>
void
Stream_lines_2<VectorField_2, Integrator_2>::print_stream_lines_eps(std::ofstream & fw)
{
typename Stream_line_container_2::iterator it;
Stream_line_container_2 stl_container_temp = stl_container;
fw << "%!PS-Adobe-2.0 EPSF-2.0\n";
fw << "%%BoundingBox: 0 0" << " " << max_x - min_x << " " << max_y - min_y << "\n";
fw << "gsave\n";
fw << "/L {moveto lineto stroke} bind def\n";
fw << 0.5 << " setlinewidth\n";
fw << 0.0 << " " << 0.0 << " " << 0.0 << " setrgbcolor\n";
for(it=stl_container_temp.begin(); it!=stl_container_temp.end(); ++it)
{
typename Point_container_2::iterator begin_point_iterator = (*it).begin();
typename Point_container_2::iterator end_point_iterator = (*it).end();
FT i_prec = (*begin_point_iterator).x() - min_x;
FT j_prec = (*begin_point_iterator).y() - min_y;
begin_point_iterator++;
FT i , j;
for(;begin_point_iterator!=end_point_iterator;begin_point_iterator++)
{
Point_2 p = *begin_point_iterator;
i = p.x() - min_x;
j = p.y() - min_y;
fw << i_prec << " " << j_prec << " " << i << " " << j << " L\n";
i_prec = i;
j_prec = j;
}
}
fw << "grestore\n";
fw << "showpage\n";
fw.close();
}
// output an stl file
template <class VectorField_2, class Integrator_2>
void
Stream_lines_2<VectorField_2, Integrator_2>::print_stream_lines(std::ofstream & fw)
{
typename Stream_line_container_2::iterator it;
Stream_line_container_2 stl_container_temp = stl_container;
fw << max_x - min_x << " " << max_y - min_y << "\n";
fw << stl_container.size() << "\n";
for(it=stl_container_temp.begin(); it!=stl_container_temp.end(); ++it)
{
fw << (*it).size() << "\n";
typename Point_container_2::iterator begin_point_iterator = (*it).begin();
typename Point_container_2::iterator end_point_iterator = (*it).end();
FT i , j;
for(;begin_point_iterator!=end_point_iterator;begin_point_iterator++){
Point_2 p = *begin_point_iterator;
i = p.x() - min_x;
j = p.y() - min_y;
fw << i << " " << j << "\n";
}
}
fw.close();
}
template <class VectorField_2, class Integrator_2>
std::list<typename Stream_lines_2<VectorField_2, Integrator_2>::Point_2>
Stream_lines_2<VectorField_2, Integrator_2>::get_pq()
{
std::list<Point_2> _list;
std::priority_queue<Pq_element, std::vector<Pq_element>, C> pq_temp;
pq_temp = pq;
while (!pq_temp.empty())
{
Pq_element m_Pq_element = pq_temp.top();
Vertex_handle v0 = m_Pq_element.template get<0>();
Vertex_handle v1 = m_Pq_element.template get<1>();
Vertex_handle v2 = m_Pq_element.template get<2>();
pq_temp.pop();
Face_handle fr;
bool b0 = m_DT.is_face(v0,v1,v2,fr);
Point_2 sdPoint = m_Pq_element.template get<3>().first;
if (b0)
_list.push_front(sdPoint);
}
return _list;
}
} //namespace CGAL
#endif
|