/usr/include/CGAL/Subdivision_mask_3.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 | // ======================================================================
//
// Copyright (c) 2005-2011 GeometryFactory (France). All Rights Reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s): Le-Jeng Shiue <Andy.Shiue@gmail.com>
//
// ======================================================================
#ifndef CGAL_POLYHEDRON_SUBDIVISION_STENCILS_H_01292002
#define CGAL_POLYHEDRON_SUBDIVISION_STENCILS_H_01292002
#include <CGAL/basic.h>
#include <CGAL/Origin.h>
#include <CGAL/circulator.h>
namespace CGAL {
// ======================================================================
/// The stencil of the Primal-Quadrilateral-Quadrisection
template <class Poly>
class PQQ_stencil_3 {
public:
typedef Poly Polyhedron;
typedef typename Polyhedron::Vertex_handle Vertex_handle;
typedef typename Polyhedron::Halfedge_handle Halfedge_handle;
typedef typename Polyhedron::Facet_handle Facet_handle;
typedef typename Polyhedron::Traits Traits;
typedef typename Traits::Kernel Kernel;
typedef typename Kernel::FT FT;
typedef typename Kernel::Point_3 Point;
typedef typename Kernel::Vector_3 Vector;
public:
void facet_node(Facet_handle, Point&) {};
void edge_node(Halfedge_handle, Point&) {};
void vertex_node(Vertex_handle, Point&) {};
void border_node(Halfedge_handle, Point&, Point&) {};
};
// ======================================================================
/// Bi-linear geometry mask for PQQ, PTQ, and Sqrt(3) scheme
template <class Poly>
class Linear_mask_3 : public PQQ_stencil_3<Poly> {
public:
typedef Poly Polyhedron;
typedef typename Polyhedron::Vertex_handle Vertex_handle;
typedef typename Polyhedron::Halfedge_handle Halfedge_handle;
typedef typename Polyhedron::Facet_handle Facet_handle;
typedef typename Polyhedron::Halfedge_around_facet_circulator
Halfedge_around_facet_circulator;
typedef typename Polyhedron::Halfedge_around_vertex_circulator
Halfedge_around_vertex_circulator;
typedef typename Polyhedron::Traits Traits;
typedef typename Traits::Kernel Kernel;
typedef typename Kernel::FT FT;
typedef typename Kernel::Point_3 Point;
typedef typename Kernel::Vector_3 Vector;
public:
//
void facet_node(Facet_handle facet, Point& pt) {
Halfedge_around_facet_circulator hcir = facet->facet_begin();
int n = 0;
Point p(0,0,0);
do {
p = p + (hcir->vertex()->point() - ORIGIN);
++n;
} while (++hcir != facet->facet_begin());
pt = ORIGIN + (p - ORIGIN)/FT(n);
}
//
void edge_node(Halfedge_handle edge, Point& pt) {
Point p1 = edge->vertex()->point();
Point p2 = edge->opposite()->vertex()->point();
pt = Point((p1[0]+p2[0])/2, (p1[1]+p2[1])/2, (p1[2]+p2[2])/2);
}
//
void vertex_node(Vertex_handle vertex, Point& pt) {
pt = vertex->point();
}
//
void border_node(Halfedge_handle edge, Point& ept, Point& /*vpt*/){
edge_node(edge, ept);
}
};
// ======================================================================
/// The geometry mask of Catmull-Clark subdivision
template <class Poly>
class CatmullClark_mask_3 : public Linear_mask_3<Poly> {
public:
typedef Poly Polyhedron;
typedef typename Polyhedron::Vertex_handle Vertex_handle;
typedef typename Polyhedron::Halfedge_handle Halfedge_handle;
typedef typename Polyhedron::Facet_handle Facet_handle;
typedef typename Polyhedron::Halfedge_around_facet_circulator
Halfedge_around_facet_circulator;
typedef typename Polyhedron::Halfedge_around_vertex_circulator
Halfedge_around_vertex_circulator;
typedef typename Polyhedron::Traits Traits;
typedef typename Traits::Kernel Kernel;
typedef typename Kernel::FT FT;
typedef typename Kernel::Point_3 Point;
typedef typename Kernel::Vector_3 Vector;
public:
//
void edge_node(Halfedge_handle edge, Point& pt) {
Point p1 = edge->vertex()->point();
Point p2 = edge->opposite()->vertex()->point();
Point f1, f2;
this->facet_node(edge->facet(), f1);
this->facet_node(edge->opposite()->facet(), f2);
pt = Point((p1[0]+p2[0]+f1[0]+f2[0])/4,
(p1[1]+p2[1]+f1[1]+f2[1])/4,
(p1[2]+p2[2]+f1[2]+f2[2])/4 );
}
//
void vertex_node(Vertex_handle vertex, Point& pt) {
Halfedge_around_vertex_circulator vcir = vertex->vertex_begin();
int n = static_cast<int>(circulator_size(vcir));
FT Q[] = {0.0, 0.0, 0.0}, R[] = {0.0, 0.0, 0.0};
Point& S = vertex->point();
Point q;
for (int i = 0; i < n; i++, ++vcir) {
Point& p2 = vcir->opposite()->vertex()->point();
R[0] += (S[0]+p2[0])/2;
R[1] += (S[1]+p2[1])/2;
R[2] += (S[2]+p2[2])/2;
this->facet_node(vcir->facet(), q);
Q[0] += q[0];
Q[1] += q[1];
Q[2] += q[2];
}
R[0] /= n; R[1] /= n; R[2] /= n;
Q[0] /= n; Q[1] /= n; Q[2] /= n;
pt = Point((Q[0] + 2*R[0] + S[0]*(n-3))/n,
(Q[1] + 2*R[1] + S[1]*(n-3))/n,
(Q[2] + 2*R[2] + S[2]*(n-3))/n );
}
//
void border_node(Halfedge_handle edge, Point& ept, Point& vpt) {
Point& ep1 = edge->vertex()->point();
Point& ep2 = edge->opposite()->vertex()->point();
ept = Point((ep1[0]+ep2[0])/2, (ep1[1]+ep2[1])/2, (ep1[2]+ep2[2])/2);
Halfedge_around_vertex_circulator vcir = edge->vertex_begin();
Point& vp1 = vcir->opposite()->vertex()->point();
Point& vp0 = vcir->vertex()->point();
Point& vp_1 = (--vcir)->opposite()->vertex()->point();
vpt = Point((vp_1[0] + 6*vp0[0] + vp1[0])/8,
(vp_1[1] + 6*vp0[1] + vp1[1])/8,
(vp_1[2] + 6*vp0[2] + vp1[2])/8 );
}
};
// ======================================================================
/// The geometry mask of Loop subdivision
template <class Poly>
class Loop_mask_3 : public PQQ_stencil_3<Poly> {
public:
typedef Poly Polyhedron;
typedef typename Polyhedron::Vertex_handle Vertex_handle;
typedef typename Polyhedron::Halfedge_handle Halfedge_handle;
typedef typename Polyhedron::Facet_handle Facet_handle;
typedef typename Polyhedron::Halfedge_around_facet_circulator
Halfedge_around_facet_circulator;
typedef typename Polyhedron::Halfedge_around_vertex_circulator
Halfedge_around_vertex_circulator;
typedef typename Polyhedron::Traits Traits;
typedef typename Traits::Kernel Kernel;
typedef typename Kernel::FT FT;
typedef typename Kernel::Point_3 Point;
typedef typename Kernel::Vector_3 Vector;
public:
//
void edge_node(Halfedge_handle edge, Point& pt) {
Point& p1 = edge->vertex()->point();
Point& p2 = edge->opposite()->vertex()->point();
Point& f1 = edge->next()->vertex()->point();
Point& f2 = edge->opposite()->next()->vertex()->point();
pt = Point((3*(p1[0]+p2[0])+f1[0]+f2[0])/8,
(3*(p1[1]+p2[1])+f1[1]+f2[1])/8,
(3*(p1[2]+p2[2])+f1[2]+f2[2])/8 );
}
//
void vertex_node(Vertex_handle vertex, Point& pt) {
Halfedge_around_vertex_circulator vcir = vertex->vertex_begin();
size_t n = circulator_size(vcir);
FT R[] = {0.0, 0.0, 0.0};
Point& S = vertex->point();
for (size_t i = 0; i < n; i++, ++vcir) {
Point& p = vcir->opposite()->vertex()->point();
R[0] += p[0]; R[1] += p[1]; R[2] += p[2];
}
if (n == 6) {
pt = Point((10*S[0]+R[0])/16, (10*S[1]+R[1])/16, (10*S[2]+R[2])/16);
} else {
FT Cn = (FT) (5.0/8.0 - std::sqrt(3+2*std::cos(6.283/(double)n))/64.0);
FT Sw = (double)n*(1-Cn)/Cn;
FT W = (double)n/Cn;
pt = Point((Sw*S[0]+R[0])/W, (Sw*S[1]+R[1])/W, (Sw*S[2]+R[2])/W);
}
}
//
//void facet_node(Facet_handle facet, Point& pt) {};
//
void border_node(Halfedge_handle edge, Point& ept, Point& vpt) {
Point& ep1 = edge->vertex()->point();
Point& ep2 = edge->opposite()->vertex()->point();
ept = Point((ep1[0]+ep2[0])/2, (ep1[1]+ep2[1])/2, (ep1[2]+ep2[2])/2);
Halfedge_around_vertex_circulator vcir = edge->vertex_begin();
Point& vp1 = vcir->opposite()->vertex()->point();
Point& vp0 = vcir->vertex()->point();
Point& vp_1 = (--vcir)->opposite()->vertex()->point();
vpt = Point((vp_1[0] + 6*vp0[0] + vp1[0])/8,
(vp_1[1] + 6*vp0[1] + vp1[1])/8,
(vp_1[2] + 6*vp0[2] + vp1[2])/8 );
}
};
//==========================================================================
/// The setncil of the Dual-Quadrilateral-Quadrisection
template <class Poly>
class DQQ_stencil_3 {
public:
typedef Poly Polyhedron;
typedef typename Polyhedron::Halfedge_handle Halfedge_handle;
typedef typename Polyhedron::Traits Traits;
typedef typename Traits::Kernel Kernel;
typedef typename Kernel::FT FT;
typedef typename Kernel::Point_3 Point;
typedef typename Kernel::Vector_3 Vector;
public:
//
void corner_node(Halfedge_handle /*edge*/, Point& /*pt*/) {};
};
// ======================================================================
/// The geometry mask of Doo-Sabin subdivision
template <class Poly>
class DooSabin_mask_3 : public DQQ_stencil_3<Poly> {
public:
typedef Poly Polyhedron;
typedef typename Polyhedron::Halfedge_handle Halfedge_handle;
typedef typename Polyhedron::Halfedge_around_facet_circulator
Halfedge_around_facet_circulator;
typedef typename Polyhedron::Traits Traits;
typedef typename Traits::Kernel Kernel;
typedef typename Kernel::FT FT;
typedef typename Kernel::Point_3 Point;
typedef typename Kernel::Vector_3 Vector;
public:
//
void corner_node(Halfedge_handle he, Point& pt) {
size_t n = CGAL::circulator_size(he->facet()->facet_begin());
Vector cv(0,0,0);
if (n == 4) {
cv = cv + (he->vertex()->point()-CGAL::ORIGIN)*9;
cv = cv + (he->next()->vertex()->point()-CGAL::ORIGIN)*3;
cv = cv + (he->next()->next()->vertex()->point()-CGAL::ORIGIN);
cv = cv + (he->prev()->vertex()->point()-CGAL::ORIGIN)*3;
cv = cv/16;
} else {
FT a;
for (size_t k = 0; k < n; ++k, he = he->next()) {
if (k == 0) a = (FT) ((5.0/n) + 1);
else a = (FT) (3+2*std::cos(2*k*CGAL_PI/n))/n;
cv = cv + (he->vertex()->point()-CGAL::ORIGIN)*a;
}
cv = cv/4;
}
pt = CGAL::ORIGIN + cv;
}
};
// ======================================================================
// The geometry mask of Sqrt(3) subdivision
template <class Poly>
class Sqrt3_mask_3 : public Linear_mask_3<Poly> {
public:
typedef Poly Polyhedron;
typedef typename Polyhedron::Traits Traits;
typedef typename Traits::Kernel Kernel;
typedef typename Polyhedron::Vertex_handle Vertex_handle;
typedef typename Polyhedron::Halfedge_handle Halfedge_handle;
typedef typename Polyhedron::Facet_handle Facet_handle;
typedef typename Polyhedron::Halfedge_around_facet_circulator
Halfedge_around_facet_circulator;
typedef typename Polyhedron::Halfedge_around_vertex_circulator
Halfedge_around_vertex_circulator;
typedef typename Kernel::FT FT;
typedef typename Kernel::Point_3 Point;
typedef typename Kernel::Vector_3 Vector;
public:
//
//void edge_node(Halfedge_handle edge, Point& pt) {}
//
void vertex_node(Vertex_handle vertex, Point& pt) {
Halfedge_around_vertex_circulator vcir = vertex->vertex_begin();
size_t n = circulator_size(vcir);
FT a = (FT) ((4.0-2.0*std::cos(2.0*CGAL_PI/(double)n))/9.0);
Vector cv = ((FT)(1.0-a)) * (vertex->point() - CGAL::ORIGIN);
for (size_t i = 1; i <= n; ++i, --vcir) {
cv = cv + (a/FT(n))*(vcir->opposite()->vertex()->point()-CGAL::ORIGIN);
}
pt = CGAL::ORIGIN + cv;
}
//
// TODO
//void border_node(Halfedge_handle edge, Point& ept, Point& vpt) {}
};
} //namespace CGAL
#endif //CGAL_POLYHEDRON_SUBDIVISION_STENCILS_H_01292002
|