/usr/include/CGAL/Triangulation_2.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 | // Copyright (c) 1997-2010 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Olivier Devillers, Mariette Yvinec
#ifndef CGAL_TRIANGULATION_2_H
#define CGAL_TRIANGULATION_2_H
#include <list>
#include <vector>
#include <map>
#include <algorithm>
#include <utility>
#include <iostream>
#include <CGAL/iterator.h>
#include <CGAL/Iterator_project.h>
#include <CGAL/function_objects.h>
#include <CGAL/triangulation_assertions.h>
#include <CGAL/Triangulation_utils_2.h>
#include <CGAL/Triangulation_data_structure_2.h>
#include <CGAL/Triangulation_vertex_base_2.h>
#include <CGAL/Triangulation_face_base_2.h>
#include <CGAL/Triangulation_line_face_circulator_2.h>
#include <CGAL/spatial_sort.h>
#include <boost/random/linear_congruential.hpp>
#include <boost/random/uniform_smallint.hpp>
#include <boost/random/variate_generator.hpp>
#ifndef CGAL_NO_STRUCTURAL_FILTERING
#include <CGAL/internal/Static_filters/tools.h>
#include <CGAL/Triangulation_structural_filtering_traits.h>
#include <CGAL/determinant.h>
#endif // no CGAL_NO_STRUCTURAL_FILTERING
namespace CGAL {
template < class Gt, class Tds > class Triangulation_2;
template < class Gt, class Tds > std::istream& operator>>
(std::istream& is, Triangulation_2<Gt,Tds> &tr);
template < class Gt, class Tds > std::ostream& operator<<
(std::ostream& os, const Triangulation_2<Gt,Tds> &tr);
#ifndef CGAL_NO_STRUCTURAL_FILTERING
namespace internal {
// structural filtering is performed only for EPIC
struct Structural_filtering_2_tag {};
struct No_structural_filtering_2_tag {};
template <bool filter>
struct Structural_filtering_selector_2 {
typedef No_structural_filtering_2_tag Tag;
};
template <>
struct Structural_filtering_selector_2<true> {
typedef Structural_filtering_2_tag Tag;
};
}
#endif // no CGAL_NO_STRUCTURAL_FILTERING
template < class Gt,
class Tds = Triangulation_data_structure_2 <
Triangulation_vertex_base_2<Gt>,
Triangulation_face_base_2<Gt> > >
class Triangulation_2
: public Triangulation_cw_ccw_2
{
friend std::istream& operator>> <>
(std::istream& is, Triangulation_2 &tr);
typedef Triangulation_2<Gt,Tds> Self;
public:
typedef Tds Triangulation_data_structure;
typedef Gt Geom_traits;
typedef typename Geom_traits::Point_2 Point;
typedef typename Geom_traits::Segment_2 Segment;
typedef typename Geom_traits::Triangle_2 Triangle;
typedef typename Geom_traits::Orientation_2 Orientation_2;
typedef typename Geom_traits::Compare_x_2 Compare_x;
typedef typename Geom_traits::Compare_y_2 Compare_y;
typedef typename Tds::size_type size_type;
typedef typename Tds::difference_type difference_type;
typedef typename Tds::Vertex Vertex;
typedef typename Tds::Face Face;
typedef typename Tds::Edge Edge;
typedef typename Tds::Vertex_handle Vertex_handle;
typedef typename Tds::Face_handle Face_handle;
typedef typename Tds::Face_circulator Face_circulator;
typedef typename Tds::Vertex_circulator Vertex_circulator;
typedef typename Tds::Edge_circulator Edge_circulator;
typedef typename Tds::Face_iterator All_faces_iterator;
typedef typename Tds::Edge_iterator All_edges_iterator;
typedef typename Tds::Vertex_iterator All_vertices_iterator;
class Perturbation_order {
const Self *t;
public:
Perturbation_order(const Self *tr)
: t(tr) {}
bool operator()(const Point *p, const Point *q) const {
return t->compare_xy(*p, *q) == SMALLER;
}
};
friend class Perturbation_order;
// This class is used to generate the Finite_*_iterators.
class Infinite_tester
{
const Triangulation_2 *t;
public:
Infinite_tester() {}
Infinite_tester(const Triangulation_2 *tr) : t(tr) {}
bool operator()(const All_vertices_iterator & vit) const {
return t->is_infinite(vit);
}
bool operator()(const All_faces_iterator & fit ) const {
return t->is_infinite(fit);
}
bool operator()(const All_edges_iterator & eit) const {
return t->is_infinite(eit);
}
};
//We derive in order to add a conversion to handle.
class Finite_vertices_iterator :
public Filter_iterator<All_vertices_iterator, Infinite_tester>
{
typedef Filter_iterator<All_vertices_iterator, Infinite_tester> Base;
typedef Finite_vertices_iterator Self;
public:
Finite_vertices_iterator() : Base() {}
Finite_vertices_iterator(const Base &b) : Base(b) {}
Self & operator++() { Base::operator++(); return *this; }
Self & operator--() { Base::operator--(); return *this; }
Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
operator const Vertex_handle() const { return Base::base(); }
};
class Finite_faces_iterator
: public Filter_iterator<All_faces_iterator, Infinite_tester>
{
typedef Filter_iterator<All_faces_iterator, Infinite_tester> Base;
typedef Finite_faces_iterator Self;
public:
Finite_faces_iterator() : Base() {}
Finite_faces_iterator(const Base &b) : Base(b) {}
Self & operator++() { Base::operator++(); return *this; }
Self & operator--() { Base::operator--(); return *this; }
Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
operator const Face_handle() const { return Base::base(); }
};
typedef Filter_iterator<All_edges_iterator,
Infinite_tester>
Finite_edges_iterator;
//for backward compatibility
typedef Finite_faces_iterator Face_iterator;
typedef Finite_edges_iterator Edge_iterator;
typedef Finite_vertices_iterator Vertex_iterator;
typedef Triangulation_line_face_circulator_2<Self> Line_face_circulator;
// Auxiliary iterators for convenience
// do not use default template argument to please VC++
typedef Project_point<Vertex> Proj_point;
typedef Iterator_project<Finite_vertices_iterator,
Proj_point,
const Point&,
const Point*,
std::ptrdiff_t,
std::bidirectional_iterator_tag> Point_iterator;
typedef Point value_type; // to have a back_inserter
typedef const value_type& const_reference;
typedef value_type& reference;
enum Locate_type {VERTEX=0,
EDGE, //1
FACE, //2
OUTSIDE_CONVEX_HULL, //3
OUTSIDE_AFFINE_HULL}; //4
//Tag to distinguish Regular triangulations from others;
typedef Tag_false Weighted_tag;
protected:
Gt _gt;
Tds _tds;
Vertex_handle _infinite_vertex;
public:
// CONSTRUCTORS
Triangulation_2(const Geom_traits& geom_traits=Geom_traits());
Triangulation_2(const Triangulation_2<Gt,Tds> &tr);
//Assignement
Triangulation_2 &operator=(const Triangulation_2 &tr);
//Helping
void copy_triangulation(const Triangulation_2 &tr);
void swap(Triangulation_2 &tr);
void clear();
//ACCESS FUNCTION
const Geom_traits& geom_traits() const { return _gt;}
const Tds & tds() const { return _tds;}
Tds & tds() { return _tds;}
int dimension() const { return _tds.dimension();}
size_type number_of_vertices() const {return _tds.number_of_vertices() - 1;}
size_type number_of_faces() const;
Vertex_handle infinite_vertex() const;
Vertex_handle finite_vertex() const;
Face_handle infinite_face() const;
Infinite_tester infinite_tester() const;
//SETTING
void set_infinite_vertex(const Vertex_handle& v) {_infinite_vertex=v;}
// CHECKING
bool is_valid(bool verbose = false, int level = 0) const;
// TEST INFINITE FEATURES AND OTHER FEATURES
bool is_infinite(Face_handle f) const;
bool is_infinite(Vertex_handle v) const;
bool is_infinite(Face_handle f, int i) const;
bool is_infinite(const Edge& e) const;
bool is_infinite(const Edge_circulator& ec) const;
bool is_infinite(const All_edges_iterator& ei) const;
bool is_edge(Vertex_handle va, Vertex_handle vb) const;
bool is_edge(Vertex_handle va, Vertex_handle vb, Face_handle& fr,
int & i) const;
bool includes_edge(Vertex_handle va, Vertex_handle vb,
Vertex_handle& vbb,
Face_handle& fr, int & i) const;
bool is_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3) const;
bool is_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3,
Face_handle &fr) const;
// GEOMETRIC FEATURES AND CONSTRUCTION
Triangle triangle(Face_handle f) const;
Segment segment(Face_handle f, int i) const;
Segment segment(const Edge& e) const;
Segment segment(const Edge_circulator& ec) const;
Segment segment(const All_edges_iterator& ei) const;
Segment segment(const Finite_edges_iterator& ei) const;
Point circumcenter(Face_handle f) const;
Point circumcenter(const Point& p0,
const Point& p1,
const Point& p2) const;
//MOVE - INSERTION - DELETION - Flip
public:
void flip(Face_handle f, int i);
Vertex_handle insert_first(const Point& p);
Vertex_handle insert_second(const Point& p);
Vertex_handle insert_in_edge(const Point& p, Face_handle f,int i);
Vertex_handle insert_in_face(const Point& p, Face_handle f);
Vertex_handle insert_outside_convex_hull(const Point& p, Face_handle f);
Vertex_handle insert_outside_affine_hull(const Point& p);
Vertex_handle insert(const Point &p, Face_handle start = Face_handle() );
Vertex_handle insert(const Point& p,
Locate_type lt,
Face_handle loc, int li );
// template < class InputIterator >
// std::ptrdiff_t insert(InputIterator first, InputIterator last);
Vertex_handle push_back(const Point& a);
void remove_degree_3(Vertex_handle v, Face_handle f = Face_handle());
void remove_first(Vertex_handle v);
void remove_second(Vertex_handle v);
void remove(Vertex_handle v);
// MOVE
Vertex_handle move_if_no_collision(Vertex_handle v, const Point &p);
Vertex_handle move(Vertex_handle v, const Point &p);
protected: // some internal methods
// INSERT, REMOVE, MOVE GIVING NEW FACES
template <class OutputItFaces>
Vertex_handle insert_and_give_new_faces(const Point &p,
OutputItFaces fit,
Face_handle start = Face_handle() );
template <class OutputItFaces>
Vertex_handle insert_and_give_new_faces(const Point& p,
Locate_type lt,
Face_handle loc, int li,
OutputItFaces fit);
template <class OutputItFaces>
void remove_and_give_new_faces(Vertex_handle v,
OutputItFaces fit);
template <class OutputItFaces>
Vertex_handle move_if_no_collision_and_give_new_faces(Vertex_handle v,
const Point &p,
OutputItFaces fit);
public:
// POINT LOCATION
Face_handle
march_locate_1D(const Point& t, Locate_type& lt, int& li) const ;
Face_handle
march_locate_2D(Face_handle start,
const Point& t,
Locate_type& lt,
int& li) const;
Face_handle
march_locate_2D_LFC(Face_handle start,
const Point& t,
Locate_type& lt,
int& li) const;
void
compare_walks(const Point& p,
Face_handle c1, Face_handle c2,
Locate_type& lt1, Locate_type& lt2,
int li1, int li2) const;
#ifdef CGAL_NO_STRUCTURAL_FILTERING
Face_handle
locate(const Point& p,
Locate_type& lt,
int& li,
Face_handle start = Face_handle()) const;
Face_handle
locate(const Point &p,
Face_handle start = Face_handle()) const;
#else // no CGAL_NO_STRUCTURAL_FILTERING
# ifndef CGAL_T2_STRUCTURAL_FILTERING_MAX_VISITED_CELLS
# define CGAL_T2_STRUCTURAL_FILTERING_MAX_VISITED_CELLS 2500
# endif // no CGAL_T2_STRUCTURAL_FILTERING_MAX_VISITED_CELLS
protected:
Face_handle
inexact_locate(const Point& p,
Face_handle start,
int max_num_cells =
CGAL_T2_STRUCTURAL_FILTERING_MAX_VISITED_CELLS) const;
Face_handle
exact_locate(const Point& p,
Locate_type& lt,
int& li,
Face_handle start) const;
Face_handle
generic_locate(const Point& p,
Locate_type& lt,
int& li,
Face_handle start,
internal::Structural_filtering_2_tag) const {
return exact_locate(p, lt, li, inexact_locate(p, start));
}
Face_handle
generic_locate(const Point& p,
Locate_type& lt,
int& li,
Face_handle start,
internal::No_structural_filtering_2_tag) const {
return exact_locate(p, lt, li, start);
}
bool has_inexact_negative_orientation(const Point &p, const Point &q,
const Point &r) const;
public:
Face_handle
locate(const Point & p,
Locate_type & lt, int & li,
Face_handle start = Face_handle()) const
{
typedef Triangulation_structural_filtering_traits<Geom_traits> TSFT;
typedef typename internal::Structural_filtering_selector_2<
TSFT::Use_structural_filtering_tag::value >::Tag Should_filter_tag;
return generic_locate(p, lt, li, start, Should_filter_tag());
}
Face_handle
locate(const Point & p, Face_handle start = Face_handle()) const
{
Locate_type lt;
int li;
return locate(p, lt, li, start);
}
#endif // no CGAL_NO_STRUCTURAL_FILTERING
//TRAVERSING : ITERATORS AND CIRCULATORS
Finite_faces_iterator finite_faces_begin() const;
Finite_faces_iterator finite_faces_end() const;
Finite_vertices_iterator finite_vertices_begin() const;
Finite_vertices_iterator finite_vertices_end() const;
Finite_edges_iterator finite_edges_begin() const;
Finite_edges_iterator finite_edges_end() const;
Point_iterator points_begin() const;
Point_iterator points_end() const;
All_faces_iterator all_faces_begin() const;
All_faces_iterator all_faces_end() const;
All_vertices_iterator all_vertices_begin() const;
All_vertices_iterator all_vertices_end() const;
All_edges_iterator all_edges_begin() const;
All_edges_iterator all_edges_end() const;
//for compatibility with previous versions
Face_iterator faces_begin() const {return finite_faces_begin();}
Face_iterator faces_end() const {return finite_faces_end();}
Edge_iterator edges_begin() const {return finite_edges_begin();}
Edge_iterator edges_end() const {return finite_edges_end();}
Vertex_iterator vertices_begin() const {return finite_vertices_begin();}
Vertex_iterator vertices_end() const {return finite_vertices_end();}
Face_circulator incident_faces( Vertex_handle v,
Face_handle f = Face_handle()) const;
Vertex_circulator incident_vertices(Vertex_handle v,
Face_handle f = Face_handle()) const;
Edge_circulator incident_edges(Vertex_handle v,
Face_handle f = Face_handle()) const;
size_type degree(Vertex_handle v) const;
Vertex_handle mirror_vertex(Face_handle f, int i) const;
int mirror_index(Face_handle v, int i) const;
Edge mirror_edge(Edge e) const;
Line_face_circulator line_walk(const Point& p,
const Point& q,
Face_handle f = Face_handle()) const;
// TO DEBUG
void show_all() const;
void show_vertex(Vertex_handle vh) const;
void show_face( Face_handle fh) const;
// IO
// template < class Stream >
// Stream& draw_triangulation(Stream& os) const;
//PREDICATES
Oriented_side
oriented_side(const Point &p0, const Point &p1,
const Point &p2, const Point &p) const;
Bounded_side
bounded_side(const Point &p0, const Point &p1,
const Point &p2, const Point &p) const;
Oriented_side
oriented_side(Face_handle f, const Point &p) const;
Oriented_side
side_of_oriented_circle(const Point &p0, const Point &p1, const Point &p2,
const Point &p, bool perturb) const;
Oriented_side
side_of_oriented_circle(Face_handle f, const Point & p, bool perturb = false) const;
bool
collinear_between(const Point& p, const Point& q, const Point& r)
const;
Comparison_result compare_x(const Point& p, const Point& q) const;
Comparison_result compare_xy(const Point& p, const Point& q) const;
Comparison_result compare_y(const Point& p, const Point& q) const;
bool xy_equal(const Point& p, const Point& q) const;
Orientation orientation(const Point& p,
const Point& q,
const Point& r) const;
protected:
void remove_1D(Vertex_handle v);
void remove_2D(Vertex_handle v);
bool test_dim_down(Vertex_handle v) const;
void fill_hole(Vertex_handle v, std::list<Edge> & hole);
void fill_hole_delaunay(std::list<Edge> & hole);
// output faces
template <class OutputItFaces>
void fill_hole(Vertex_handle v, std::list<Edge> & hole, OutputItFaces fit);
template <class OutputItFaces>
void fill_hole_delaunay(std::list<Edge> & hole, OutputItFaces fit);
void make_hole(Vertex_handle v, std::list<Edge> & hole,
std::set<Face_handle> &faces_set);
public:
void make_hole(Vertex_handle v, std::list<Edge> & hole);
// template<class EdgeIt>
// Vertex_handle star_hole( Point p,
// EdgeIt edge_begin,
// EdgeIt edge_end);
// template<class EdgeIt, class FaceIt>
// Vertex_handle star_hole( Point p,
// EdgeIt edge_begin,
// EdgeIt edge_end,
// FaceIt face_begin,
// FaceIt face_end);
Face_handle create_face(Face_handle f1d, int i1,
Face_handle f2, int i2,
Face_handle f3, int i3);
Face_handle create_face(Face_handle f1, int i1,
Face_handle f2, int i2);
Face_handle create_face(Face_handle f, int i, Vertex_handle v);
Face_handle create_face(Vertex_handle v1, Vertex_handle v2,Vertex_handle v3);
Face_handle create_face(Vertex_handle v1, Vertex_handle v2,Vertex_handle v3,
Face_handle f1, Face_handle f2, Face_handle f3);
Face_handle create_face();
Face_handle create_face(Face_handle); //calls copy constructor of Face
void delete_face(Face_handle f);
void delete_vertex(Vertex_handle v);
Vertex_handle file_input(std::istream& is);
void file_output(std::ostream& os) const;
private:
Vertex_handle insert_outside_convex_hull_1(const Point& p, Face_handle f);
Vertex_handle insert_outside_convex_hull_2(const Point& p, Face_handle f);
// template members
public:
template < class Stream >
Stream& draw_triangulation(Stream& os) const
{
Finite_edges_iterator it = finite_edges_begin();
for( ;it != finite_edges_end() ; ++it) {
os << segment(it);
}
return os;
}
template < class InputIterator >
std::ptrdiff_t insert(InputIterator first, InputIterator last)
{
size_type n = number_of_vertices();
std::vector<Point> points (first, last);
spatial_sort (points.begin(), points.end(), geom_traits());
Face_handle f;
for (typename std::vector<Point>::const_iterator p = points.begin(), end = points.end();
p != end; ++p)
f = insert (*p, f)->face();
return number_of_vertices() - n;
}
bool well_oriented(Vertex_handle v) const
{
Face_circulator fc = incident_faces(v), done(fc);
do {
if(!is_infinite(fc)) {
Vertex_handle v0 = fc->vertex(0);
Vertex_handle v1 = fc->vertex(1);
Vertex_handle v2 = fc->vertex(2);
if(orientation(v0->point(),v1->point(),v2->point())
!= COUNTERCLOCKWISE) return false;
}
} while(++fc != done);
return true;
}
bool from_convex_hull(Vertex_handle v) {
CGAL_triangulation_precondition(!is_infinite(v));
Vertex_circulator vc = incident_vertices(v), done(vc);
do { if(is_infinite(vc)) return true; } while(++vc != done);
return false;
}
public:
template<class EdgeIt>
Vertex_handle star_hole( const Point& p,
EdgeIt edge_begin,
EdgeIt edge_end) {
std::list<Face_handle> empty_list;
return star_hole(p,
edge_begin,
edge_end,
empty_list.begin(),
empty_list.end());
}
template<class EdgeIt, class FaceIt>
Vertex_handle star_hole( const Point& p,
EdgeIt edge_begin,
EdgeIt edge_end,
FaceIt face_begin,
FaceIt face_end) {
Vertex_handle v = _tds.star_hole( edge_begin, edge_end,
face_begin, face_end);
v->set_point(p);
return v;
}
};
// CONSTRUCTORS
template <class Gt, class Tds >
Triangulation_2<Gt, Tds>::
Triangulation_2(const Geom_traits& geom_traits)
: _gt(geom_traits), _tds()
{
_infinite_vertex = _tds.insert_first();
}
// copy constructor duplicates vertices and faces
template <class Gt, class Tds >
Triangulation_2<Gt, Tds>::
Triangulation_2(const Triangulation_2 &tr)
: _gt(tr._gt)
{
_infinite_vertex = _tds.copy_tds(tr._tds, tr.infinite_vertex());
}
//Assignement
template <class Gt, class Tds >
Triangulation_2<Gt, Tds> &
Triangulation_2<Gt, Tds>::
operator=(const Triangulation_2 &tr)
{
copy_triangulation(tr);
return *this;
}
// Helping functions
template <class Gt, class Tds >
void
Triangulation_2<Gt, Tds>::
copy_triangulation(const Triangulation_2 &tr)
{
_tds.clear();
_gt = tr._gt;
_infinite_vertex = _tds.copy_tds(tr._tds, tr._infinite_vertex);
}
template <class Gt, class Tds >
void
Triangulation_2<Gt, Tds>::
swap(Triangulation_2 &tr)
{
Vertex_handle v= _infinite_vertex;
_infinite_vertex = tr._infinite_vertex;
tr._infinite_vertex = v;
_tds.swap(tr._tds);
Geom_traits t = geom_traits();
_gt = tr.geom_traits();
tr._gt = t;
}
template <class Gt, class Tds >
void
Triangulation_2<Gt, Tds>::
clear()
{
_tds.clear(); //detruit tous les sommets et toutes les faces
_infinite_vertex = _tds.insert_first();
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::size_type
Triangulation_2<Gt, Tds>::
number_of_faces() const
{
size_type count = _tds.number_of_faces();
Face_circulator fc = incident_faces(infinite_vertex()),
done(fc);
if ( ! fc.is_empty() ) {
do {
--count; ++fc;
} while (fc != done);
}
return count;
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
infinite_vertex() const
{
return _infinite_vertex;
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
finite_vertex() const
{
CGAL_triangulation_precondition (number_of_vertices() >= 1);
return (finite_vertices_begin());
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt,Tds>::Face_handle
Triangulation_2<Gt,Tds>::
infinite_face() const
{
return infinite_vertex()->face();
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt,Tds>::Infinite_tester
Triangulation_2<Gt,Tds>::
infinite_tester() const
{
return Infinite_tester(this);
}
template <class Gt, class Tds >
bool
Triangulation_2<Gt, Tds>::
is_valid(bool verbose, int level) const
{
bool result = _tds.is_valid(verbose, level);
if (dimension() <= 0 ||
(dimension()==1 && number_of_vertices() == 2 ) ) return result;
if (dimension() == 1) {
Finite_vertices_iterator it1 = finite_vertices_begin(),
it2(it1), it3(it1);
++it2;
++it3; ++it3;
while( it3 != finite_vertices_end()) {
Orientation s = orientation(it1->point(),
it2->point(),
it3->point());
result = result && s == COLLINEAR ;
CGAL_triangulation_assertion(result);
++it1 ; ++it2; ++it3;
}
}
else { //dimension() == 2
for(Finite_faces_iterator it=finite_faces_begin();
it!=finite_faces_end(); it++) {
CGAL_triangulation_assertion( ! is_infinite(it));
Orientation s = orientation(it->vertex(0)->point(),
it->vertex(1)->point(),
it->vertex(2)->point());
CGAL_triangulation_assertion( s == LEFT_TURN );
result = result && ( s == LEFT_TURN );
}
Vertex_circulator start = incident_vertices(infinite_vertex());
Vertex_circulator pc(start);
Vertex_circulator qc(start); ++qc;
Vertex_circulator rc(start); ++rc; ++rc;
do{
Orientation s = orientation(pc->point(),
qc->point(),
rc->point());
CGAL_triangulation_assertion( s != LEFT_TURN );
result = result && ( s != LEFT_TURN );
++pc ; ++qc ; ++rc;
}while(pc != start);
// check number of faces. This cannot be done by the Tds
// which does not know the number of components nor the genus
result = result && (number_of_faces() == 2*(number_of_vertices()+1)
- 4
- degree(infinite_vertex()));
CGAL_triangulation_assertion( result);
}
return result;
}
template <class Gt, class Tds >
inline bool
Triangulation_2<Gt, Tds>::
is_infinite(Face_handle f) const
{
return f->has_vertex(infinite_vertex());
}
template <class Gt, class Tds >
inline bool
Triangulation_2<Gt, Tds>::
is_infinite(Vertex_handle v) const
{
return v == infinite_vertex();
}
template <class Gt, class Tds >
inline bool
Triangulation_2<Gt, Tds>::
is_infinite(Face_handle f, int i) const
{
return is_infinite(f->vertex(ccw(i))) ||
is_infinite(f->vertex(cw(i)));
}
template <class Gt, class Tds >
inline bool
Triangulation_2<Gt, Tds>::
is_infinite(const Edge& e) const
{
return is_infinite(e.first,e.second);
}
template <class Gt, class Tds >
inline bool
Triangulation_2<Gt, Tds>::
is_infinite(const Edge_circulator& ec) const
{
return is_infinite(*ec);
}
template <class Gt, class Tds >
inline bool
Triangulation_2<Gt, Tds>::
is_infinite(const All_edges_iterator& ei) const
{
return is_infinite(*ei);
}
template <class Gt, class Tds >
inline bool
Triangulation_2<Gt, Tds>::
is_edge(Vertex_handle va, Vertex_handle vb) const
{
return _tds.is_edge( va, vb);
}
template <class Gt, class Tds >
inline bool
Triangulation_2<Gt, Tds>::
is_edge(Vertex_handle va, Vertex_handle vb, Face_handle& fr, int & i) const
{
return _tds.is_edge(va, vb, fr, i);
}
template <class Gt, class Tds >
bool
Triangulation_2<Gt, Tds>::
includes_edge(Vertex_handle va, Vertex_handle vb,
Vertex_handle & vbb,
Face_handle& fr, int & i) const
// returns true if the line segment ab contains an edge e of t
// incident to a, false otherwise
// if true, vbb becomes the vertex of e distinct from a
// fr is the face incident to e and e=(fr,i)
// fr is on the right side of a->b
{
Vertex_handle v;
Orientation orient;
int indv;
Edge_circulator ec = incident_edges(va), done(ec);
if (ec != 0) {
do {
//find the index of the other vertex of *ec
indv = 3 - ((*ec).first)->index(va) - (*ec).second ;
v = ((*ec).first)->vertex(indv);
if (!is_infinite(v)) {
if (v==vb) {
vbb = vb;
fr=(*ec).first;
i= (*ec).second;
return true;
}
else {
orient = orientation(va->point(),
vb->point(),
v->point());
if((orient==COLLINEAR) &&
(collinear_between (va->point(),
v->point(),
vb->point()))) {
vbb = v;
fr=(*ec).first;
i= (*ec).second;
return true;
}
}
}
} while (++ec != done);
}
return false;
}
template <class Gt, class Tds >
inline bool
Triangulation_2<Gt, Tds>::
is_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3) const
{
return _tds.is_face(v1, v2, v3);
}
template <class Gt, class Tds >
inline bool
Triangulation_2<Gt, Tds>::
is_face(Vertex_handle v1,
Vertex_handle v2,
Vertex_handle v3,
Face_handle &fr) const
{
return _tds.is_face(v1, v2, v3, fr);
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Triangle
Triangulation_2<Gt, Tds>::
triangle(Face_handle f) const
{
CGAL_triangulation_precondition( ! is_infinite(f) );
typename Gt::Construct_triangle_2
construct_triangle = geom_traits().construct_triangle_2_object();
return construct_triangle(f->vertex(0)->point(),
f->vertex(1)->point(),
f->vertex(2)->point());
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Segment
Triangulation_2<Gt, Tds>::
segment(Face_handle f, int i) const
{
CGAL_triangulation_precondition( ! is_infinite(f,i));
typename Gt::Construct_segment_2
construct_segment = geom_traits().construct_segment_2_object();
return construct_segment(f->vertex(ccw(i))->point(),
f->vertex(cw(i))->point());
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Segment
Triangulation_2<Gt, Tds>::
segment(const Edge& e) const
{
CGAL_triangulation_precondition(! is_infinite(e));
typename Gt::Construct_segment_2
construct_segment = geom_traits().construct_segment_2_object();
return construct_segment(e.first->vertex(ccw(e.second))->point(),
e.first->vertex( cw(e.second))->point());
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Segment
Triangulation_2<Gt, Tds>::
segment(const Edge_circulator& ec) const
{
return segment(*ec);
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Segment
Triangulation_2<Gt, Tds>::
segment(const Finite_edges_iterator& ei) const
{
return segment(*ei);
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Segment
Triangulation_2<Gt, Tds>::
segment(const All_edges_iterator& ei) const
{
return segment(*ei);
}
template <class Gt, class Tds >
void
Triangulation_2<Gt, Tds>::
flip(Face_handle f, int i)
{
CGAL_triangulation_precondition ( f != Face_handle() );
CGAL_triangulation_precondition (i == 0 || i == 1 || i == 2);
CGAL_triangulation_precondition( dimension()==2);
CGAL_triangulation_precondition( !is_infinite(f) &&
!is_infinite(f->neighbor(i)) );
CGAL_triangulation_precondition(
orientation(f->vertex(i)->point(),
f->vertex(cw(i))->point(),
mirror_vertex(f,i)->point()) == RIGHT_TURN &&
orientation(f->vertex(i)->point(),
f->vertex(ccw(i))->point(),
mirror_vertex(f,i)->point()) == LEFT_TURN);
_tds.flip(f, i);
return;
}
template <class Gt, class Tds >
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
insert_first(const Point& p)
{
CGAL_triangulation_precondition(number_of_vertices() == 0);
Vertex_handle v = _tds.insert_second();
v->set_point(p);
return v;
}
template <class Gt, class Tds >
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
insert_second(const Point& p)
{
CGAL_triangulation_precondition(number_of_vertices() == 1);
Vertex_handle v = _tds.insert_dim_up(infinite_vertex(), true);
v->set_point(p);
return v;
}
template <class Gt, class Tds >
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
insert_in_edge(const Point& p, Face_handle f,int i)
{
CGAL_triangulation_exactness_precondition(
orientation(f->vertex(cw(i))->point(), p,
f->vertex(ccw(i))->point()) == COLLINEAR &&
collinear_between(f->vertex(cw(i))->point(), p,
f->vertex(ccw(i))->point() ) );
Vertex_handle v = _tds.insert_in_edge(f,i);
v->set_point(p);
return v;
}
template <class Gt, class Tds >
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
insert_in_face(const Point& p, Face_handle f)
{
CGAL_triangulation_precondition(oriented_side(f,p) == ON_POSITIVE_SIDE);
Vertex_handle v= _tds.insert_in_face(f);
v->set_point(p);
return v;
}
template <class Gt, class Tds >
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
insert_outside_convex_hull(const Point& p, Face_handle f)
{
CGAL_triangulation_precondition(is_infinite(f) && dimension() >= 1);
Vertex_handle v;
if (dimension() == 1) v=insert_outside_convex_hull_1(p, f);
else v=insert_outside_convex_hull_2(p, f);
v->set_point(p);
return v;
}
template <class Gt, class Tds >
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
insert_outside_convex_hull_1(const Point& p, Face_handle f)
{
CGAL_triangulation_precondition( is_infinite(f) && dimension()==1);
CGAL_triangulation_precondition(
orientation(
mirror_vertex(f,f->index(infinite_vertex()))->point(),
f->vertex(1- f->index(infinite_vertex()))->point(),
p) == COLLINEAR &&
collinear_between(
mirror_vertex(f,f->index(infinite_vertex()))->point(),
f->vertex(1- f->index(infinite_vertex()))->point(),
p) );
Vertex_handle v=_tds.insert_in_edge(f, 2);
v->set_point(p);
return v;
}
template <class Gt, class Tds >
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
insert_outside_convex_hull_2(const Point& p, Face_handle f)
{
CGAL_triangulation_precondition(is_infinite(f));
int li = f->index(infinite_vertex());
CGAL_triangulation_precondition(
orientation(p,
f->vertex(ccw(li))->point(),
f->vertex(cw(li))->point()) == LEFT_TURN);
std::list<Face_handle> ccwlist;
std::list<Face_handle> cwlist;
Face_circulator fc = incident_faces(infinite_vertex(), f);
bool done = false;
while(! done) {
fc--;
li = fc->index(infinite_vertex());
const Point& q = fc->vertex(ccw(li))->point();
const Point& r = fc->vertex(cw(li))->point();
if(orientation(p,q,r) == LEFT_TURN ) { ccwlist.push_back(fc); }
else {done=true;}
}
fc = incident_faces(infinite_vertex(), f);
done = false;
while(! done){
fc++;
li = fc->index(infinite_vertex());
const Point& q = fc->vertex(ccw(li))->point();
const Point& r = fc->vertex(cw(li))->point();
if(orientation(p,q,r) == LEFT_TURN ) { cwlist.push_back(fc);}
else {done=true;}
}
Vertex_handle v = _tds.insert_in_face(f);
v->set_point(p);
Face_handle fh;
while ( ! ccwlist.empty()) {
fh = ccwlist.front();
li = ccw(fh->index(infinite_vertex()));
_tds.flip( fh, li);
ccwlist.pop_front();
}
while ( ! cwlist.empty()) {
fh = cwlist.front();
li = cw(fh->index(infinite_vertex()));
_tds.flip( fh, li);
cwlist.pop_front();
}
//reset infinite_vertex()->face();
fc = incident_faces(v);
while( ! is_infinite(fc)) { fc++;}
infinite_vertex()->set_face(fc);
return v;
}
template <class Gt, class Tds >
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
insert_outside_affine_hull(const Point& p)
{
CGAL_triangulation_precondition(dimension() < 2);
bool conform = false;
if (dimension() == 1) {
Face_handle f = (*finite_edges_begin()).first;
Orientation orient = orientation( f->vertex(0)->point(),
f->vertex(1)->point(),
p);
CGAL_triangulation_precondition(orient != COLLINEAR);
conform = ( orient == COUNTERCLOCKWISE);
}
Vertex_handle v = _tds.insert_dim_up( infinite_vertex(), conform);
v->set_point(p);
return v;
}
template <class Gt, class Tds >
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
insert(const Point &p, Face_handle start)
{
Locate_type lt;
int li;
Face_handle loc = locate (p, lt, li, start);
return insert(p, lt, loc, li);
}
template <class Gt, class Tds >
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
insert(const Point& p, Locate_type lt, Face_handle loc, int li)
// insert a point p, whose localisation is known (lt, f, i)
{
if(number_of_vertices() == 0) {
return(insert_first(p));
}
if(number_of_vertices() == 1) {
if (lt == VERTEX) return finite_vertex();
else return(insert_second(p));
}
switch(lt) {
case FACE:
return insert_in_face(p,loc);
case EDGE:
return insert_in_edge(p,loc,li);
case OUTSIDE_CONVEX_HULL:
return insert_outside_convex_hull(p,loc);
case OUTSIDE_AFFINE_HULL:
return insert_outside_affine_hull(p);
case VERTEX:
return loc->vertex(li);
}
CGAL_triangulation_assertion(false); // locate step failed
return Vertex_handle();
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
push_back(const Point &p)
{
return insert(p);
}
template <class Gt, class Tds >
inline void
Triangulation_2<Gt,Tds>::
remove_degree_3(Vertex_handle v, Face_handle f)
{
if (f == Face_handle()) f=v->face();
_tds.remove_degree_3(v, f);
return;
}
template <class Gt, class Tds >
inline void
Triangulation_2<Gt,Tds>::
remove_first(Vertex_handle v)
{
_tds.remove_second(v);
return;
}
template <class Gt, class Tds >
inline void
Triangulation_2<Gt,Tds>::
remove_second(Vertex_handle v)
{
_tds.remove_dim_down(v);
return;
}
template <class Gt, class Tds >
void
Triangulation_2<Gt,Tds>::
remove(Vertex_handle v)
{
CGAL_triangulation_precondition( v != Vertex_handle());
CGAL_triangulation_precondition( !is_infinite(v));
if (number_of_vertices() == 1) remove_first(v);
else if (number_of_vertices() == 2) remove_second(v);
else if ( dimension() == 1) remove_1D(v);
else remove_2D(v);
return;
}
template <class Gt, class Tds >
inline void
Triangulation_2<Gt, Tds>::
remove_1D(Vertex_handle v)
{
_tds.remove_1D(v);
}
template <class Gt, class Tds >
bool
Triangulation_2<Gt,Tds>::
test_dim_down(Vertex_handle v) const
{
//test the dimensionality of the resulting triangulation
//upon removing of vertex v
//it goes down to 1 iff
// 1) any finite face is incident to v
// 2) all vertices are collinear
CGAL_triangulation_precondition(dimension() == 2);
bool dim1 = true;
Finite_faces_iterator fit = finite_faces_begin();
while (dim1==true && fit != finite_faces_end()) {
dim1 = dim1 && fit->has_vertex(v);
fit++;
}
Face_circulator fic = incident_faces(v);
while (is_infinite(fic)) {++fic;}
Face_circulator done(fic);
Face_handle start(fic); int iv = start->index(v);
const Point& p = start->vertex(cw(iv))->point();
const Point& q = start->vertex(ccw(iv))->point();
while ( dim1 && ++fic != done) {
iv = fic->index(v);
if (fic->vertex(ccw(iv)) != infinite_vertex()) {
dim1 = dim1 &&
orientation(p, q, fic->vertex(ccw(iv))->point()) == COLLINEAR;
}
}
return dim1;
}
template <class Gt, class Tds >
void
Triangulation_2<Gt,Tds>::
remove_2D(Vertex_handle v)
{
if (test_dim_down(v)) { _tds.remove_dim_down(v); }
else {
std::list<Edge> hole;
make_hole(v, hole);
fill_hole(v, hole);
delete_vertex(v);
}
return;
}
template < class Gt, class Tds >
template < class OutputItFaces >
inline
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
insert_and_give_new_faces(const Point &p,
OutputItFaces oif,
Face_handle start)
{
Vertex_handle v = insert(p, start);
int dimension = this->dimension();
if(dimension == 2)
{
Face_circulator fc = incident_faces(v), done(fc);
do {
*oif++ = fc;
} while(++fc != done);
}
else if(dimension == 1)
{
Face_handle c = v->face();
*oif++ = c;
*oif++ = c->neighbor((~(c->index(v)))&1);
}
else *oif++ = v->face(); // dimension == 0
return v;
}
template < class Gt, class Tds >
template < class OutputItFaces >
inline
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
insert_and_give_new_faces(const Point &p,
Locate_type lt,
Face_handle loc, int li,
OutputItFaces oif)
{
Vertex_handle v = insert(p, lt, loc, li);
int dimension = this->dimension();
if(dimension == 2)
{
Face_circulator fc = incident_faces(v), done(fc);
do {
*oif++ = fc;
} while(++fc != done);
}
else if(dimension == 1)
{
Face_handle c = v->face();
*oif++ = c;
*oif++ = c->neighbor((~(c->index(v)))&1);
}
else *oif++ = v->face(); // dimension == 0
return v;
}
template < class Gt, class Tds >
template <class OutputItFaces>
void
Triangulation_2<Gt,Tds>::
remove_and_give_new_faces(Vertex_handle v, OutputItFaces fit)
{
CGAL_triangulation_precondition( v != Vertex_handle());
CGAL_triangulation_precondition( !is_infinite(v));
if(number_of_vertices() == 1) remove_first(v);
else if(number_of_vertices() == 2) remove_second(v);
else if( dimension() == 1)
{
Point p = v->point();
remove(v);
*fit++ = locate(p);
}
else if (test_dim_down(v)) {
_tds.remove_dim_down(v);
for(All_faces_iterator afi = tds().face_iterator_base_begin();
afi != tds().face_iterator_base_begin();
afi++) *fit++ = afi;
}
else {
std::list<Edge> hole;
make_hole(v, hole);
fill_hole(v, hole, fit);
delete_vertex(v);
}
return;
}
template <class Gt, class Tds >
void
Triangulation_2<Gt, Tds>::
make_hole ( Vertex_handle v, std::list<Edge> & hole)
{
std::vector<Face_handle> to_delete;
to_delete.reserve(16);
Face_handle f, fn;
int i, in ;
Vertex_handle vv;
Face_circulator fc = incident_faces(v);
Face_circulator done(fc);
do {
f = fc; fc++;
i = f->index(v);
fn = f->neighbor(i);
in = fn->index(f);
vv = f->vertex(cw(i));
vv->set_face(fn);
vv = f->vertex(ccw(i));
vv->set_face(fn);
fn->set_neighbor(in, Face_handle());
hole.push_back(Edge(fn,in));
to_delete.push_back(f);
} while(fc != done);
std::size_t size = to_delete.size();
for(std::size_t i=0; i<size; i++) {
f = to_delete[i];
delete_face(f);
}
}
template <class Gt, class Tds >
void
Triangulation_2<Gt,Tds>::
make_hole(Vertex_handle v, std::list<Edge> & hole,
std::set<Face_handle> &faces_set)
{
std::vector<Face_handle> to_delete;
to_delete.reserve(16);
Face_handle f, fn;
int i, in ;
Vertex_handle vv;
Face_circulator fc = incident_faces(v);
Face_circulator done(fc);
do {
f = fc; fc++;
i = f->index(v);
fn = f->neighbor(i);
in = fn->index(f);
vv = f->vertex(cw(i));
vv->set_face(fn);
vv = f->vertex(ccw(i));
vv->set_face(fn);
fn->set_neighbor(in, Face_handle());
hole.push_back(Edge(fn,in));
to_delete.push_back(f);
} while(fc != done);
std::size_t size = to_delete.size();
for(std::size_t i=0; i<size; i++) {
f = to_delete[i];
faces_set.erase(f);
delete_face(f);
}
}
template <class Gt, class Tds >
void
Triangulation_2<Gt, Tds>::
fill_hole ( Vertex_handle v, std::list< Edge > & hole )
{
// uses the fact that the hole is starshaped
// with repect to v->point()
typedef std::list<Edge> Hole;
Face_handle ff, fn;
int ii , in;
Vertex_handle v0, v1, v2;
Bounded_side side;
//stack algorithm to create faces
// create face v0,v1,v2
//if v0,v1,v2 are finite vertices
// and form a left_turn
// and triangle v0v1v2 does not contain v->point()
if( hole.size() != 3) {
typename Hole::iterator hit = hole.begin();
typename Hole::iterator next= hit;
while( hit != hole.end() && hole.size() != 3) {
ff = (*hit).first;
ii = (*hit).second;
v0 = ff->vertex(cw(ii));
v1 = ff->vertex(ccw(ii));
if( !is_infinite(v0) && !is_infinite(v1)) {
next=hit; next++;
if(next == hole.end()) next=hole.begin();
fn = (*next).first;
in = (*next).second;
v2 = fn->vertex(ccw(in));
if ( !is_infinite(v2) &&
orientation(v0->point(), v1->point(), v2->point()) == LEFT_TURN ) {
side = bounded_side(v0->point(),
v1->point(),
v2->point(),
v->point());
if( side == ON_UNBOUNDED_SIDE ||
(side == ON_BOUNDARY && orientation(v0->point(),
v->point(),
v2->point()) == COLLINEAR &&
collinear_between(v0->point(),v->point(),v2->point()) ))
{
//create face
Face_handle newf = create_face(ff,ii,fn,in);
typename Hole::iterator tempo=hit;
hit = hole.insert(hit,Edge(newf,1)); //push newf
hole.erase(tempo); //erase ff
hole.erase(next); //erase fn
if (hit != hole.begin() ) --hit;
continue;
}
}
}
++hit;
}
}
// either the hole has only three edges
// or all its finite vertices are reflex or flat
// except may be one vertex whose corresponding ear
// includes the vertex being removed
// deal with the last left_turn if any
if(hole.size() != 3) {
typename Hole::iterator hit=hole.begin();
while(hit != hole.end()) {
ff = (*hit).first; ii = (*hit).second;
hit++;
if(hit != hole.end()) { fn = (*hit).first; in = (*hit).second;}
else { fn = ((hole.front()).first); in = (hole.front()).second;}
if ( !is_infinite(ff->vertex(cw(ii))) &&
!is_infinite(fn->vertex(cw(in))) &&
!is_infinite(fn->vertex(ccw(in))) &&
orientation(ff->vertex(cw(ii))->point(),
fn->vertex(cw(in))->point(),
fn->vertex(ccw(in))->point()) == LEFT_TURN) {
create_face(ff,ii,fn,in);
break;
}
}
}
// deal with a reflex chain of convex hull edges
if(hole.size() != 3) {
// look for infinite vertex
ff = (hole.front()).first;
ii = (hole.front()).second;
while ( ! is_infinite(ff->vertex(cw(ii)))){
hole.push_back(hole.front());
hole.pop_front();
ff = (hole.front()).first;
ii = (hole.front()).second;
}
//create faces
while(hole.size() != 3){
ff = (hole.front()).first;
ii = (hole.front()).second;
hole.pop_front();
fn = (hole.front()).first;
in = (hole.front()).second;
hole.pop_front();
Face_handle newf = create_face(ff,ii,fn,in);
hole.push_front(Edge(newf,1));
}
}
// now hole has three edges
typename Hole::iterator hit;
hit = hole.begin();
// I don't know why the following yelds a segmentation fault
// create_face( (*hit).first, (*hit).second,
// (* ++hit).first, (*hit).second,
// (* ++hit).first, (*hit).second);
ff = (*hit).first; ii = (*hit).second;
fn = (* ++hit).first; in = (*hit).second;
Face_handle f3 = (* ++hit).first;
int i3 = (*hit).second;
create_face(ff,ii,fn,in,f3,i3);
}
template < class Gt, class Tds >
template <class OutputItFaces>
void
Triangulation_2<Gt,Tds>::
fill_hole(Vertex_handle v, std::list<Edge> & hole, OutputItFaces fit)
{
// uses the fact that the hole is starshaped
// with repect to v->point()
typedef std::list<Edge> Hole;
Face_handle ff, fn;
int ii , in;
Vertex_handle v0, v1, v2;
Bounded_side side;
//stack algorithm to create faces
// create face v0,v1,v2
//if v0,v1,v2 are finite vertices
// and form a left_turn
// and triangle v0v1v2 does not contain v->point()
if( hole.size() != 3) {
typename Hole::iterator hit = hole.begin();
typename Hole::iterator next= hit;
while( hit != hole.end() && hole.size() != 3) {
ff = (*hit).first;
ii = (*hit).second;
v0 = ff->vertex(cw(ii));
v1 = ff->vertex(ccw(ii));
if( !is_infinite(v0) && !is_infinite(v1)) {
next=hit; next++;
if(next == hole.end()) next=hole.begin();
fn = (*next).first;
in = (*next).second;
v2 = fn->vertex(ccw(in));
if ( !is_infinite(v2) &&
orientation(v0->point(), v1->point(), v2->point()) == LEFT_TURN ) {
side = bounded_side(v0->point(), v1->point(), v2->point(), v->point());
if( side == ON_UNBOUNDED_SIDE ||
(side == ON_BOUNDARY && orientation(v0->point(),
v->point(),
v2->point()) == COLLINEAR &&
collinear_between(v0->point(),v->point(),v2->point()) ))
{
//create face
Face_handle newf = create_face(ff,ii,fn,in);
*fit++ = newf;
typename Hole::iterator tempo=hit;
hit = hole.insert(hit,Edge(newf,1)); //push newf
hole.erase(tempo); //erase ff
hole.erase(next); //erase fn
if (hit != hole.begin() ) --hit;
continue;
}
}
}
++hit;
}
}
// either the hole has only three edges
// or all its finite vertices are reflex or flat
// except may be one vertex whose corresponding ear
// includes the vertex being removed
// deal with the last left_turn if any
if(hole.size() != 3) {
typename Hole::iterator hit=hole.begin();
while(hit != hole.end()) {
ff = (*hit).first; ii = (*hit).second;
hit++;
if(hit != hole.end()) { fn = (*hit).first; in = (*hit).second;}
else { fn = ((hole.front()).first); in = (hole.front()).second;}
if ( !is_infinite(ff->vertex(cw(ii))) &&
!is_infinite(fn->vertex(cw(in))) &&
!is_infinite(fn->vertex(ccw(in))) &&
orientation(ff->vertex(cw(ii))->point(),
fn->vertex(cw(in))->point(),
fn->vertex(ccw(in))->point()) == LEFT_TURN) {
Face_handle newf = create_face(ff,ii,fn,in);
*fit++ = newf;
break;
}
}
}
// deal with a reflex chain of convex hull edges
if(hole.size() != 3) {
// look for infinite vertex
ff = (hole.front()).first;
ii = (hole.front()).second;
while ( ! is_infinite(ff->vertex(cw(ii)))){
hole.push_back(hole.front());
hole.pop_front();
ff = (hole.front()).first;
ii = (hole.front()).second;
}
//create faces
while(hole.size() != 3){
ff = (hole.front()).first;
ii = (hole.front()).second;
hole.pop_front();
fn = (hole.front()).first;
in = (hole.front()).second;
hole.pop_front();
Face_handle newf = create_face(ff,ii,fn,in);
*fit++ = newf;
hole.push_front(Edge(newf,1));
}
}
// now hole has three edges
typename Hole::iterator hit;
hit = hole.begin();
// I don't know why the following yelds a segmentation fault
// create_face( (*hit).first, (*hit).second,
// (* ++hit).first, (*hit).second,
// (* ++hit).first, (*hit).second);
ff = (*hit).first; ii = (*hit).second;
fn = (* ++hit).first; in = (*hit).second;
Face_handle f3 = (* ++hit).first;
int i3 = (*hit).second;
Face_handle newf = create_face(ff,ii,fn,in,f3,i3);
*fit++ = newf;
}
template <class Gt, class Tds >
void
Triangulation_2<Gt, Tds>::
fill_hole_delaunay(std::list<Edge> & first_hole)
{
typedef std::list<Edge> Hole;
typedef std::list<Hole> Hole_list;
Face_handle f, ff, fn;
int i, ii, in;
Hole_list hole_list;
Hole hole;
hole_list.push_front(first_hole);
while( ! hole_list.empty())
{
hole = hole_list.front();
hole_list.pop_front();
typename Hole::iterator hit = hole.begin();
// if the hole has only three edges, create the triangle
if (hole.size() == 3) {
hit = hole.begin();
f = (*hit).first; i = (*hit).second;
ff = (* ++hit).first; ii = (*hit).second;
fn = (* ++hit).first; in = (*hit).second;
create_face(f,i,ff,ii,fn,in);
continue;
}
// else find an edge with two finite vertices
// on the hole boundary
// and the new triangle adjacent to that edge
// cut the hole and push it back
// first, ensure that a neighboring face
// whose vertices on the hole boundary are finite
// is the first of the hole
bool finite= false;
while (!finite){
ff = (hole.front()).first;
ii = (hole.front()).second;
if ( is_infinite(ff->vertex(cw(ii))) ||
is_infinite(ff->vertex(ccw(ii)))) {
hole.push_back(hole.front());
hole.pop_front();
}
else finite=true;
}
// take the first neighboring face and pop it;
ff = (hole.front()).first;
ii =(hole.front()).second;
hole.pop_front();
Vertex_handle v0 = ff->vertex(cw(ii));
Vertex_handle v1 = ff->vertex(ccw(ii));
Vertex_handle v2 = infinite_vertex();
Vertex_handle v3;
const Point& p0 = v0->point();
const Point& p1 = v1->point();
typename Hole::iterator hdone = hole.end();
hit = hole.begin();
typename Hole::iterator cut_after(hit);
// if tested vertex is c with respect to the vertex opposite
// to NULL neighbor,
// stop at the before last face;
hdone--;
while( hit != hdone) {
fn = (*hit).first;
in = (*hit).second;
Vertex_handle vv = fn->vertex(ccw(in));
if (is_infinite(vv)) {
if(is_infinite(v2)) cut_after = hit;
}
else { // vv is a finite vertex
const Point & p = vv->point();
if (orientation(p0,p1,p) == COUNTERCLOCKWISE) {
if (is_infinite(v2)) { v2=vv; v3=vv; cut_after=hit;}
else{
//
if (this->side_of_oriented_circle(p0,p1,v3->point(),p,true) == ON_POSITIVE_SIDE){
v2=vv; v3=vv; cut_after=hit;}
}
}
}
++hit;
}
// create new triangle and update adjacency relations
Face_handle newf;
//update the hole and push back in the Hole_List stack
// if v2 belongs to the neighbor following or preceding *f
// the hole remain a single hole
// otherwise it is split in two holes
fn = (hole.front()).first;
in = (hole.front()).second;
if (fn->has_vertex(v2, i) && i == fn->ccw(in)) {
newf = create_face(ff,ii,fn,in);
hole.pop_front();
hole.push_front(Edge( newf,1));
hole_list.push_front(hole);
}
else{
fn = (hole.back()).first;
in = (hole.back()).second;
if (fn->has_vertex(v2, i) && i== fn->cw(in)) {
newf = create_face(fn,in,ff,ii);
hole.pop_back();
hole.push_back(Edge(newf,1));
hole_list.push_front(hole);
}
else{
// split the hole in two holes
newf = create_face(ff,ii,v2);
Hole new_hole;
++cut_after;
while( hole.begin() != cut_after )
{
new_hole.push_back(hole.front());
hole.pop_front();
}
hole.push_front(Edge( newf,1));
new_hole.push_front(Edge( newf,0));
hole_list.push_front(hole);
hole_list.push_front(new_hole);
}
}
}
}
template < class Gt, class Tds >
template <class OutputItFaces>
void
Triangulation_2<Gt,Tds>::
fill_hole_delaunay(std::list<Edge> & first_hole, OutputItFaces fit)
{
typedef typename Gt::Orientation_2 Orientation_2;
typedef typename Gt::Side_of_oriented_circle_2 In_circle;
typedef std::list<Edge> Hole;
typedef std::list<Hole> Hole_list;
Orientation_2 orientation_2 = geom_traits().orientation_2_object();
In_circle in_circle =
geom_traits().side_of_oriented_circle_2_object();
Face_handle f, ff, fn;
int i, ii, in;
Hole_list hole_list;
Hole hole;
hole_list.push_front(first_hole);
while(!hole_list.empty()) {
hole = hole_list.front();
hole_list.pop_front();
typename Hole::iterator hit = hole.begin();
if (hole.size() == 3) {
hit = hole.begin();
f = (*hit).first; i = (*hit).second;
ff = (* ++hit).first; ii = (*hit).second;
fn = (* ++hit).first; in = (*hit).second;
Face_handle newf = create_face(f,i,ff,ii,fn,in);
*fit++ = newf;
continue;
}
bool finite= false;
while (!finite){
ff = (hole.front()).first;
ii = (hole.front()).second;
if ( is_infinite(ff->vertex(cw(ii))) ||
is_infinite(ff->vertex(ccw(ii)))) {
hole.push_back(hole.front());
hole.pop_front();
} else finite=true;
}
ff = (hole.front()).first;
ii =(hole.front()).second;
hole.pop_front();
Vertex_handle v0 = ff->vertex(cw(ii));
Vertex_handle v1 = ff->vertex(ccw(ii));
Vertex_handle v2 = infinite_vertex();
const Point& p0 = v0->point();
const Point& p1 = v1->point();
typename Hole::iterator hdone = hole.end();
hit = hole.begin();
typename Hole::iterator cut_after(hit);
hdone--;
while( hit != hdone) {
fn = (*hit).first;
in = (*hit).second;
Vertex_handle vv = fn->vertex(ccw(in));
if (is_infinite(vv)) {
if(is_infinite(v2)) cut_after = hit;
} else { // vv is a finite vertex
const Point & p = vv->point();
if (orientation_2(p0,p1,p) == CGAL::COUNTERCLOCKWISE) {
if (is_infinite(v2)) { v2 = vv; cut_after = hit;}
else{
if (in_circle(p0,p1,v2->point(),p) == CGAL::ON_POSITIVE_SIDE){
v2 = vv; cut_after = hit;
}
}
}
}
++hit;
}
Face_handle newf;
fn = (hole.front()).first;
in = (hole.front()).second;
if (fn->has_vertex(v2, i) && i == fn->ccw(in)) {
newf = create_face(ff,ii,fn,in);
hole.pop_front();
hole.push_front(Edge( newf,1));
hole_list.push_front(hole);
} else {
fn = (hole.back()).first;
in = (hole.back()).second;
if (fn->has_vertex(v2, i) && i== fn->cw(in)) {
newf = create_face(fn,in,ff,ii);
hole.pop_back();
hole.push_back(Edge(newf,1));
hole_list.push_front(hole);
} else {
newf = create_face(ff,ii,v2);
Hole new_hole;
++cut_after;
while( hole.begin() != cut_after ) {
new_hole.push_back(hole.front());
hole.pop_front();
}
hole.push_front(Edge(newf, 1));
new_hole.push_front(Edge(newf, 0));
hole_list.push_front(hole);
hole_list.push_front(new_hole);
}
}
*fit++ = newf;
}
}
template <class Gt, class Tds >
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
move_if_no_collision(Vertex_handle v, const Point &p) {
CGAL_triangulation_precondition(!is_infinite(v));
if(v->point() == p) return v;
const int dim = dimension();
Locate_type lt;
int li;
Face_handle loc = locate(p, lt, li, v->face());
if(lt == VERTEX) return loc->vertex(li);
if(dim == 0) {
v->set_point(p);
return v;
}
size_type n_vertices = tds().number_of_vertices();
if((lt == OUTSIDE_AFFINE_HULL) && (dim == 1) && (n_vertices == 3)) {
v->set_point(p);
return v;
}
if((lt != OUTSIDE_AFFINE_HULL) && (dim == 1)) {
if(loc->has_vertex(v)) {
v->set_point(p);
} else {
Vertex_handle inserted = insert(p, lt, loc, li);
Face_handle f = v->face();
int i = f->index(v);
if (i==0) {f = f->neighbor(1);}
CGAL_triangulation_assertion(f->index(v) == 1);
Face_handle g= f->neighbor(0);
f->set_vertex(1, g->vertex(1));
f->set_neighbor(0,g->neighbor(0));
g->neighbor(0)->set_neighbor(1,f);
g->vertex(1)->set_face(f);
delete_face(g);
Face_handle f_ins = inserted->face();
i = f_ins->index(inserted);
if (i==0) {f_ins = f_ins->neighbor(1);}
CGAL_triangulation_assertion(f_ins->index(inserted) == 1);
Face_handle g_ins = f_ins->neighbor(0);
f_ins->set_vertex(1, v);
g_ins->set_vertex(0, v);
v->set_point(p);
v->set_face(inserted->face());
delete_vertex(inserted);
}
return v;
}
if((lt != OUTSIDE_AFFINE_HULL) && test_dim_down(v)) {
// verify if p and two static vertices are collinear in this case
int iinf = 0;
Face_circulator finf = incident_faces(infinite_vertex()), fdone(finf);
do {
if(!finf->has_vertex(v))
{
iinf = ~(finf->index(infinite_vertex()));
break;
}
} while(++finf != fdone);
if(this->orientation(finf->vertex(iinf&1)->point(),
finf->vertex(iinf&2)->point(),
p) == COLLINEAR)
{
v->set_point(p);
_tds.dim_down(loc, loc->index(v));
return v;
}
}
Vertex_handle inserted = insert(p, lt, loc, li);
std::list<Edge> hole;
make_hole(v, hole);
fill_hole(v, hole);
// fixing pointer
Face_circulator fc = this->incident_faces(inserted), done(fc);
std::vector<Face_handle> faces_pt;
faces_pt.reserve(16);
do { faces_pt.push_back(fc); } while(++fc != done);
std::size_t ss = faces_pt.size();
for(std::size_t k=0; k<ss; k++)
{
Face_handle f = faces_pt[k];
int i = f->index(inserted);
f->set_vertex(i, v);
}
v->set_point(p);
v->set_face(inserted->face());
delete_vertex(inserted);
return v;
}
template <class Gt, class Tds >
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
move(Vertex_handle v, const Point &p) {
CGAL_triangulation_precondition(!is_infinite(v));
if(v->point() == p) return v;
Vertex_handle w = move_if_no_collision(v,p);
if(w != v) {
remove(v);
return w;
}
return v;
}
template <class Gt, class Tds >
template <class OutputItFaces>
typename Triangulation_2<Gt,Tds>::Vertex_handle
Triangulation_2<Gt,Tds>::
move_if_no_collision_and_give_new_faces(Vertex_handle v,
const Point &p,
OutputItFaces oif)
{
CGAL_triangulation_precondition(!is_infinite(v));
if(v->point() == p) return v;
const int dim = this->dimension();
Locate_type lt;
int li;
Vertex_handle inserted;
Face_handle loc = locate(p, lt, li, v->face());
if(lt == VERTEX) return loc->vertex(li);
if(dim == 0) {
v->set_point(p);
return v;
}
int n_vertices = tds().number_of_vertices();
if((lt == OUTSIDE_AFFINE_HULL) && (dim == 1) && (n_vertices == 3)) {
v->set_point(p);
for(All_faces_iterator afi = tds().face_iterator_base_begin();
afi != tds().face_iterator_base_begin();
afi++) *oif++ = afi;
return v;
}
if((lt != OUTSIDE_AFFINE_HULL) && (dim == 1)) {
if(loc->has_vertex(v)) {
v->set_point(p);
} else {
inserted = insert(p, lt, loc, li);
Face_handle f = v->face();
int i = f->index(v);
if (i==0) {f = f->neighbor(1);}
CGAL_triangulation_assertion(f->index(v) == 1);
Face_handle g= f->neighbor(0);
f->set_vertex(1, g->vertex(1));
f->set_neighbor(0,g->neighbor(0));
g->neighbor(0)->set_neighbor(1,f);
g->vertex(1)->set_face(f);
delete_face(g);
*oif++ = f;
Face_handle f_ins = inserted->face();
i = f_ins->index(inserted);
if (i==0) {f_ins = f_ins->neighbor(1);}
CGAL_triangulation_assertion(f_ins->index(inserted) == 1);
Face_handle g_ins = f_ins->neighbor(0);
f_ins->set_vertex(1, v);
g_ins->set_vertex(0, v);
v->set_point(p);
v->set_face(inserted->face());
delete_vertex(inserted);
}
*oif++ = v->face();
if(v->face()->neighbor(0)->has_vertex(v))
*oif++ = v->face()->neighbor(0);
if(v->face()->neighbor(1)->has_vertex(v))
*oif++ = v->face()->neighbor(1);
return v;
}
if((lt != OUTSIDE_AFFINE_HULL) && test_dim_down(v)) {
// verify if p and two static vertices are collinear in this case
int iinf;
Face_circulator finf = incident_faces(infinite_vertex()), fdone(finf);
do {
if(!finf->has_vertex(v))
{
iinf = ~(finf->index(infinite_vertex()));
break;
}
} while(++finf != fdone);
if(this->orientation(finf->vertex(iinf&1)->point(),
finf->vertex(iinf&2)->point(),
p) == COLLINEAR)
{
v->set_point(p);
_tds.dim_down(loc, loc->index(v));
return v;
}
for(All_faces_iterator afi = tds().face_iterator_base_begin();
afi != tds().face_iterator_base_begin();
afi++) *oif++ = afi;
}
std::set<Face_handle> faces_set;
inserted = insert(p, lt, loc, li);
Face_circulator fc = incident_faces(inserted), done(fc);
do { faces_set.insert(fc); } while(++fc != done);
std::list<Edge> hole;
make_hole(v, hole, faces_set);
fill_hole(v, hole, oif);
fc = this->incident_faces(inserted), done(fc);
std::vector<Face_handle> faces_pt;
faces_pt.reserve(16);
do { faces_pt.push_back(fc); } while(++fc != done);
int ss = faces_pt.size();
for(int k=0; k<ss; k++)
{
Face_handle f = faces_pt[k];
int i = f->index(inserted);
f->set_vertex(i, v);
}
v->set_point(p);
v->set_face(inserted->face());
delete_vertex(inserted);
for(typename std::set<Face_handle>::iterator ib = faces_set.begin(),
iend = faces_set.end(); ib != iend; ib++) *oif++ = *ib;
return v;
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt, Tds>::Face_handle
Triangulation_2<Gt, Tds>::
create_face(Face_handle f1, int i1,
Face_handle f2, int i2,
Face_handle f3, int i3)
{
return _tds.create_face(f1, i1, f2, i2, f3, i3);
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt, Tds>::Face_handle
Triangulation_2<Gt, Tds>::
create_face(Face_handle f1, int i1,
Face_handle f2, int i2)
{
return _tds.create_face(f1, i1, f2, i2);
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt, Tds>::Face_handle
Triangulation_2<Gt, Tds>::
create_face(Face_handle f, int i, Vertex_handle v)
{
return _tds.create_face(f, i, v);
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt, Tds>::Face_handle
Triangulation_2<Gt, Tds>::
create_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3)
{
return _tds.create_face(v1, v2, v3);
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt, Tds>::Face_handle
Triangulation_2<Gt, Tds>::
create_face(Vertex_handle v1, Vertex_handle v2, Vertex_handle v3,
Face_handle f1, Face_handle f2, Face_handle f3)
{
return _tds.create_face(v1, v2, v3, f1, f2, f3);
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt, Tds>::Face_handle
Triangulation_2<Gt, Tds>::
create_face(Face_handle fh)
{
return _tds.create_face(fh);
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt, Tds>::Face_handle
Triangulation_2<Gt, Tds>::
create_face()
{
return _tds.create_face();
}
template <class Gt, class Tds >
inline
void
Triangulation_2<Gt, Tds>::
delete_face(Face_handle f)
{
_tds.delete_face(f);
}
template <class Gt, class Tds >
inline
void
Triangulation_2<Gt, Tds>::
delete_vertex(Vertex_handle v)
{
_tds.delete_vertex(v);
}
// POINT LOCATION
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Face_handle
Triangulation_2<Gt, Tds>::
march_locate_1D(const Point& t,
Locate_type& lt,
int& li) const
{
Face_handle ff = infinite_face();
int iv = ff->index(infinite_vertex());
Face_handle f = ff->neighbor(iv);
Orientation pqt = orientation(f->vertex(0)->point(),
f->vertex(1)->point(),
t);
if(pqt == RIGHT_TURN || pqt == LEFT_TURN) {
lt = OUTSIDE_AFFINE_HULL;
li = 4 ;// should not be used
return Face_handle();
}
int i= f->index(ff);
if (collinear_between(t,f->vertex(1-i)->point(),f->vertex(i)->point())) {
lt = OUTSIDE_CONVEX_HULL;
li = iv;
return ff;
}
if( xy_equal(t,f->vertex(1-i)->point()) ){
lt = VERTEX;
li=1-i;
return f;
}
ff = ff->neighbor(1-iv); //the other infinite face
iv = ff->index(infinite_vertex());
f = ff->neighbor(iv);
i = f->index(ff);
if (collinear_between(t,f->vertex(1-i)->point(),f->vertex(i)->point())) {
lt = OUTSIDE_CONVEX_HULL;
li = iv;
return ff;
}
if( xy_equal(t,f->vertex(1-i)->point()) ){
lt = VERTEX;
li=1-i;
return f;
}
Finite_edges_iterator eit= finite_edges_begin();
Vertex_handle u,v;
for( ; eit != finite_edges_end() ; eit++) {
u = (*eit).first->vertex(0);
v = (*eit).first->vertex(1);
if(xy_equal(t,v->point())){
lt = VERTEX;
li = 1;
return (*eit).first;
}
if(collinear_between(u->point(), t, v->point())){
lt = EDGE;
li = 2;
return (*eit).first;
}
}
CGAL_triangulation_assertion(false);
return Face_handle();
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Face_handle
Triangulation_2<Gt, Tds>::
march_locate_2D_LFC(Face_handle start,
const Point& t,
Locate_type& lt,
int& li) const
{
// CGAL_triangulation_precondition( ! is_infinite(start) );
const Point& p = start->vertex(0)->point();
const Point& q = start->vertex(1)->point();
const Point& r = start->vertex(2)->point();
if(xy_equal(t,p)) {
lt = VERTEX;
li = 0;
return start;
}
Line_face_circulator lfc;
Orientation o2 = orientation(p, q, t);
Orientation o0 = orientation(q, r, t);
Orientation o1 = orientation(r, p, t);
if( (o2 == LEFT_TURN)&& (o1 == LEFT_TURN)) {
lfc = Line_face_circulator(start, 0,
Line_face_circulator::vertex_edge,
this, p, t);
} else if ( (o0 == LEFT_TURN)&& (o2 == LEFT_TURN)) {
lfc = Line_face_circulator(start, 1,
Line_face_circulator::vertex_edge,
this, q, t);
} else if ( (o1 == LEFT_TURN)&& (o0 == LEFT_TURN)) {
lfc = Line_face_circulator(start, 2,
Line_face_circulator::vertex_edge,
this, r, t);
} if( (o2 == RIGHT_TURN)&& (o1 == RIGHT_TURN)) {
lfc = Line_face_circulator(start, 0,
Line_face_circulator::edge_vertex,
this, p, t);
} else if ( (o0 == RIGHT_TURN)&& (o2 == RIGHT_TURN)) {
lfc = Line_face_circulator(start, 1,
Line_face_circulator::edge_vertex,
this, q, t);
} else if ( (o1 == RIGHT_TURN)&& (o0 == RIGHT_TURN)) {
lfc = Line_face_circulator(start, 2,
Line_face_circulator::edge_vertex,
this, r, t);
}else {
lfc = Line_face_circulator(start->vertex(0), this, t);
}
if(lfc==0 || lfc.collinear_outside()){
// point t lies outside or on the convex hull
// we walk on the convex hull to find it out
Face_circulator fc = incident_faces(infinite_vertex());
Face_circulator done(fc);
int ic = fc->index(infinite_vertex());
if (xy_equal(t,fc->vertex(cw(ic))->point())){
lt = VERTEX;
li = cw(ic);
return fc;
}
Orientation ori;
do{ // walking ccw around convex hull
ic = fc->index(infinite_vertex());
if (xy_equal(t,fc->vertex(ccw(ic))->point())){
lt = VERTEX;
li = ccw(ic);
return fc;
}
ori = orientation( fc->vertex(cw(ic))->point(),
fc->vertex(ccw(ic))->point(), t);
if (ori == RIGHT_TURN) {
lt = OUTSIDE_CONVEX_HULL;
li = ic;
return fc;
}
if (ori == COLLINEAR &&
collinear_between(fc->vertex(cw(ic))->point(),
t,
fc->vertex(ccw(ic))->point()) ) {
lt = EDGE;
li = ic;
return fc;
}
} while (--fc != done);
//should not arrive there;
CGAL_triangulation_assertion(fc != done);
}
while(! lfc.locate(t, lt, li) ){
++lfc;
}
return lfc;
}
template <class Gt, class Tds >
void
Triangulation_2<Gt, Tds>::
compare_walks(const Point& p,
Face_handle c1, Face_handle c2,
Locate_type& lt1, Locate_type& lt2,
int li1, int li2) const
{
bool b = true;
b = b && (lt1 == lt2);
if((lt1 == lt2) && (lt1 == VERTEX)) {
b = b && ( c1->vertex(li1) == c2->vertex(li2) );
} else if((lt1 == lt2) && (lt1 == EDGE)) {
b = b && ((c1 == c2) || ( (c1->neighbor(li1) == c2) && (c2->neighbor(li2) == c1)));
}else if((lt1 == lt2) && (lt1 == OUTSIDE_CONVEX_HULL)) {
b = b && (is_infinite(c1) && is_infinite(c2));
} else {
b = b && (lt1 == lt2);
b = b && (lt1 == FACE);
b = b && (c1 == c2);
}
if ( c1 != c2) {
std::cerr << "from compare_walks " << std::endl;
std::cerr << "point " << p << std::endl;
std::cerr << "locate 1 " << &*c1 << "\t" << lt1 << "\t" << li1
<< std::endl;
std::cerr << "locate 2 " << &*c2 << "\t" << lt2 << "\t" << li2
<< std::endl;
std::cerr << std::endl;
show_face(c1);
std::cerr << std::endl;
show_face(c2);
std::cerr << std::endl;
}
CGAL_triangulation_assertion(b);
}
#if 1
template <class Gt, class Tds > typename Triangulation_2<Gt, Tds>::Face_handle
Triangulation_2<Gt, Tds>::
march_locate_2D(Face_handle c,
const Point& t,
Locate_type& lt,
int& li) const
{
CGAL_triangulation_assertion(! is_infinite(c));
boost::rand48 rng;
boost::uniform_smallint<> two(0, 1);
boost::variate_generator<boost::rand48&, boost::uniform_smallint<> > coin(rng, two);
Face_handle prev = Face_handle();
bool first = true;
while (1) {
if ( is_infinite(c) ) {
// c must contain t in its interior
lt = OUTSIDE_CONVEX_HULL;
li = c->index(infinite_vertex());
return c;
}
// else c is finite
// Instead of testing its edges in a random order we do the following
// until we find a neighbor to go further:
// As we come from prev we do not have to check the edge leading to prev
// Now we flip a coin in order to decide if we start checking the
// edge before or the edge after the edge leading to prev
// We do loop unrolling in order to find out if this is faster.
// In the very beginning we do not have a prev, but for the first step
// we do not need randomness
int left_first = coin()%2;
const Point & p0 = c->vertex( 0 )->point();
const Point & p1 = c->vertex( 1 )->point();
const Point & p2 = c->vertex( 2 )->point();
Orientation o0, o1, o2;
if(first){
prev = c;
first = false;
o0 = orientation(p0,p1,t);
if ( o0 == NEGATIVE ) {
c = c->neighbor( 2 );
continue;
}
o1 = orientation(p1,p2,t);
if ( o1 == NEGATIVE ) {
c = c->neighbor( 0 );
continue;
}
o2 = orientation(p2,p0,t);
if ( o2 == NEGATIVE ) {
c = c->neighbor( 1 );
continue;
}
} else if(left_first){
if(c->neighbor(0) == prev){
prev = c;
o0 = orientation(p0,p1,t);
if ( o0 == NEGATIVE ) {
c = c->neighbor( 2 );
continue;
}
o2 = orientation(p2,p0,t);
if ( o2 == NEGATIVE ) {
c = c->neighbor( 1 );
continue;
}
o1 = POSITIVE;
} else if(c->neighbor(1) == prev){
prev = c;
o1 = orientation(p1,p2,t);
if ( o1 == NEGATIVE ) {
c = c->neighbor( 0 );
continue;
}
o0 = orientation(p0,p1,t);
if ( o0 == NEGATIVE ) {
c = c->neighbor( 2 );
continue;
}
o2 = POSITIVE;
} else {
prev = c;
o2 = orientation(p2,p0,t);
if ( o2 == NEGATIVE ) {
c = c->neighbor( 1 );
continue;
}
o1 = orientation(p1,p2,t);
if ( o1 == NEGATIVE ) {
c = c->neighbor( 0 );
continue;
}
o0 = POSITIVE;
}
} else { // right_first
if(c->neighbor(0) == prev){
prev = c;
o2 = orientation(p2,p0,t);
if ( o2 == NEGATIVE ) {
c = c->neighbor( 1 );
continue;
}
o0 = orientation(p0,p1,t);
if ( o0 == NEGATIVE ) {
c = c->neighbor( 2 );
continue;
}
o1 = POSITIVE;
} else if(c->neighbor(1) == prev){
prev = c;
o0 = orientation(p0,p1,t);
if ( o0 == NEGATIVE ) {
c = c->neighbor( 2 );
continue;
}
o1 = orientation(p1,p2,t);
if ( o1 == NEGATIVE ) {
c = c->neighbor( 0 );
continue;
}
o2 = POSITIVE;
} else {
prev = c;
o1 = orientation(p1,p2,t);
if ( o1 == NEGATIVE ) {
c = c->neighbor( 0 );
continue;
}
o2 = orientation(p2,p0,t);
if ( o2 == NEGATIVE ) {
c = c->neighbor( 1 );
continue;
}
o0 = POSITIVE;
}
}
// now p is in c or on its boundary
int sum = ( o0 == COLLINEAR )
+ ( o1 == COLLINEAR )
+ ( o2 == COLLINEAR );
switch (sum) {
case 0:
{
lt = FACE;
li = 4;
break;
}
case 1:
{
lt = EDGE;
li = ( o0 == COLLINEAR ) ? 2 :
( o1 == COLLINEAR ) ? 0 :
1;
break;
}
case 2:
{
lt = VERTEX;
li = ( o0 != COLLINEAR ) ? 2 :
( o1 != COLLINEAR ) ? 0 :
1;
break;
}
}
return c;
}
}
#else // not 1
template <class Gt, class Tds > typename Triangulation_2<Gt, Tds>::Face_handle
Triangulation_2<Gt, Tds>::
march_locate_2D(Face_handle c,
const Point& t,
Locate_type& lt,
int& li) const
{
CGAL_triangulation_assertion(! is_infinite(c));
boost::uniform_smallint<> three(0, 2);
boost::variate_generator<boost::rand48&, boost::uniform_smallint<> > die3(rng, three);
Face_handle prev = Face_handle();
while (1) {
if ( is_infinite(c) ) {
// c must contain t in its interior
lt = OUTSIDE_CONVEX_HULL;
li = c->index(infinite_vertex());
return c;
}
// else c is finite
// we test its edges in a random order until we find a
// neighbor to go further
int i = die3();
int ccwi = ccw(i);
int cwi = cw(i);
const Point & p0 = c->vertex( i )->point();
const Point & p1 = c->vertex( ccwi )->point();
Orientation o0, o1, o2;
CGAL_triangulation_assertion(orientation(p0,p1,c->vertex( cwi )->point())==POSITIVE);
if(c->neighbor(cwi) == prev){
o0 = POSITIVE;
} else {
o0 = orientation(p0,p1,t);
if ( o0 == NEGATIVE ) {
prev = c;
c = c->neighbor( cwi );
continue;
}
}
const Point & p2 = c->vertex( cwi )->point();
if(c->neighbor(i) == prev){
o1 = POSITIVE;
} else {
o1 = orientation(p1,p2,t);
if ( o1 == NEGATIVE ) {
prev = c;
c = c->neighbor( i );
continue;
}
}
if(c->neighbor(ccwi) == prev){
o2 = POSITIVE;
} else {
o2 = orientation(p2,p0,t);
if ( o2 == NEGATIVE ) {
prev = c;
c = c->neighbor( ccwi );
continue;
}
}
// now p is in c or on its boundary
int sum = ( o0 == COLLINEAR )
+ ( o1 == COLLINEAR )
+ ( o2 == COLLINEAR );
switch (sum) {
case 0:
{
lt = FACE;
li = 4;
break;
}
case 1:
{
lt = EDGE;
li = ( o0 == COLLINEAR ) ? cwi :
( o1 == COLLINEAR ) ? i :
ccwi;
break;
}
case 2:
{
lt = VERTEX;
li = ( o0 != COLLINEAR ) ? cwi :
( o1 != COLLINEAR ) ? i :
ccwi;
break;
}
}
return c;
}
}
#endif // not 1
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Face_handle
Triangulation_2<Gt,Tds>::
#ifdef CGAL_NO_STRUCTURAL_FILTERING
locate(const Point& p,
Locate_type& lt,
int& li,
Face_handle start) const
#else // no CGAL_NO_STRUCTURAL_FILTERING
exact_locate(const Point& p,
Locate_type& lt,
int& li,
Face_handle start) const
#endif // no CGAL_NO_STRUCTURAL_FILTERING
{
if (dimension() < 0) {
lt = OUTSIDE_AFFINE_HULL;
li = 4; // li should not be used in this case
return Face_handle();
}
if( dimension() == 0) {
// Do not use finite_vertex directly because there can be hidden vertices
// (regular triangulations)
if (xy_equal(p,finite_vertex()->face()->vertex(0)->point())){
lt = VERTEX ;
}
else{
lt = OUTSIDE_AFFINE_HULL;
}
li = 4; // li should not be used in this case
return Face_handle();
}
if(dimension() == 1){
return march_locate_1D(p, lt, li);
}
if(start == Face_handle()){
start = infinite_face()->
neighbor(infinite_face()->index(infinite_vertex()));
}else if(is_infinite(start)){
start = start->neighbor(start->index(infinite_vertex()));
}
#if ( ! defined(CGAL_ZIG_ZAG_WALK)) && ( ! defined(CGAL_LFC_WALK))
#define CGAL_ZIG_ZAG_WALK
#endif
#ifdef CGAL_ZIG_ZAG_WALK
Face_handle res1 = march_locate_2D(start, p, lt, li);
#endif
#ifdef CGAL_LFC_WALK
Locate_type lt2;
int li2;
Face_handle res2 = march_locate_2D_LFC(start, p, lt2, li2);
#endif
#if defined(CGAL_ZIG_ZAG_WALK) && defined(CGAL_LFC_WALK)
compare_walks(p,
res1, res2,
lt, lt2,
li, li2);
#endif
#ifdef CGAL_ZIG_ZAG_WALK
return res1;
#endif
#ifdef CGAL_LFC_WALK
lt = lt2;
li = li2;
return res2;
#endif
}
#ifdef CGAL_NO_STRUCTURAL_FILTERING
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>:: Face_handle
Triangulation_2<Gt, Tds>::
locate(const Point &p,
Face_handle start) const
{
Locate_type lt;
int li;
return locate(p, lt, li, start);
}
#else
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt, Tds>::Face_handle
Triangulation_2<Gt, Tds>::
inexact_locate(const Point & t, Face_handle start, int n_of_turns) const
{
if(dimension() < 2) return start;
if(start == Face_handle()){
start = infinite_face()->
neighbor(infinite_face()->index(infinite_vertex()));
} else if(is_infinite(start)){
start = start->neighbor(start->index(infinite_vertex()));
}
Face_handle prev = Face_handle(), c = start;
bool first = true;
while (1) {
if(!(n_of_turns--)) return c;
if ( is_infinite(c) ) return c;
const Point & p0 = c->vertex( 0 )->point();
const Point & p1 = c->vertex( 1 )->point();
const Point & p2 = c->vertex( 2 )->point();
if(first) {
prev = c;
first = false;
if(has_inexact_negative_orientation(p0,p1,t) ) {
c = c->neighbor( 2 );
continue;
}
if(has_inexact_negative_orientation(p1,p2,t) ) {
c = c->neighbor( 0 );
continue;
}
if (has_inexact_negative_orientation(p2,p0,t) ) {
c = c->neighbor( 1 );
continue;
}
} else {
if(c->neighbor(0) == prev){
prev = c;
if (has_inexact_negative_orientation(p0,p1,t) ) {
c = c->neighbor( 2 );
continue;
}
if (has_inexact_negative_orientation(p2,p0,t) ) {
c = c->neighbor( 1 );
continue;
}
} else if(c->neighbor(1) == prev){
prev = c;
if (has_inexact_negative_orientation(p0,p1,t) ) {
c = c->neighbor( 2 );
continue;
}
if (has_inexact_negative_orientation(p1,p2,t) ) {
c = c->neighbor( 0 );
continue;
}
} else {
prev = c;
if (has_inexact_negative_orientation(p2,p0,t) ) {
c = c->neighbor( 1 );
continue;
}
if (has_inexact_negative_orientation(p1,p2,t) ) {
c = c->neighbor( 0 );
continue;
}
}
}
break;
}
return c;
}
template <class Gt, class Tds >
inline
bool
Triangulation_2<Gt, Tds>::
has_inexact_negative_orientation(const Point &p, const Point &q,
const Point &r) const
{
// So that this code works well with Lazy_kernel
internal::Static_filters_predicates::Get_approx<Point> get_approx;
const double px = to_double(get_approx(p).x());
const double py = to_double(get_approx(p).y());
const double qx = to_double(get_approx(q).x());
const double qy = to_double(get_approx(q).y());
const double rx = to_double(get_approx(r).x());
const double ry = to_double(get_approx(r).y());
const double pqx = qx - px;
const double pqy = qy - py;
const double prx = rx - px;
const double pry = ry - py;
return ( determinant(pqx, pqy, prx, pry) < 0);
}
#endif
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Finite_faces_iterator
Triangulation_2<Gt, Tds>::
finite_faces_begin() const
{
if ( dimension() < 2 )
return finite_faces_end();
return CGAL::filter_iterator( all_faces_end(),
Infinite_tester(this),
all_faces_begin() );
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Finite_faces_iterator
Triangulation_2<Gt, Tds>::
finite_faces_end() const
{
return CGAL::filter_iterator( all_faces_end(),
Infinite_tester(this) );
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Finite_vertices_iterator
Triangulation_2<Gt, Tds>::
finite_vertices_begin() const
{
if ( number_of_vertices() <= 0 )
return finite_vertices_end();
return CGAL::filter_iterator( all_vertices_end(),
Infinite_tester(this),
all_vertices_begin() );
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Finite_vertices_iterator
Triangulation_2<Gt, Tds>::
finite_vertices_end() const
{
return CGAL::filter_iterator(all_vertices_end(),
Infinite_tester(this));
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Finite_edges_iterator
Triangulation_2<Gt, Tds>::
finite_edges_begin() const
{
if ( dimension() < 1 )
return finite_edges_end();
return CGAL::filter_iterator( all_edges_end(),
infinite_tester(),
all_edges_begin());
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Finite_edges_iterator
Triangulation_2<Gt, Tds>::
finite_edges_end() const
{
return CGAL::filter_iterator(all_edges_end(),
infinite_tester() );
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Point_iterator
Triangulation_2<Gt, Tds>::
points_begin() const
{
return Point_iterator(finite_vertices_begin());
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Point_iterator
Triangulation_2<Gt, Tds>::
points_end() const
{
return Point_iterator(finite_vertices_end());
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::All_faces_iterator
Triangulation_2<Gt, Tds>::
all_faces_begin() const
{
return _tds.faces_begin();
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::All_faces_iterator
Triangulation_2<Gt, Tds>::
all_faces_end() const
{
return _tds.faces_end();;
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::All_vertices_iterator
Triangulation_2<Gt, Tds>::
all_vertices_begin() const
{
return _tds.vertices_begin();
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::All_vertices_iterator
Triangulation_2<Gt, Tds>::
all_vertices_end() const
{
return _tds.vertices_end();
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::All_edges_iterator
Triangulation_2<Gt, Tds>::
all_edges_begin() const
{
return _tds.edges_begin();
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::All_edges_iterator
Triangulation_2<Gt, Tds>::
all_edges_end() const
{
return _tds.edges_end();
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt, Tds>::Face_circulator
Triangulation_2<Gt, Tds>::
incident_faces(Vertex_handle v, Face_handle f) const
{
return _tds.incident_faces(v,f);
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt, Tds>::Vertex_circulator
Triangulation_2<Gt, Tds>::
incident_vertices(Vertex_handle v, Face_handle f) const
{
return _tds.incident_vertices(v,f);
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt, Tds>::Edge_circulator
Triangulation_2<Gt, Tds>::
incident_edges(Vertex_handle v, Face_handle f) const
{
return _tds.incident_edges(v,f);
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt, Tds>::size_type
Triangulation_2<Gt, Tds>::
degree(Vertex_handle v) const
{
return _tds.degree(v);
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt, Tds>::Vertex_handle
Triangulation_2<Gt, Tds>::
mirror_vertex(Face_handle f, int i) const
{
return _tds.mirror_vertex(f,i);
}
template <class Gt, class Tds >
inline
int
Triangulation_2<Gt, Tds>::
mirror_index(Face_handle f, int i) const
{
return _tds.mirror_index(f,i);
}
template <class Gt, class Tds >
inline
typename Triangulation_2<Gt, Tds>::Edge
Triangulation_2<Gt, Tds>::
mirror_edge(const Edge e) const
{
return _tds.mirror_edge(e);
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Line_face_circulator
Triangulation_2<Gt, Tds>::
line_walk(const Point& p, const Point& q, Face_handle f) const
{
CGAL_triangulation_precondition( (dimension() == 2) &&
! xy_equal(p,q));
Line_face_circulator lfc = (f == Face_handle())
? Line_face_circulator(p, q, this)
: Line_face_circulator(p, q, f, this);
// the following lines may be useless :
// Line_face_circulator(p,q...) returns either a null circulator
// or a pointer to a finite face (to be checked)
if( (!lfc.is_empty()) && is_infinite( lfc )){
do { ++lfc ;}
while (is_infinite(lfc));
}
return lfc;
}
template <class Gt, class Tds >
Oriented_side
Triangulation_2<Gt, Tds>::
oriented_side(const Point &p0, const Point &p1,
const Point &p2, const Point &p) const
{
// return position of point p with respect to the oriented triangle p0p1p2
// depends on the orientation of the vertices
Bounded_side bs=bounded_side(p0,p1,p2,p);
if (bs == ON_BOUNDARY) return ON_ORIENTED_BOUNDARY;
Orientation ot = orientation(p0, p1, p2);
if (bs == ON_BOUNDED_SIDE)
return (ot == LEFT_TURN) ? ON_POSITIVE_SIDE : ON_NEGATIVE_SIDE;
// bs == ON_UNBOUNDED_SIDE
return (ot == LEFT_TURN) ? ON_NEGATIVE_SIDE : ON_POSITIVE_SIDE;
}
template <class Gt, class Tds >
Bounded_side
Triangulation_2<Gt, Tds>::
bounded_side(const Point &p0, const Point &p1,
const Point &p2, const Point &p) const
{
// return position of point p with respect to triangle p0p1p2
CGAL_triangulation_precondition( orientation(p0, p1, p2) != COLLINEAR);
Orientation o1 = orientation(p0, p1, p),
o2 = orientation(p1, p2, p),
o3 = orientation(p2, p0, p);
if (o1 == COLLINEAR){
if (o2 == COLLINEAR || o3 == COLLINEAR) return ON_BOUNDARY;
if (collinear_between(p0, p, p1)) return ON_BOUNDARY;
return ON_UNBOUNDED_SIDE;
}
if (o2 == COLLINEAR){
if (o3 == COLLINEAR) return ON_BOUNDARY;
if (collinear_between(p1, p, p2)) return ON_BOUNDARY;
return ON_UNBOUNDED_SIDE;
}
if (o3 == COLLINEAR){
if (collinear_between(p2, p, p0)) return ON_BOUNDARY;
return ON_UNBOUNDED_SIDE;
}
// from here none ot, o1, o2 and o3 are known to be non null
if (o1 == o2 && o2 == o3) return ON_BOUNDED_SIDE;
return ON_UNBOUNDED_SIDE;
}
template <class Gt, class Tds >
Oriented_side
Triangulation_2<Gt, Tds>::
oriented_side(Face_handle f, const Point &p) const
{
CGAL_triangulation_precondition ( dimension()==2);
return oriented_side(f->vertex(0)->point(),
f->vertex(1)->point(),
f->vertex(2)->point(),
p);
}
template <class Gt, class Tds >
Oriented_side
Triangulation_2<Gt, Tds>::
side_of_oriented_circle(const Point &p0, const Point &p1, const Point &p2,
const Point &p, bool perturb) const
{
//CGAL_triangulation_precondition( orientation(p0, p1, p2) == POSITIVE );
// no reason for such precondition and it invalidates fast removal in Delaunay
typename Gt::Side_of_oriented_circle_2 pred = geom_traits().side_of_oriented_circle_2_object();
Oriented_side os =
pred(p0, p1, p2, p);
if ((os != ON_ORIENTED_BOUNDARY) || (! perturb))
return os;
// We are now in a degenerate case => we do a symbolic perturbation.
// We sort the points lexicographically.
const Point * points[4] = {&p0, &p1, &p2, &p};
std::sort(points, points+4, Perturbation_order(this) );
// We successively look whether the leading monomial, then 2nd monomial
// of the determinant has non null coefficient.
// 2 iterations are enough if p0p1p2 is positive (cf paper)
for (int i=3; i>0; --i) {
if (points[i] == &p)
return ON_NEGATIVE_SIDE; // since p0 p1 p2 are non collinear
// and "conceptually" positively oriented
Orientation o;
if (points[i] == &p2 && (o = orientation(p0,p1,p)) != COLLINEAR )
return Oriented_side(o);
if (points[i] == &p1 && (o = orientation(p0,p,p2)) != COLLINEAR )
return Oriented_side(o);
if (points[i] == &p0 && (o = orientation(p,p1,p2)) != COLLINEAR )
return Oriented_side(o);
}
// CGAL_triangulation_assertion(false);
//no reason for such precondition and it invalidates fast removal in Delaunay
return ON_NEGATIVE_SIDE;
}
template < class Gt, class Tds >
Oriented_side
Triangulation_2<Gt,Tds>::
side_of_oriented_circle(Face_handle f, const Point & p, bool perturb) const
{
if ( ! is_infinite(f) ) {
/*
typename Gt::Side_of_oriented_circle_2
in_circle = geom_traits().side_of_oriented_circle_2_object();
return in_circle(f->vertex(0)->point(),
f->vertex(1)->point(),
f->vertex(2)->point(),p);
*/
return this->side_of_oriented_circle(f->vertex(0)->point(),
f->vertex(1)->point(),
f->vertex(2)->point(),p, perturb);
}
int i = f->index(infinite_vertex());
Orientation o = orientation(f->vertex(ccw(i))->point(),
f->vertex(cw(i))->point(),
p);
return (o == NEGATIVE) ? ON_NEGATIVE_SIDE :
(o == POSITIVE) ? ON_POSITIVE_SIDE :
ON_ORIENTED_BOUNDARY;
}
template <class Gt, class Tds >
bool
Triangulation_2<Gt, Tds>::
collinear_between(const Point& p, const Point& q, const Point& r) const
{
// return true if point q is strictly between p and r
// p,q and r are supposed to be collinear points
Comparison_result c_pr = compare_x(p, r);
Comparison_result c_pq;
Comparison_result c_qr;
if(c_pr == EQUAL) {
//c_pr = compare_y(p, r);
c_pq = compare_y(p, q);
c_qr = compare_y(q, r);
} else {
c_pq = compare_x(p, q);
c_qr = compare_x(q, r);
}
return ( (c_pq == SMALLER) && (c_qr == SMALLER) ) ||
( (c_pq == LARGER) && (c_qr == LARGER) );
}
template <class Gt, class Tds >
inline
Comparison_result
Triangulation_2<Gt, Tds>::
compare_x(const Point& p, const Point& q) const
{
return geom_traits().compare_x_2_object()(p,q);
}
template <class Gt, class Tds >
inline
Comparison_result
Triangulation_2<Gt, Tds>::
compare_xy(const Point& p, const Point& q) const
{
Comparison_result res = geom_traits().compare_x_2_object()(p,q);
if(res == EQUAL){
return geom_traits().compare_y_2_object()(p,q);
}
return res;
}
template <class Gt, class Tds >
inline
Comparison_result
Triangulation_2<Gt, Tds>::
compare_y(const Point& p, const Point& q) const
{
return geom_traits().compare_y_2_object()(p,q);
}
template <class Gt, class Tds >
inline
bool
Triangulation_2<Gt, Tds>::
xy_equal(const Point& p, const Point& q) const
{
return compare_x(p,q)== EQUAL && compare_y(p,q)== EQUAL ;
}
template <class Gt, class Tds >
inline
Orientation
Triangulation_2<Gt, Tds>::
orientation(const Point& p, const Point& q,const Point& r ) const
{
return geom_traits().orientation_2_object()(p,q,r);
}
template<class Gt, class Tds>
inline
typename Triangulation_2<Gt,Tds>::Point
Triangulation_2<Gt,Tds>::
circumcenter (const Point& p0, const Point& p1, const Point& p2) const
{
return
geom_traits().construct_circumcenter_2_object()(p0,p1,p2);
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Point
Triangulation_2<Gt, Tds>::
circumcenter(Face_handle f) const
{
CGAL_triangulation_precondition (dimension()==2);
// typename Gt::Construct_circumcenter_2
// circumcenter = geom_traits().construct_circumcenter_2_object();
return circumcenter((f->vertex(0))->point(),
(f->vertex(1))->point(),
(f->vertex(2))->point());
}
template <class Gt, class Tds >
void
Triangulation_2<Gt, Tds>::
show_all() const
{
std::cerr<< "AFFICHE TOUTE LA TRIANGULATION :"<<std::endl;
std::cerr << std::endl<<"====> "<< this;
std::cerr << " dimension " << dimension() << std::endl;
std::cerr << "nb of vertices " << number_of_vertices() << std::endl;
if (dimension() < 1) return;
if(dimension() == 1) {
std::cerr<<" all edges "<<std::endl;
All_edges_iterator aeit;
for(aeit = all_edges_begin(); aeit != all_edges_end(); aeit++){
show_face(aeit->first);
}
return;
}
std::cerr<<" faces finies "<<std::endl;
Finite_faces_iterator fi;
for(fi = finite_faces_begin(); fi != finite_faces_end(); fi++) {
show_face(fi);
}
std::cerr <<" faces infinies "<<std::endl;
All_faces_iterator afi;
for(afi = all_faces_begin(); afi != all_faces_end(); afi++) {
if(is_infinite(afi)) show_face(afi);
}
if (number_of_vertices()>1) {
std::cerr << "affichage des sommets de la triangulation reguliere"
<<std::endl;
All_vertices_iterator vi;
for( vi = all_vertices_begin(); vi != all_vertices_end(); vi++){
show_vertex(vi);
std::cerr << " / face associee : "
<< (void*)(&(*(vi->face())))<< std::endl;;
}
std::cerr<<std::endl;
}
return;
}
template <class Gt, class Tds >
void
Triangulation_2<Gt, Tds>::
show_vertex(Vertex_handle vh) const
{
if(is_infinite(vh)) std::cerr << "inf \t";
else std::cerr << vh->point() << "\t";
return;
}
template <class Gt, class Tds >
void
Triangulation_2<Gt, Tds>::
show_face(Face_handle fh) const
{
std::cerr << "face : "<<(void*)&(*fh)<<" => "<<std::endl;
int i = fh->dimension();
switch(i){
case 0:
std::cerr <<"point :" ; show_vertex(fh->vertex(0));
std::cerr <<" / voisin " << &(*(fh->neighbor(0)));
std::cerr <<"[" ; show_vertex(fh->neighbor(0)->vertex(0));
std::cerr <<"]" << std::endl;
break;
case 1:
std::cerr <<"point :" ; show_vertex(fh->vertex(0));
std::cerr <<" / voisin " << &(*(fh->neighbor(0)));
std::cerr <<"[" ; show_vertex(fh->neighbor(0)->vertex(0));
std::cerr <<"/" ; show_vertex(fh->neighbor(0)->vertex(1));
std::cerr <<"]" <<std::endl;
std::cerr <<"point :" ; show_vertex(fh->vertex(1));
std::cerr <<" / voisin " << &(*(fh->neighbor(1)));
std::cerr <<"[" ; show_vertex(fh->neighbor(1)->vertex(0));
std::cerr <<"/" ; show_vertex(fh->neighbor(1)->vertex(1));
std::cerr <<"]" <<std::endl;
break;
case 2:
std::cerr <<"point :" ; show_vertex(fh->vertex(0));
std::cerr <<" / voisin " << &(*(fh->neighbor(0)));
std::cerr <<"[" ; show_vertex(fh->neighbor(0)->vertex(0));
std::cerr <<"/" ; show_vertex(fh->neighbor(0)->vertex(1));
std::cerr <<"/" ; show_vertex(fh->neighbor(0)->vertex(2));
std::cerr <<"]" <<std::endl;
std::cerr <<"point :" ; show_vertex(fh->vertex(1));
std::cerr <<" / voisin " << &(*(fh->neighbor(1)));
std::cerr <<"[" ; show_vertex(fh->neighbor(1)->vertex(0));
std::cerr <<"/" ; show_vertex(fh->neighbor(1)->vertex(1));
std::cerr <<"/" ; show_vertex(fh->neighbor(1)->vertex(2));
std::cerr <<"]" <<std::endl;
std::cerr <<"point :" ; show_vertex(fh->vertex(2));
std::cerr <<" / voisin " << &(*(fh->neighbor(2)));
std::cerr <<"[" ; show_vertex(fh->neighbor(2)->vertex(0));
std::cerr <<"/" ; show_vertex(fh->neighbor(2)->vertex(1));
std::cerr <<"/" ; show_vertex(fh->neighbor(2)->vertex(2));
std::cerr <<"]" <<std::endl;
break;
}
return;
}
template <class Gt, class Tds >
void
Triangulation_2<Gt, Tds>::
file_output(std::ostream& os) const
{
_tds.file_output(os, infinite_vertex(), true);
}
template <class Gt, class Tds >
typename Triangulation_2<Gt, Tds>::Vertex_handle
Triangulation_2<Gt, Tds>::
file_input(std::istream& is)
{
clear();
Vertex_handle v= _tds.file_input(is, true);
set_infinite_vertex(v);
return v;
}
template <class Gt, class Tds >
std::ostream&
operator<<(std::ostream& os, const Triangulation_2<Gt, Tds> &tr)
{
tr.file_output(os);
return os ;
}
template < class Gt, class Tds >
std::istream&
operator>>(std::istream& is, Triangulation_2<Gt, Tds> &tr)
{
tr.file_input(is);
CGAL_triangulation_assertion(tr.is_valid());
return is;
}
} //namespace CGAL
#endif //CGAL_TRIANGULATION_2_H
|