This file is indexed.

/usr/include/CGAL/Triangulation_3.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
// Copyright (c) 1999-2003  INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
// Author(s)     : Monique Teillaud <Monique.Teillaud@sophia.inria.fr>
//                 Sylvain Pion

#ifndef CGAL_TRIANGULATION_3_H
#define CGAL_TRIANGULATION_3_H

#include <CGAL/basic.h>

#include <iostream>
#include <list>
#include <set>
#include <map>
#include <utility>
#include <stack>

#include <CGAL/Unique_hash_map.h>
#include <CGAL/triangulation_assertions.h>
#include <CGAL/Triangulation_utils_3.h>

#include <CGAL/Triangulation_data_structure_3.h>
#include <CGAL/Triangulation_cell_base_3.h>
#include <CGAL/Triangulation_vertex_base_3.h>

#include <CGAL/spatial_sort.h>

#include <CGAL/iterator.h>
#include <CGAL/function_objects.h>
#include <CGAL/Iterator_project.h>
#include <CGAL/Unique_hash_map.h>
#include <CGAL/Default.h>

#include <boost/bind.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/random/uniform_smallint.hpp>
#include <boost/random/variate_generator.hpp>

#ifndef CGAL_NO_STRUCTURAL_FILTERING
#include <CGAL/Triangulation_structural_filtering_traits.h>
#include <CGAL/determinant.h>
#endif // no CGAL_NO_STRUCTURAL_FILTERING

namespace CGAL {

template < class GT, class Tds = Default > class Triangulation_3;

template < class GT, class Tds > std::istream& operator>>
(std::istream& is, Triangulation_3<GT,Tds> &tr);

#ifndef CGAL_NO_STRUCTURAL_FILTERING
namespace internal {
// structural filtering is performed only for EPIC
struct Structural_filtering_3_tag {};
struct No_structural_filtering_3_tag {};

template <bool filter>
struct Structural_filtering_selector_3 {
  typedef No_structural_filtering_3_tag  Tag;
};

template <>
struct Structural_filtering_selector_3<true> {
  typedef Structural_filtering_3_tag  Tag;
};
}
#endif // no CGAL_NO_STRUCTURAL_FILTERING

template < class GT, class Tds_ >
class Triangulation_3
  : public Triangulation_utils_3
{
  friend std::istream& operator>> <>
  (std::istream& is, Triangulation_3<GT,Tds_> &tr);

  typedef Triangulation_3<GT, Tds_>             Self;

  typedef typename Default::Get<Tds_, Triangulation_data_structure_3 <
                                          Triangulation_vertex_base_3<GT>,
	                                  Triangulation_cell_base_3<GT> > >::type Tds;

public:

  typedef Tds                                  Triangulation_data_structure;
  typedef GT                                   Geom_traits;

  typedef typename GT::Point_3                 Point;
  typedef typename GT::Segment_3               Segment;
  typedef typename GT::Triangle_3              Triangle;
  typedef typename GT::Tetrahedron_3           Tetrahedron;

  typedef typename Tds::Vertex                 Vertex;
  typedef typename Tds::Cell                   Cell;
  typedef typename Tds::Facet                  Facet;
  typedef typename Tds::Edge                   Edge;

  typedef typename Tds::size_type              size_type;
  typedef typename Tds::difference_type        difference_type;

  typedef typename Tds::Vertex_handle          Vertex_handle;
  typedef typename Tds::Cell_handle            Cell_handle;

  typedef typename Tds::Cell_circulator        Cell_circulator;
  typedef typename Tds::Facet_circulator       Facet_circulator;

  // Not documented, see TDS.
  typedef typename Tds::Face_circulator        Face_circulator;

  typedef typename Tds::Cell_iterator          Cell_iterator;
  typedef typename Tds::Facet_iterator         Facet_iterator;
  typedef typename Tds::Edge_iterator          Edge_iterator;
  typedef typename Tds::Vertex_iterator        Vertex_iterator;

  typedef Cell_iterator                        All_cells_iterator;
  typedef Facet_iterator                       All_facets_iterator;
  typedef Edge_iterator                        All_edges_iterator;
  typedef Vertex_iterator                      All_vertices_iterator;

  typedef typename Tds::Simplex                Simplex;
private:
  // This class is used to generate the Finite_*_iterators.
  class Infinite_tester
  {
      const Self *t;

  public:

      Infinite_tester() {}

      Infinite_tester(const Self *tr)
	  : t(tr) {}

      bool operator()(const Vertex_iterator & v) const
      {
	  return t->is_infinite(v);
      }

      bool operator()(const Cell_iterator & c) const
      {
	  return t->is_infinite(c);
      }

      bool operator()(const Edge_iterator & e) const
      {
	  return t->is_infinite(*e);
      }

      bool operator()(const Facet_iterator & f) const
      {
	  return t->is_infinite(*f);
      }
  };

public:

  // We derive in order to add a conversion to handle.
  class Finite_cells_iterator
    : public Filter_iterator<Cell_iterator, Infinite_tester> {
    typedef Filter_iterator<Cell_iterator, Infinite_tester> Base;
    typedef Finite_cells_iterator                           Self;
  public:

    Finite_cells_iterator() : Base() {}
    Finite_cells_iterator(const Base &b) : Base(b) {}

    Self & operator++() { Base::operator++(); return *this; }
    Self & operator--() { Base::operator--(); return *this; }
    Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
    Self operator--(int) { Self tmp(*this); --(*this); return tmp; }

    operator Cell_handle() const { return Base::base(); }
  };

  // We derive in order to add a conversion to handle.
  class Finite_vertices_iterator
    : public Filter_iterator<Vertex_iterator, Infinite_tester> {
    typedef Filter_iterator<Vertex_iterator, Infinite_tester> Base;
    typedef Finite_vertices_iterator                          Self;
  public:

    Finite_vertices_iterator() : Base() {}
    Finite_vertices_iterator(const Base &b) : Base(b) {}

    Self & operator++() { Base::operator++(); return *this; }
    Self & operator--() { Base::operator--(); return *this; }
    Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
    Self operator--(int) { Self tmp(*this); --(*this); return tmp; }

    operator Vertex_handle() const { return Base::base(); }
  };

  typedef Filter_iterator<Edge_iterator, Infinite_tester>
                                               Finite_edges_iterator;
  typedef Filter_iterator<Facet_iterator, Infinite_tester>
                                               Finite_facets_iterator;

private:
  // Auxiliary iterators for convenience
  // do not use default template argument to please VC++
  typedef Project_point<Vertex>                           Proj_point;
public:
  typedef Iterator_project<Finite_vertices_iterator,
                           Proj_point,
	                   const Point&,
                           const Point*,
                           std::ptrdiff_t,
                           std::bidirectional_iterator_tag>  Point_iterator;

  typedef Point                         value_type; // to have a back_inserter
  typedef const value_type&             const_reference;

  //Tag to distinguish triangulations with weighted_points
  typedef Tag_false  Weighted_tag;



  enum Locate_type {
    VERTEX=0,
    EDGE, //1
    FACET, //2
    CELL, //3
    OUTSIDE_CONVEX_HULL, //4
    OUTSIDE_AFFINE_HULL };//5

protected:
  Tds _tds;
  GT  _gt;
  Vertex_handle infinite; //infinite vertex

  Comparison_result
  compare_xyz(const Point &p, const Point &q) const
  {
      return geom_traits().compare_xyz_3_object()(p, q);
  }

  bool
  equal(const Point &p, const Point &q) const
  {
      return compare_xyz(p, q) == EQUAL;
  }

  Orientation
  orientation(const Point &p, const Point &q,
	      const Point &r, const Point &s) const
  {
      return geom_traits().orientation_3_object()(p, q, r, s);
  }

  bool
  coplanar(const Point &p, const Point &q,
	   const Point &r, const Point &s) const
  {
      return orientation(p, q, r, s) == COPLANAR;
  }

  Orientation
  coplanar_orientation(const Point &p, const Point &q, const Point &r) const
  {
      return geom_traits().coplanar_orientation_3_object()(p, q, r);
  }

  bool
  collinear(const Point &p, const Point &q, const Point &r) const
  {
      return coplanar_orientation(p, q, r) == COLLINEAR;
  }

  Segment
  construct_segment(const Point &p, const Point &q) const
  {
      return geom_traits().construct_segment_3_object()(p, q);
  }

  Triangle
  construct_triangle(const Point &p, const Point &q, const Point &r) const
  {
      return geom_traits().construct_triangle_3_object()(p, q, r);
  }

  Tetrahedron
  construct_tetrahedron(const Point &p, const Point &q,
	                const Point &r, const Point &s) const
  {
      return geom_traits().construct_tetrahedron_3_object()(p, q, r, s);
  }

  enum COLLINEAR_POSITION {BEFORE, SOURCE, MIDDLE, TARGET, AFTER};

  COLLINEAR_POSITION
  collinear_position(const Point &s, const Point &p, const Point &t) const
  // (s,t) defines a line, p is on that line.
  // Depending on the position of p wrt s and t, returns :
  // --------------- s ---------------- t --------------
  // BEFORE       SOURCE    MIDDLE    TARGET       AFTER
  {
      CGAL_triangulation_precondition(!equal(s, t));
      CGAL_triangulation_precondition(collinear(s, p, t));

      Comparison_result ps = compare_xyz(p, s);
      if (ps == EQUAL)
	  return SOURCE;
      Comparison_result st = compare_xyz(s, t);
      if (ps == st)
	  return BEFORE;
      Comparison_result pt = compare_xyz(p, t);
      if (pt == EQUAL)
	  return TARGET;
      if (pt == st)
	  return MIDDLE;
      return AFTER;
  }

  void init_tds()
    {
      infinite = _tds.insert_increase_dimension();
    }

public:

  // CONSTRUCTORS
  Triangulation_3(const GT & gt = GT())
    : _tds(), _gt(gt)
    {
      init_tds();
    }

  // copy constructor duplicates vertices and cells
  Triangulation_3(const Triangulation_3 & tr)
    : _gt(tr._gt)
    {
      infinite = _tds.copy_tds(tr._tds, tr.infinite);
      CGAL_triangulation_expensive_postcondition(*this == tr);
    }

  template < typename InputIterator >
  Triangulation_3(InputIterator first, InputIterator last,
                  const GT & gt = GT())
    : _gt(gt)
  {
      init_tds();
      insert(first, last);
  }

  void clear()
    {
      _tds.clear();
      init_tds();
    }

  Triangulation_3 & operator=(Triangulation_3 tr)
    {
      // The triangulation passed as argument has been copied, 
      // because the parameter tr is passed by value. Then the following
      // swap consumes the *copy*. The original triangulation is left
      // untouched.
      swap(tr);
      return *this;
    }

  // HELPING FUNCTIONS

  void swap(Triangulation_3 &tr)
    {
      std::swap(tr._gt, _gt);
      std::swap(tr.infinite, infinite);
      _tds.swap(tr._tds);
    }

  //ACCESS FUNCTIONS
  const GT & geom_traits() const
    { return _gt;}

  const Tds & tds() const
    { return _tds;}

  Tds & tds()
    { return _tds;}

  int dimension() const
    { return _tds.dimension();}

  size_type number_of_finite_cells() const;

  size_type number_of_cells() const;

  size_type number_of_finite_facets() const;

  size_type number_of_facets() const;

  size_type number_of_finite_edges() const;

  size_type number_of_edges() const;

  size_type number_of_vertices() const // number of finite vertices
    {return _tds.number_of_vertices()-1;}

  Vertex_handle infinite_vertex() const
    { return infinite; }

  Cell_handle infinite_cell() const
    {
      CGAL_triangulation_assertion(infinite_vertex()->cell()->
      				   has_vertex(infinite_vertex()));
      return infinite_vertex()->cell();
    }

  // GEOMETRIC ACCESS FUNCTIONS

  Tetrahedron tetrahedron(const Cell_handle c) const
    {
      CGAL_triangulation_precondition( dimension() == 3 );
      CGAL_triangulation_precondition( ! is_infinite(c) );
      return construct_tetrahedron(c->vertex(0)->point(),
				   c->vertex(1)->point(),
				   c->vertex(2)->point(),
				   c->vertex(3)->point());
    }

  Triangle triangle(const Cell_handle c, int i) const;

  Triangle triangle(const Facet & f) const
    { return triangle(f.first, f.second); }

  Segment segment(const Cell_handle c, int i, int j) const;

  Segment segment(const Edge & e) const
    { return segment(e.first,e.second,e.third); }

  const Point & point(Cell_handle c, int i) const {
    CGAL_triangulation_precondition( dimension() >= 0 );
    CGAL_triangulation_precondition( i >= 0 && i <= dimension() );
    CGAL_triangulation_precondition( ! is_infinite(c->vertex(i)) );
    return c->vertex(i)->point();
  }

  const Point & point(Vertex_handle v) const {
    CGAL_triangulation_precondition( dimension() >= 0 );
    CGAL_triangulation_precondition( ! is_infinite(v) );
    return v->point();
  }

  // TEST IF INFINITE FEATURES
  bool is_infinite(const Vertex_handle v) const
    { return v == infinite_vertex(); }

  bool is_infinite(const Cell_handle c) const
    {
      CGAL_triangulation_precondition( dimension() == 3 );
      return c->has_vertex(infinite_vertex());
    }

  bool is_infinite(const Cell_handle c, int i) const;

  bool is_infinite(const Facet & f) const
    { return is_infinite(f.first,f.second); }

  bool is_infinite(const Cell_handle c, int i, int j) const;

  bool is_infinite(const Edge & e) const
    { return is_infinite(e.first,e.second,e.third); }


  //QUERIES

  bool is_vertex(const Point & p, Vertex_handle & v) const;

  bool is_vertex(Vertex_handle v) const;
  bool is_edge(Vertex_handle u, Vertex_handle v,
	       Cell_handle & c, int & i, int & j) const;
  bool is_facet(Vertex_handle u, Vertex_handle v, Vertex_handle w,
		Cell_handle & c, int & i, int & j, int & k) const;
  bool is_cell(Cell_handle c) const;
  bool is_cell(Vertex_handle u, Vertex_handle v,
	       Vertex_handle w, Vertex_handle t,
	       Cell_handle & c, int & i, int & j, int & k, int & l) const;
  bool is_cell(Vertex_handle u, Vertex_handle v,
	       Vertex_handle w, Vertex_handle t,
	       Cell_handle & c) const;

  bool has_vertex(const Facet & f, Vertex_handle v, int & j) const;
  bool has_vertex(Cell_handle c, int i, Vertex_handle v, int & j) const;
  bool has_vertex(const Facet & f, Vertex_handle v) const;
  bool has_vertex(Cell_handle c, int i, Vertex_handle v) const;

  bool are_equal(Cell_handle c, int i, Cell_handle n, int j) const;
  bool are_equal(const Facet & f, const Facet & g) const;
  bool are_equal(const Facet & f, Cell_handle n, int j) const;

#ifdef CGAL_NO_STRUCTURAL_FILTERING
  Cell_handle
  locate(const Point & p,
	 Locate_type & lt, int & li, int & lj,
	 Cell_handle start = Cell_handle()) const;
#else // no CGAL_NO_STRUCTURAL_FILTERING
#  ifndef CGAL_T3_STRUCTURAL_FILTERING_MAX_VISITED_CELLS
#    define CGAL_T3_STRUCTURAL_FILTERING_MAX_VISITED_CELLS 2500
#  endif // no CGAL_T3_STRUCTURAL_FILTERING_MAX_VISITED_CELLS


protected:
  Cell_handle
  inexact_locate(const Point& p,
                 Cell_handle start, 
                 int max_num_cells = CGAL_T3_STRUCTURAL_FILTERING_MAX_VISITED_CELLS) const;

  Cell_handle
  exact_locate(const Point& p,
               Locate_type& lt,
               int& li, int & lj,
               Cell_handle start) const;

  Cell_handle
  generic_locate(const Point& p,
                 Locate_type& lt,
                 int& li, int & lj,
                 Cell_handle start,
                 internal::Structural_filtering_3_tag) const {
    return exact_locate(p, lt, li, lj, inexact_locate(p, start));
  }	

  Cell_handle
  generic_locate(const Point& p,
                 Locate_type& lt,
                 int& li, int & lj,
                 Cell_handle start,
                 internal::No_structural_filtering_3_tag) const {
    return exact_locate(p, lt, li, lj, start);
  }	

  Orientation
  inexact_orientation(const Point &p, const Point &q,
                      const Point &r, const Point &s) const
  {
    const double px = to_double(p.x());
    const double py = to_double(p.y());
    const double pz = to_double(p.z());
    const double qx = to_double(q.x());
    const double qy = to_double(q.y());
    const double qz = to_double(q.z());
    const double rx = to_double(r.x());
    const double ry = to_double(r.y());
    const double rz = to_double(r.z());
    const double sx = to_double(s.x());
    const double sy = to_double(s.y());
    const double sz = to_double(s.z());

    const double pqx = qx - px;
    const double pqy = qy - py;
    const double pqz = qz - pz;
    const double prx = rx - px;
    const double pry = ry - py;
    const double prz = rz - pz;
    const double psx = sx - px;
    const double psy = sy - py;
    const double psz = sz - pz;

    const double det = determinant(pqx, pqy, pqz,
                                   prx, pry, prz,
                                   psx, psy, psz);
    if (det > 0) return POSITIVE;
    if (det < 0) return NEGATIVE;
    return ZERO;
  }

public:
	
  Cell_handle
  locate(const Point & p,
         Locate_type & lt, int & li, int & lj,
         Cell_handle start = Cell_handle()) const
  {
    typedef Triangulation_structural_filtering_traits<Geom_traits> TSFT;
    typedef typename internal::Structural_filtering_selector_3< 
      TSFT::Use_structural_filtering_tag::value >::Tag Should_filter_tag;

    return generic_locate(p, lt, li, lj, start, Should_filter_tag());
  }
#endif // no CGAL_NO_STRUCTURAL_FILTERING

  Cell_handle
  locate(const Point & p, Cell_handle start = Cell_handle()) const
  {
      Locate_type lt;
      int li, lj;
      return locate( p, lt, li, lj, start);
  }

  Cell_handle
  locate(const Point & p,
	 Locate_type & lt, int & li, int & lj, Vertex_handle hint) const
  {
      return locate(p, lt, li, lj, hint == Vertex_handle() ? infinite_cell() : hint->cell());
  }

  Cell_handle
  locate(const Point & p, Vertex_handle hint) const
  {
      return locate(p, hint == Vertex_handle() ? infinite_cell() : hint->cell());
  }

  // PREDICATES ON POINTS ``TEMPLATED'' by the geom traits

  Bounded_side
  side_of_tetrahedron(const Point & p,
		      const Point & p0,
		      const Point & p1,
		      const Point & p2,
		      const Point & p3,
		      Locate_type & lt, int & i, int & j ) const;
  Bounded_side
  side_of_cell(const Point & p,
	       Cell_handle c,
	       Locate_type & lt, int & i, int & j) const;
  Bounded_side
  side_of_triangle(const Point & p,
		   const Point & p0, const Point & p1, const Point & p2,
		   Locate_type & lt, int & i, int & j ) const;
  Bounded_side
  side_of_facet(const Point & p,
		Cell_handle c,
		Locate_type & lt, int & li, int & lj) const;
  Bounded_side
  side_of_facet(const Point & p,
		const Facet & f,
		Locate_type & lt, int & li, int & lj) const
    {
      CGAL_triangulation_precondition( f.second == 3 );
      return side_of_facet(p, f.first, lt, li, lj);
    }
  Bounded_side
  side_of_segment(const Point & p,
		  const Point & p0, const Point & p1,
		  Locate_type & lt, int & i ) const;
  Bounded_side
  side_of_edge(const Point & p,
	       Cell_handle c,
	       Locate_type & lt, int & li) const;
  Bounded_side
  side_of_edge(const Point & p,
	       const Edge & e,
	       Locate_type & lt, int & li) const
    {
      CGAL_triangulation_precondition( e.second == 0 );
      CGAL_triangulation_precondition( e.third == 1 );
      return side_of_edge(p, e.first, lt, li);
    }

  // Functions forwarded from TDS.
  int mirror_index(Cell_handle c, int i) const
  { return _tds.mirror_index(c, i); }

  Vertex_handle mirror_vertex(Cell_handle c, int i) const
  { return _tds.mirror_vertex(c, i); }

  Facet mirror_facet(Facet f) const
  { return _tds.mirror_facet(f);}

  // MODIFIERS
  bool flip(const Facet &f)
  // returns false if the facet is not flippable
  // true other wise and
  // flips facet i of cell c
  // c will be replaced by one of the new cells
  {
    return flip( f.first, f.second);
  }
  bool flip(Cell_handle c, int i);
  void flip_flippable(const Facet &f)
  {
    flip_flippable( f.first, f.second);
  }
  void flip_flippable(Cell_handle c, int i);
  bool flip(const Edge &e)
  // returns false if the edge is not flippable
  // true otherwise and
  // flips edge i,j of cell c
  // c will be deleted
  {
    return flip( e.first, e.second, e.third );
  }
  bool flip(Cell_handle c, int i, int j);
  void flip_flippable(const Edge &e)
  {
    flip_flippable( e.first, e.second, e.third );
  }
  void flip_flippable(Cell_handle c, int i, int j);

  //INSERTION

  Vertex_handle insert(const Point & p, Vertex_handle hint)
  {
    return insert(p, hint == Vertex_handle() ? infinite_cell() : hint->cell());
  }
  Vertex_handle insert(const Point & p, Cell_handle start = Cell_handle());
  Vertex_handle insert(const Point & p, Locate_type lt, Cell_handle c,
	               int li, int lj);
	
//protected: // internal methods
	
  template <class OutputItCells>
  Vertex_handle insert_and_give_new_cells(const Point  &p, 
                                          OutputItCells fit,
                                          Cell_handle start = Cell_handle() );
		
  template <class OutputItCells>
  Vertex_handle insert_and_give_new_cells(const Point& p,
                                          OutputItCells fit,
                                          Vertex_handle hint);

  template <class OutputItCells>
  Vertex_handle insert_and_give_new_cells(const Point& p,
                                          Locate_type lt,
                                          Cell_handle c, int li, int lj, 
                                          OutputItCells fit); 

  template < class Conflict_tester, class Hidden_points_visitor >
  inline Vertex_handle insert_in_conflict(const Point & p,
					  Locate_type lt,
					  Cell_handle c, int li, int lj,
					  const Conflict_tester &tester,
					  Hidden_points_visitor &hider);

  template < class InputIterator >
  std::ptrdiff_t insert(InputIterator first, InputIterator last)
    {
      size_type n = number_of_vertices();

      std::vector<Point> points (first, last);
      spatial_sort (points.begin(), points.end(), geom_traits());

      Vertex_handle hint;
      for (typename std::vector<Point>::const_iterator p = points.begin(), end = points.end();
              p != end; ++p)
          hint = insert(*p, hint);

      return number_of_vertices() - n;
    }

  Vertex_handle
  insert_in_cell(const Point & p, Cell_handle c);

  Vertex_handle
  insert_in_facet(const Point & p, Cell_handle c, int i);

  Vertex_handle
  insert_in_facet(const Point & p, const Facet & f)
    {
      return insert_in_facet(p, f.first, f.second);
    }

  Vertex_handle
  insert_in_edge(const Point & p, Cell_handle c, int i, int j);

  Vertex_handle
  insert_in_edge(const Point & p, const Edge & e)
    {
      return insert_in_edge(p, e.first, e.second, e.third);
    }

  Vertex_handle
  insert_outside_convex_hull(const Point & p, Cell_handle c);

  Vertex_handle
  insert_outside_affine_hull(const Point & p);

  template <class CellIt>
  Vertex_handle
  insert_in_hole(const Point & p, CellIt cell_begin, CellIt cell_end,
	         Cell_handle begin, int i)
  {
      // Some geometric preconditions should be tested...
      Vertex_handle v = _tds.insert_in_hole(cell_begin, cell_end, begin, i);
      v->set_point(p);
      return v;
  }

  template <class CellIt>
  Vertex_handle
  insert_in_hole(const Point & p, CellIt cell_begin, CellIt cell_end,
	         Cell_handle begin, int i, Vertex_handle newv)
  {
      // Some geometric preconditions should be tested...
      newv->set_point(p);
      return _tds.insert_in_hole(cell_begin, cell_end, begin, i, newv);
  }

  // Internal function, cells should already be marked.
  template <class CellIt>
  Vertex_handle
  _insert_in_hole(const Point & p, CellIt cell_begin, CellIt cell_end,
	          Cell_handle begin, int i)
  {
      // Some geometric preconditions should be tested...
      Vertex_handle v = _tds._insert_in_hole(cell_begin, cell_end, begin, i);
      v->set_point(p);
      return v;
  }

  // Internal function, cells should already be marked.
  template <class CellIt>
  Vertex_handle
  _insert_in_hole(const Point & p, CellIt cell_begin, CellIt cell_end,
	          Cell_handle begin, int i, Vertex_handle newv)
  {
      // Some geometric preconditions should be tested...
      newv->set_point(p);
      return _tds._insert_in_hole(cell_begin, cell_end, begin, i, newv);
  }

protected:
	
  template < class InputIterator >
  bool does_repeat_in_range(InputIterator first, InputIterator beyond) const;

  template < class InputIterator >
  bool infinite_vertex_in_range(InputIterator first, InputIterator beyond) const;
	
  // - c is the current cell, which must be in conflict.
  // - tester is the function object that tests if a cell is in conflict.
  template <
	    class Conflict_test,
            class OutputIteratorBoundaryFacets,
            class OutputIteratorCells,
            class OutputIteratorInternalFacets>
  Triple<OutputIteratorBoundaryFacets,
         OutputIteratorCells,
         OutputIteratorInternalFacets>
  find_conflicts(Cell_handle d, const Conflict_test &tester,
		 Triple<OutputIteratorBoundaryFacets,
                        OutputIteratorCells,
		        OutputIteratorInternalFacets> it) const
  {
    CGAL_triangulation_precondition( dimension()>=2 );
    CGAL_triangulation_precondition( tester(d) );

    std::stack<Cell_handle> cell_stack;
    cell_stack.push(d);
    d->tds_data().mark_in_conflict();
    *it.second++ = d;

    do {
        Cell_handle c = cell_stack.top();
        cell_stack.pop();

        for (int i=0; i<dimension()+1; ++i) {
            Cell_handle test = c->neighbor(i);
            if (test->tds_data().is_in_conflict()) {
                if (c < test)
                    *it.third++ = Facet(c, i); // Internal facet.
                continue; // test was already in conflict.
            }
            if (test->tds_data().is_clear()) {
                if (tester(test)) {
                    if (c < test)
                        *it.third++ = Facet(c, i); // Internal facet.

                    cell_stack.push(test);
                    test->tds_data().mark_in_conflict();
                    *it.second++ = test;
	            continue;
                }
     	        test->tds_data().mark_on_boundary();
            }
            *it.first++ = Facet(c, i);
        }
    } while (!cell_stack.empty());
    return it;
  }

  // This one takes a function object to recursively determine the cells in
  // conflict, then calls _tds._insert_in_hole().
  template < class Conflict_test >
  Vertex_handle
  insert_conflict(Cell_handle c, const Conflict_test &tester)
  {
    CGAL_triangulation_precondition( dimension() >= 2 );
    CGAL_triangulation_precondition( c != Cell_handle() );
    CGAL_triangulation_precondition( tester(c) );

    std::vector<Cell_handle> cells;
    cells.reserve(32);

    Facet facet;

    // Find the cells in conflict
    switch (dimension()) {
    case 3:
      find_conflicts(c, tester, make_triple(Oneset_iterator<Facet>(facet),
					    std::back_inserter(cells),
					    Emptyset_iterator()));
      break;
    case 2:
      find_conflicts(c, tester, make_triple(Oneset_iterator<Facet>(facet),
					    std::back_inserter(cells),
					    Emptyset_iterator()));
    }
    // Create the new cells and delete the old.
    return _tds._insert_in_hole(cells.begin(), cells.end(),
				  facet.first, facet.second);
  }

private:
  // Here are the conflit tester function objects passed to
  // insert_conflict_[23]() by insert_outside_convex_hull().
  class Conflict_tester_outside_convex_hull_3
  {
      const Point &p;
      const Self *t;

  public:

      Conflict_tester_outside_convex_hull_3(const Point &pt, const Self *tr)
	  : p(pt), t(tr) {}

      bool operator()(const Cell_handle c) const
      {
	  Locate_type loc;
          int i, j;
	  return t->side_of_cell( p, c, loc, i, j ) == ON_BOUNDED_SIDE;
      }
  };

  class Conflict_tester_outside_convex_hull_2
  {
      const Point &p;
      const Self *t;

  public:

      Conflict_tester_outside_convex_hull_2(const Point &pt, const Self *tr)
	  : p(pt), t(tr) {}

      bool operator()(const Cell_handle c) const
      {
	  Locate_type loc;
          int i, j;
	  return t->side_of_facet( p, c, loc, i, j ) == ON_BOUNDED_SIDE;
      }
  };

protected:

  // no point being private, we might need to test
  // whether a displacement decreases dimension on
  // others inherited triangulations
  bool test_dim_down(Vertex_handle v) const;

  // REMOVAL
  template < class VertexRemover >
  void remove(Vertex_handle v, VertexRemover &remover);

  template < class VertexRemover, class OutputItCells >
  void remove_and_give_new_cells(Vertex_handle v, VertexRemover &remover,
                                 OutputItCells fit);

  // This function removes a batch of points at once.
  // If points are grouped in cluster, the performance is increased
  // compared to removing one by one.
  // For now, this function is only guaranteed for Delaunay triangulations (or Regular as Delaunay).
  // By doing these kind of remove followed by inserting the cluster,
  // we achieve fast relocations for a batch of points (in a Delaunay triangulation).
  template < class InputIterator, class VertexRemover >
  size_type remove(InputIterator first, InputIterator beyond, 
                   VertexRemover &remover);
  enum REMOVE_VERTEX_STATE {CLEAR, TO_REMOVE, PROCESSED, EXTREMITY};
		
  // MOVE
  template < class VertexRemover, class VertexInserter >
  Vertex_handle move_if_no_collision(Vertex_handle v, const Point &p,
                                     VertexRemover &remover,
                                     VertexInserter &inserter);		

  template < class VertexRemover, class VertexInserter >
  Vertex_handle move(Vertex_handle v, const Point &p,
                     VertexRemover &remover, VertexInserter &inserter);

  // move and give new cells
  template < class VertexRemover, class VertexInserter, class OutputItCells  >
  Vertex_handle move_if_no_collision_and_give_new_cells(
                                                        Vertex_handle v, const Point &p, VertexRemover &remover,
                                                        VertexInserter &inserter, OutputItCells fit);

  // This is a function better suited for tds
  // but because it is not required in the model of tds
  // at this time, it should be implemented here.
  void flip_2D(Cell_handle f, int i)
  {
    CGAL_triangulation_precondition( dimension()==2);
    Cell_handle n  = f->neighbor(i);
    int ni = this->_tds.mirror_index(f,i); //ni = n->index(f);

    int cwi = (i+2)%3;
    int ccwi = (i+1)%3;
    int cwni = (ni+2)%3;    
    int ccwni = (ni+1)%3;   

    Vertex_handle  v_cw = f->vertex(cwi);
    Vertex_handle  v_ccw = f->vertex(ccwi);

    // bl == bottom left, tr == top right
    Cell_handle tr = f->neighbor(ccwi);
    int tri =  this->_tds.mirror_index(f,ccwi);  
    Cell_handle bl = n->neighbor(ccwni);
    int bli =  this->_tds.mirror_index(n,ccwni); 

    f->set_vertex(cwi, n->vertex(ni));
    n->set_vertex(cwni, f->vertex(i));

    // update the neighborhood relations
    this->_tds.set_adjacency(f, i, bl, bli);
    this->_tds.set_adjacency(f, ccwi, n, ccwni);
    this->_tds.set_adjacency(n, ni, tr, tri);

    if(v_cw->cell() == f) {
      v_cw->set_cell(n);
    }

    if(v_ccw->cell() == n) {
      v_ccw->set_cell(f);
    }
  }

  template < class VertexRemover, class VertexInserter >
  void restore_edges_after_decrease_dimension(Vertex_handle v, 
                                              VertexRemover &remover, VertexInserter &inserter)
  {
	
    Cell_handle fkstart = v->cell();
    Cell_handle start = fkstart->neighbor(fkstart->index(v));
	
    std::list<Edge_2D> hole;
    make_hole_2D(v, hole, remover);
    fill_hole_2D(hole, remover);
    // make hole here will work if the link of v is a valid triangulation
    // the aim here is Delaunay triangulations
    // to make it more general one could have an internal function here
    // to remove v without touching its handle
		
    // This insert must be from Delaunay (or the particular trian.)
    // not the basic Triangulation_3. 
    // Here we correct the recent triangulation (with decreased dimension) formed
    // in particular here a 2D (from 3D to 2D displacement)
    Vertex_handle inserted = inserter.insert(v->point(), start);
	  
    // fixing pointer
    Cell_handle fc = inserted->cell(), done(fc);
    std::vector<Cell_handle> faces_pt;
    faces_pt.reserve(16);
    do { 
      faces_pt.push_back(fc);
      fc = fc->neighbor((fc->index(inserted) + 1)%3);
    } while(fc != done);
    std::size_t ss = faces_pt.size();
    for(std::size_t k=0; k<ss; k++)
    {
      Cell_handle f = faces_pt[k];
      int i = f->index(inserted);
      f->set_vertex(i, v);
    }
    v->set_cell(inserted->cell());

    tds().delete_vertex(inserted);
  }

private:
  typedef Facet Edge_2D;
  typedef Triple<Vertex_handle,Vertex_handle,Vertex_handle> Vertex_triple;

  Vertex_triple make_vertex_triple(const Facet& f) const;
  void make_canonical(Vertex_triple& t) const;

  template < class VertexRemover >
  VertexRemover& make_hole_2D(Vertex_handle v, std::list<Edge_2D> & hole,
      VertexRemover &remover);
  template < class VertexRemover >
  VertexRemover& make_hole_2D(Vertex_handle v, std::list<Edge_2D> & hole,
                              VertexRemover &remover, 
                              std::set<Cell_handle> &cells_set);

  template < class VertexRemover >
  void fill_hole_2D(std::list<Edge_2D> & hole, VertexRemover &remover);

  void make_hole_3D( Vertex_handle v, std::map<Vertex_triple,Facet>& outer_map,
      std::vector<Cell_handle> & hole);

  template < class VertexRemover >
  VertexRemover& remove_dim_down(Vertex_handle v, VertexRemover &remover);
  template < class VertexRemover >
  VertexRemover& remove_1D(Vertex_handle v, VertexRemover &remover);
  template < class VertexRemover >
  VertexRemover& remove_2D(Vertex_handle v, VertexRemover &remover);
  template < class VertexRemover >
  VertexRemover& remove_3D(Vertex_handle v, VertexRemover &remover);

  template < class VertexRemover, class OutputItCells  >
  VertexRemover& remove_dim_down(Vertex_handle v, VertexRemover &remover,
                                 OutputItCells fit);

  template < class VertexRemover, class OutputItCells  >
  VertexRemover& remove_1D(Vertex_handle v, VertexRemover &remover,
                           OutputItCells fit);

  template < class VertexRemover, class OutputItCells  >
  VertexRemover& remove_2D(Vertex_handle v, VertexRemover &remover,
                           OutputItCells fit);

  template < class VertexRemover, class OutputItCells  >
  VertexRemover& remove_3D(Vertex_handle v, VertexRemover &remover,
                           OutputItCells fit);
		
  template < class VertexRemover, class OutputItCells  >
  void fill_hole_2D(std::list<Edge_2D> & hole, VertexRemover &remover,
                    OutputItCells fit);

  // They access "Self", so need to be friend.
  friend class Conflict_tester_outside_convex_hull_3;
  friend class Conflict_tester_outside_convex_hull_2;
  friend class Infinite_tester;
  friend class Finite_vertices_iterator;
  friend class Finite_cells_iterator;

  // remove cluster
  template < class InputIterator >
  void _mark_vertices_to_remove(InputIterator first, InputIterator beyond, 
    std::map<Vertex_handle, REMOVE_VERTEX_STATE> &vstates) const
  {
    while (first != beyond) vstates[*first++] = TO_REMOVE;
  }

  bool _test_dim_down_cluster(
                              std::map<Vertex_handle, REMOVE_VERTEX_STATE> &vstates) const
  // tests whether removing the cluster of vertices
  // marked as "to remove", decreases the dimension of the triangulation
  {
    CGAL_triangulation_precondition( dimension() == 3 );
    int k=0;
    Vertex_handle v[4];
    for (Finite_vertices_iterator fit = finite_vertices_begin(); 
         fit != finite_vertices_end(); ++fit ) {
      if(vstates[fit] == TO_REMOVE) continue;
      v[k++] = fit;
      if(k == 4)
      {
        if (!coplanar(v[0]->point(), v[1]->point(), 
                      v[2]->point(), v[3]->point())) return false;
        k--;
      }
    }
    return k < 4;
  }
	
  template < class InputIterator, class VertexRemover >
  bool
  _remove_cluster_3D(InputIterator first, InputIterator beyond, VertexRemover &remover,
                     std::map<Vertex_handle, REMOVE_VERTEX_STATE> &vstates);

  void _make_big_hole_3D(Vertex_handle v,
                         std::map<Vertex_triple,Facet>& outer_map,
                         std::vector<Cell_handle> & hole,
                         std::vector<Vertex_handle> & vertices,
                         std::map<Vertex_handle, REMOVE_VERTEX_STATE> &vstates);

public:

  //TRAVERSING : ITERATORS AND CIRCULATORS
  Finite_cells_iterator finite_cells_begin() const
  {
      if ( dimension() < 3 )
	  return finite_cells_end();
      return CGAL::filter_iterator(cells_end(), Infinite_tester(this),
	                           cells_begin());
  }
  Finite_cells_iterator finite_cells_end() const
  {
      return CGAL::filter_iterator(cells_end(), Infinite_tester(this));
  }

  Cell_iterator cells_begin() const
  {
      return _tds.cells_begin();
  }
  Cell_iterator cells_end() const
  {
      return _tds.cells_end();
  }

  All_cells_iterator all_cells_begin() const
  {
      return _tds.cells_begin();
  }
  All_cells_iterator all_cells_end() const
  {
      return _tds.cells_end();
  }

  Finite_vertices_iterator finite_vertices_begin() const
  {
      if ( number_of_vertices() <= 0 )
	  return finite_vertices_end();
      return CGAL::filter_iterator(vertices_end(), Infinite_tester(this),
	                           vertices_begin());
  }
  Finite_vertices_iterator finite_vertices_end() const
  {
      return CGAL::filter_iterator(vertices_end(), Infinite_tester(this));
  }

  Vertex_iterator vertices_begin() const
  {
      return _tds.vertices_begin();
  }
  Vertex_iterator vertices_end() const
  {
      return _tds.vertices_end();
  }

  All_vertices_iterator all_vertices_begin() const
  {
      return _tds.vertices_begin();
  }
  All_vertices_iterator all_vertices_end() const
  {
      return _tds.vertices_end();
  }

  Finite_edges_iterator finite_edges_begin() const
  {
      if ( dimension() < 1 )
	  return finite_edges_end();
      return CGAL::filter_iterator(edges_end(), Infinite_tester(this),
	                           edges_begin());
  }
  Finite_edges_iterator finite_edges_end() const
  {
      return CGAL::filter_iterator(edges_end(), Infinite_tester(this));
  }

  Edge_iterator edges_begin() const
  {
      return _tds.edges_begin();
  }
  Edge_iterator edges_end() const
  {
      return _tds.edges_end();
  }

  All_edges_iterator all_edges_begin() const
  {
      return _tds.edges_begin();
  }
  All_edges_iterator all_edges_end() const
  {
      return _tds.edges_end();
  }

  Finite_facets_iterator finite_facets_begin() const
  {
      if ( dimension() < 2 )
	  return finite_facets_end();
      return CGAL::filter_iterator(facets_end(), Infinite_tester(this),
	                           facets_begin());
  }
  Finite_facets_iterator finite_facets_end() const
  {
      return CGAL::filter_iterator(facets_end(), Infinite_tester(this));
  }

  Facet_iterator facets_begin() const
  {
      return _tds.facets_begin();
  }
  Facet_iterator facets_end() const
  {
      return _tds.facets_end();
  }

  All_facets_iterator all_facets_begin() const
  {
      return _tds.facets_begin();
  }
  All_facets_iterator all_facets_end() const
  {
      return _tds.facets_end();
  }

  Point_iterator points_begin() const
  {
      return Point_iterator(finite_vertices_begin());
  }
  Point_iterator points_end() const
  {
      return Point_iterator(finite_vertices_end());
  }

  // cells around an edge
  Cell_circulator incident_cells(const Edge & e) const
  {
    return _tds.incident_cells(e);
  }
  Cell_circulator incident_cells(Cell_handle c, int i, int j) const
  {
    return _tds.incident_cells(c, i, j);
  }
  Cell_circulator incident_cells(const Edge & e, Cell_handle start) const
  {
    return _tds.incident_cells(e, start);
  }
  Cell_circulator incident_cells(Cell_handle c, int i, int j,
				 Cell_handle start) const
  {
    return _tds.incident_cells(c, i, j, start);
  }

  // facets around an edge
  Facet_circulator incident_facets(const Edge & e) const
  {
    return _tds.incident_facets(e);
  }
  Facet_circulator incident_facets(Cell_handle c, int i, int j) const
  {
    return _tds.incident_facets(c, i, j);
  }
  Facet_circulator incident_facets(const Edge & e, const Facet & start) const
  {
    return _tds.incident_facets(e, start);
  }
  Facet_circulator incident_facets(Cell_handle c, int i, int j,
				   const Facet & start) const
  {
    return _tds.incident_facets(c, i, j, start);
  }
  Facet_circulator incident_facets(const Edge & e,
				   Cell_handle start, int f) const
  {
    return _tds.incident_facets(e, start, f);
  }
  Facet_circulator incident_facets(Cell_handle c, int i, int j,
				   Cell_handle start, int f) const
  {
    return _tds.incident_facets(c, i, j, start, f);
  }

  // around a vertex
  class Finite_filter {
    const Self* t;
    public:
    Finite_filter(const Self* _t): t(_t) {}
    template<class T>
    bool operator() (const T& e) const {
      return t->is_infinite(e);
    }
  };

  class Finite_filter_2D {
    const Self* t;
    public:
    Finite_filter_2D(const Self* _t): t(_t) {}

    template<class T>
    bool operator() (const T& e) const {
      return t->is_infinite(e);
    }

    bool operator() (const Cell_handle c) {
      return t->is_infinite(c, 3);
    }
  };

  template <class OutputIterator>
  OutputIterator
  incident_cells(Vertex_handle v, OutputIterator cells) const
  {
    return _tds.incident_cells(v, cells);
  }

  template <class OutputIterator>
  OutputIterator
  finite_incident_cells(Vertex_handle v, OutputIterator cells) const
  {
  	if(dimension() == 2)
  	  return _tds.incident_cells(v, cells, Finite_filter_2D(this));
    return _tds.incident_cells(v, cells, Finite_filter(this));
  }

  template <class OutputIterator>
  OutputIterator
  incident_facets(Vertex_handle v, OutputIterator facets) const
  {
    return _tds.incident_facets(v, facets);
  }

  template <class OutputIterator>
  OutputIterator
  finite_incident_facets(Vertex_handle v, OutputIterator facets) const
  {
    return _tds.incident_facets(v, facets, Finite_filter(this));
  }

  // old name (up to CGAL 3.4)
  // kept for backwards compatibility but not documented
  template <class OutputIterator>
  OutputIterator
  incident_vertices(Vertex_handle v, OutputIterator vertices) const
  {
    return _tds.adjacent_vertices(v, vertices);
  }

  // correct name
  template <class OutputIterator>
  OutputIterator
  adjacent_vertices(Vertex_handle v, OutputIterator vertices) const
  {
    return _tds.adjacent_vertices(v, vertices);
  }

  // old name (up to CGAL 3.4)
  // kept for backwards compatibility but not documented
  template <class OutputIterator>
  OutputIterator
  finite_incident_vertices(Vertex_handle v, OutputIterator vertices) const
  {
    return _tds.adjacent_vertices(v, vertices, Finite_filter(this));
  }

  // correct name
  template <class OutputIterator>
  OutputIterator
  finite_adjacent_vertices(Vertex_handle v, OutputIterator vertices) const
  {
    return _tds.adjacent_vertices(v, vertices, Finite_filter(this));
  }

  template <class OutputIterator>
  OutputIterator
  incident_edges(Vertex_handle v, OutputIterator edges) const
  {
      return _tds.incident_edges(v, edges);
  }

  template <class OutputIterator>
  OutputIterator
  finite_incident_edges(Vertex_handle v, OutputIterator edges) const
  {
    return _tds.incident_edges(v, edges, Finite_filter(this));
  }

  size_type degree(Vertex_handle v) const
  {
      return _tds.degree(v);
  }



  // CHECKING
  bool is_valid(bool verbose = false, int level = 0) const;

  bool is_valid(Cell_handle c, bool verbose = false, int level = 0) const;

  bool is_valid_finite(Cell_handle c, bool verbose = false, int level=0) const;
};

template < class GT, class Tds >
std::istream &
operator>> (std::istream& is, Triangulation_3<GT, Tds> &tr)
  // reads
  // the dimension
  // the number of finite vertices
  // the non combinatorial information on vertices (point, etc)
  // the number of cells
  // the cells by the indices of their vertices in the preceding list
  // of vertices, plus the non combinatorial information on each cell
  // the neighbors of each cell by their index in the preceding list of cells
  // when dimension < 3 : the same with faces of maximal dimension
{
  typedef Triangulation_3<GT, Tds>               Triangulation;
  typedef typename Triangulation::Vertex_handle  Vertex_handle;
  typedef typename Triangulation::Cell_handle    Cell_handle;

  tr._tds.clear(); // infinite vertex deleted
  tr.infinite = tr._tds.create_vertex();

  std::size_t n;
  int d;
  if(is_ascii(is))
     is >> d >> n;
  else {
    read(is, d);
    read(is, n);
  }
  if(!is) return is;
  tr._tds.set_dimension(d);

  std::map< std::size_t, Vertex_handle > V;
  V[0] = tr.infinite_vertex();
  // the infinite vertex is numbered 0

  for (std::size_t i=1; i <= n; i++) {
    V[i] = tr._tds.create_vertex();
    if(!(is >> *V[i])) return is;
  }

  std::map< std::size_t, Cell_handle > C;

  std::size_t m;
  tr._tds.read_cells(is, V, m, C);

  for (std::size_t j=0 ; j < m; j++)
    if(!(is >> *(C[j]))) return is;

  CGAL_triangulation_assertion( tr.is_valid(false) );
  return is;
}

template < class GT, class Tds >
std::ostream &
operator<< (std::ostream& os, const Triangulation_3<GT, Tds> &tr)
  // writes :
  // the dimension
  // the number of finite vertices
  // the non combinatorial information on vertices (point, etc)
  // the number of cells
  // the cells by the indices of their vertices in the preceding list
  // of vertices, plus the non combinatorial information on each cell
  // the neighbors of each cell by their index in the preceding list of cells
  // when dimension < 3 : the same with faces of maximal dimension
{
  typedef Triangulation_3<GT, Tds>                 Triangulation;
  typedef typename Triangulation::size_type        size_type;
  typedef typename Triangulation::Vertex_handle    Vertex_handle;
  typedef typename Triangulation::Vertex_iterator  Vertex_iterator;
  typedef typename Triangulation::Cell_iterator    Cell_iterator;
  typedef typename Triangulation::Edge_iterator    Edge_iterator;
  typedef typename Triangulation::Facet_iterator   Facet_iterator;
  
  // outputs dimension and number of vertices
  size_type n = tr.number_of_vertices();
  if (is_ascii(os))
    os << tr.dimension() << std::endl << n << std::endl;
  else
  {
    write(os, tr.dimension());
    write(os, n);
  }

  if (n == 0)
    return os;

  std::vector<Vertex_handle> TV(n+1);
  size_type i = 0;

  // write the vertices

  for (Vertex_iterator it = tr.vertices_begin(), end = tr.vertices_end();
	 it != end; ++it)
    TV[i++] = it;

  CGAL_triangulation_assertion( i == n+1 );
  CGAL_triangulation_assertion( tr.is_infinite(TV[0]) );

  Unique_hash_map<Vertex_handle, std::size_t > V;

  V[tr.infinite_vertex()] = 0;
  for (i=1; i <= n; i++) {
    os << *TV[i];
    V[TV[i]] = i;
    if (is_ascii(os))
	os << std::endl;
  }

    // asks the tds for the combinatorial information
  tr.tds().print_cells(os, V);


  // write the non combinatorial information on the cells
  // using the << operator of Cell
  // works because the iterator of the tds traverses the cells in the
  // same order as the iterator of the triangulation
  switch ( tr.dimension() ) {
  case 3:
    {
      for(Cell_iterator it = tr.cells_begin(), end = tr.cells_end(); it != end; ++it) {
	os << *it; // other information
        if(is_ascii(os))
          os << std::endl;
      }
      break;
    }
  case 2:
    {
      for(Facet_iterator it = tr.facets_begin(), end = tr.facets_end(); it != end; ++it) {
	os << *((*it).first); // other information
        if(is_ascii(os))
          os << std::endl;
      }
      break;
    }
  case 1:
    {
      for(Edge_iterator it = tr.edges_begin(), end = tr.edges_end(); it != end; ++it) {
	os << *((*it).first); // other information
        if(is_ascii(os))
          os << std::endl;
      }
      break;
    }
  }


  return os ;
}

template < class GT, class Tds >
typename Triangulation_3<GT,Tds>::size_type
Triangulation_3<GT,Tds>::
number_of_finite_cells() const
{
  if ( dimension() < 3 ) return 0;
  return std::distance(finite_cells_begin(), finite_cells_end());
}

template < class GT, class Tds >
typename Triangulation_3<GT,Tds>::size_type
Triangulation_3<GT,Tds>::
number_of_cells() const
{
  return _tds.number_of_cells();
}

template < class GT, class Tds >
typename Triangulation_3<GT,Tds>::size_type
Triangulation_3<GT,Tds>::
number_of_finite_facets() const
{
  if ( dimension() < 2 ) return 0;
  return std::distance(finite_facets_begin(), finite_facets_end());
}

template < class GT, class Tds >
typename Triangulation_3<GT,Tds>::size_type
Triangulation_3<GT,Tds>::
number_of_facets() const
{
  return _tds.number_of_facets();
}

template < class GT, class Tds >
typename Triangulation_3<GT,Tds>::size_type
Triangulation_3<GT,Tds>::
number_of_finite_edges() const
{
  if ( dimension() < 1 ) return 0;
  return std::distance(finite_edges_begin(), finite_edges_end());
}

template < class GT, class Tds >
typename Triangulation_3<GT,Tds>::size_type
Triangulation_3<GT,Tds>::
number_of_edges() const
{
  return _tds.number_of_edges();
}

template < class GT, class Tds >
typename Triangulation_3<GT,Tds>::Triangle
Triangulation_3<GT,Tds>::
triangle(const Cell_handle c, int i) const
{
  CGAL_triangulation_precondition( dimension() == 2 || dimension() == 3 );
  CGAL_triangulation_precondition( (dimension() == 2 && i == 3)
				|| (dimension() == 3 && i >= 0 && i <= 3) );
  CGAL_triangulation_precondition( ! is_infinite(Facet(c, i)) );
  if ( (i&1)==0 )
    return construct_triangle(c->vertex( (i+2)&3 )->point(),
			      c->vertex( (i+1)&3 )->point(),
			      c->vertex( (i+3)&3 )->point());
  return construct_triangle(c->vertex( (i+1)&3 )->point(),
			    c->vertex( (i+2)&3 )->point(),
			    c->vertex( (i+3)&3 )->point());
}

template < class GT, class Tds >
typename Triangulation_3<GT,Tds>::Segment
Triangulation_3<GT,Tds>::
segment(const Cell_handle c, int i, int j) const
{
  CGAL_triangulation_precondition( i != j );
  CGAL_triangulation_precondition( dimension() >= 1 && dimension() <= 3 );
  CGAL_triangulation_precondition( i >= 0 && i <= dimension()
				   && j >= 0 && j <= dimension() );
  CGAL_triangulation_precondition( ! is_infinite(Edge(c, i, j)) );
  return construct_segment( c->vertex(i)->point(), c->vertex(j)->point() );
}

template < class GT, class Tds >
inline
bool
Triangulation_3<GT,Tds>::
is_infinite(const Cell_handle c, int i) const
{
  CGAL_triangulation_precondition( dimension() == 2 || dimension() == 3 );
  CGAL_triangulation_precondition( (dimension() == 2 && i == 3)
				   || (dimension() == 3 && i >= 0 && i <= 3) );
  return is_infinite(c->vertex(i<=0 ? 1 : 0)) ||
	 is_infinite(c->vertex(i<=1 ? 2 : 1)) ||
	 is_infinite(c->vertex(i<=2 ? 3 : 2));
}

template < class GT, class Tds >
inline
bool
Triangulation_3<GT,Tds>::
is_infinite(const Cell_handle c, int i, int j) const
{
  CGAL_triangulation_precondition( i != j );
  CGAL_triangulation_precondition( dimension() >= 1 && dimension() <= 3 );
  CGAL_triangulation_precondition(
	  i >= 0 && i <= dimension() && j >= 0 && j <= dimension() );
  return is_infinite( c->vertex(i) ) || is_infinite( c->vertex(j) );
}

template < class GT, class Tds >
bool
Triangulation_3<GT,Tds>::
is_vertex(const Point & p, Vertex_handle & v) const
{
  Locate_type lt;
  int li, lj;
  Cell_handle c = locate( p, lt, li, lj );
  if ( lt != VERTEX )
    return false;
  v = c->vertex(li);
  return true;
}

template < class GT, class Tds >
inline
bool
Triangulation_3<GT,Tds>::
is_vertex(Vertex_handle v) const
{
  return _tds.is_vertex(v);
}

template < class GT, class Tds >
bool
Triangulation_3<GT,Tds>::
is_edge(Vertex_handle u, Vertex_handle v,
	Cell_handle & c, int & i, int & j) const
{
  return _tds.is_edge(u, v, c, i, j);
}

template < class GT, class Tds >
bool
Triangulation_3<GT,Tds>::
is_facet(Vertex_handle u, Vertex_handle v, Vertex_handle w,
	 Cell_handle & c, int & i, int & j, int & k) const
{
  return _tds.is_facet(u, v, w, c, i, j, k);
}

template < class GT, class Tds >
inline
bool
Triangulation_3<GT,Tds>::
is_cell(Cell_handle c) const
{
  return _tds.is_cell(c);
}

template < class GT, class Tds >
bool
Triangulation_3<GT,Tds>::
is_cell(Vertex_handle u, Vertex_handle v,
	Vertex_handle w, Vertex_handle t,
	Cell_handle & c, int & i, int & j, int & k, int & l) const
{
  return _tds.is_cell(u, v, w, t, c, i, j, k, l);
}

template < class GT, class Tds >
bool
Triangulation_3<GT,Tds>::
is_cell(Vertex_handle u, Vertex_handle v,
	Vertex_handle w, Vertex_handle t,
	Cell_handle & c) const
{
  int i,j,k,l;
  return _tds.is_cell(u, v, w, t, c, i, j, k, l);
}

template < class GT, class Tds >
inline
bool
Triangulation_3<GT,Tds>::
has_vertex(const Facet & f, Vertex_handle v, int & j) const
{
  return _tds.has_vertex(f.first, f.second, v, j);
}

template < class GT, class Tds >
inline
bool
Triangulation_3<GT,Tds>::
has_vertex(Cell_handle c, int i, Vertex_handle v, int & j) const
{
  return _tds.has_vertex(c, i, v, j);
}

template < class GT, class Tds >
inline
bool
Triangulation_3<GT,Tds>::
has_vertex(const Facet & f, Vertex_handle v) const
{
  return _tds.has_vertex(f.first, f.second, v);
}

template < class GT, class Tds >
inline
bool
Triangulation_3<GT,Tds>::
has_vertex(Cell_handle c, int i, Vertex_handle v) const
{
  return _tds.has_vertex(c, i, v);
}

template < class GT, class Tds >
inline
bool
Triangulation_3<GT,Tds>::
are_equal(Cell_handle c, int i, Cell_handle n, int j) const
{
  return _tds.are_equal(c, i, n, j);
}

template < class GT, class Tds >
inline
bool
Triangulation_3<GT,Tds>::
are_equal(const Facet & f, const Facet & g) const
{
  return _tds.are_equal(f.first, f.second, g.first, g.second);
}

template < class GT, class Tds >
inline
bool
Triangulation_3<GT,Tds>::
are_equal(const Facet & f, Cell_handle n, int j) const
{
  return _tds.are_equal(f.first, f.second, n, j);
}

template < class GT, class Tds >
typename Triangulation_3<GT,Tds>::Cell_handle
Triangulation_3<GT,Tds>::
#ifdef CGAL_NO_STRUCTURAL_FILTERING
locate(const Point & p, Locate_type & lt, int & li, int & lj,
       Cell_handle start ) const
#else
exact_locate(const Point & p, Locate_type & lt, int & li, int & lj,
             Cell_handle start ) const
#endif
  // returns the (finite or infinite) cell p lies in
  // starts at cell "start"
  // if lt == OUTSIDE_CONVEX_HULL, li is the
  // index of a facet separating p from the rest of the triangulation
  // in dimension 2 :
  // returns a facet (Cell_handle,li) if lt == FACET
  // returns an edge (Cell_handle,li,lj) if lt == EDGE
  // returns a vertex (Cell_handle,li) if lt == VERTEX
  // if lt == OUTSIDE_CONVEX_HULL, li, lj give the edge of c
  // separating p from the rest of the triangulation
  // lt = OUTSIDE_AFFINE_HULL if p is not coplanar with the triangulation
{
  CGAL_triangulation_expensive_assertion(start == Cell_handle() || tds().is_simplex(start) );

  if ( dimension() >= 1 ) {
      // Make sure we continue from here with a finite cell.
      if ( start == Cell_handle() )
          start = infinite_cell();

      int ind_inf;
      if ( start->has_vertex(infinite, ind_inf) )
          start = start->neighbor(ind_inf);
  }

  boost::rand48 rng;               

  switch (dimension()) {
  case 3:
    {
      CGAL_triangulation_precondition( start != Cell_handle() );
      CGAL_triangulation_precondition( ! start->has_vertex(infinite) );

      // We implement the remembering visibility/stochastic walk.

      // Remembers the previous cell to avoid useless orientation tests.
      Cell_handle previous = Cell_handle();
      Cell_handle c = start;

      // Stores the results of the 4 orientation tests.  It will be used
      // at the end to decide if p lies on a face/edge/vertex/interior.
      Orientation o[4];

      boost::uniform_smallint<> four(0, 3);
      boost::variate_generator<boost::rand48&, boost::uniform_smallint<> > die4(rng, four);

      // Now treat the cell c.
      try_next_cell:

        // We know that the 4 vertices of c are positively oriented.
        // So, in order to test if p is seen outside from one of c's facets,
        // we just replace the corresponding point by p in the orientation
        // test.  We do this using the array below.
        const Point* pts[4] = { &(c->vertex(0)->point()),
                                &(c->vertex(1)->point()),
                                &(c->vertex(2)->point()),
                                &(c->vertex(3)->point()) };

        // For the remembering stochastic walk,
        // we need to start trying with a random index :
        int i = die4();
        // For the remembering visibility walk (Delaunay and Regular only), we don't :
        // int i = 0;

        for (int j=0; j != 4; ++j, i = (i+1)&3) {
	    Cell_handle next = c->neighbor(i);
	    if (previous == next) {
	        o[i] = POSITIVE;
                continue;
            }
            // We temporarily put p at i's place in pts.
            const Point* backup = pts[i];
            pts[i] = &p;
	    o[i] = orientation(*pts[0], *pts[1], *pts[2], *pts[3]);
	    if ( o[i] != NEGATIVE ) {
                pts[i] = backup;
                continue;
            }
	    if ( next->has_vertex(infinite, li) ) {
	        // We are outside the convex hull.
	        lt = OUTSIDE_CONVEX_HULL;
	        return next;
	    }
	    previous = c;
	    c = next;
            goto try_next_cell;
        }

	// now p is in c or on its boundary
	int sum = ( o[0] == COPLANAR )
	        + ( o[1] == COPLANAR )
	        + ( o[2] == COPLANAR )
	        + ( o[3] == COPLANAR );
	switch (sum) {
	case 0:
	  {
	    lt = CELL;
	    break;
	  }
	case 1:
	  {
	    lt = FACET;
	    li = ( o[0] == COPLANAR ) ? 0 :
	         ( o[1] == COPLANAR ) ? 1 :
	         ( o[2] == COPLANAR ) ? 2 : 3;
	    break;
	  }
	case 2:
	  {
	    lt = EDGE;
	    li = ( o[0] != COPLANAR ) ? 0 :
	         ( o[1] != COPLANAR ) ? 1 : 2;
	    lj = ( o[li+1] != COPLANAR ) ? li+1 :
	         ( o[li+2] != COPLANAR ) ? li+2 : li+3;
	    CGAL_triangulation_assertion(collinear( p,
						    c->vertex( li )->point(),
						    c->vertex( lj )->point()));
	    break;
	  }
	case 3:
	  {
	    lt = VERTEX;
	    li = ( o[0] != COPLANAR ) ? 0 :
	         ( o[1] != COPLANAR ) ? 1 :
	         ( o[2] != COPLANAR ) ? 2 : 3;
	    break;
	  }
	}
	return c;
    }
  case 2:
    {
      CGAL_triangulation_precondition( start != Cell_handle() );
      CGAL_triangulation_precondition( ! start->has_vertex(infinite) );
      Cell_handle c = start;

      boost::uniform_smallint<> three(0, 2);
      boost::variate_generator<boost::rand48&, boost::uniform_smallint<> > die3(rng, three);

      //first tests whether p is coplanar with the current triangulation
      if ( orientation( c->vertex(0)->point(),
			c->vertex(1)->point(),
			c->vertex(2)->point(),
			p ) != DEGENERATE ) {
	lt = OUTSIDE_AFFINE_HULL;
	li = 3; // only one facet in dimension 2
	return c;
      }
      // if p is coplanar, location in the triangulation
      // only the facet numbered 3 exists in each cell
      while (1) {
	int inf;
	if ( c->has_vertex(infinite,inf) ) {
	  // c must contain p in its interior
	  lt = OUTSIDE_CONVEX_HULL;
	  li = cw(inf);
	  lj = ccw(inf);
	  return c;
	}

	// else c is finite
	// we test its edges in a random order until we find a
	// neighbor to go further
	int i = die3();
	const Point & p0 = c->vertex( i )->point();
	const Point & p1 = c->vertex( ccw(i) )->point();
	const Point & p2 = c->vertex( cw(i) )->point();
        Orientation o[3];
	CGAL_triangulation_assertion(coplanar_orientation(p0,p1,p2)==POSITIVE);
	o[0] = coplanar_orientation(p0,p1,p);
	if ( o[0] == NEGATIVE ) {
	  c = c->neighbor( cw(i) );
	  continue;
	}
	o[1] = coplanar_orientation(p1,p2,p);
	if ( o[1] == NEGATIVE ) {
	  c = c->neighbor( i );
	  continue;
	}
	o[2] = coplanar_orientation(p2,p0,p);
	if ( o[2] == NEGATIVE ) {
	  c = c->neighbor( ccw(i) );
	  continue;
	}

	// now p is in c or on its boundary
	int sum = ( o[0] == COLLINEAR )
	        + ( o[1] == COLLINEAR )
	        + ( o[2] == COLLINEAR );
	switch (sum) {
	case 0:
	  {
	    lt = FACET;
	    li = 3; // useless ?
	    break;
	  }
	case 1:
	  {
	    lt = EDGE;
	    li = ( o[0] == COLLINEAR ) ? i :
	         ( o[1] == COLLINEAR ) ? ccw(i) :
	         cw(i);
	    lj = ccw(li);
	    break;
	  }
	case 2:
	  {
	    lt = VERTEX;
	    li = ( o[0] != COLLINEAR ) ? cw(i) :
	         ( o[1] != COLLINEAR ) ? i :
	         ccw(i);
	    break;
	  }
	}
	return c;
      }
    }
  case 1:
    {
      CGAL_triangulation_precondition( start != Cell_handle() );
      CGAL_triangulation_precondition( ! start->has_vertex(infinite) );
      Cell_handle c = start;

      //first tests whether p is collinear with the current triangulation
      if ( ! collinear( p,
			c->vertex(0)->point(),
			c->vertex(1)->point()) ) {
	lt = OUTSIDE_AFFINE_HULL;
	return c;
      }
      // if p is collinear, location :
      while (1) {
	if ( c->has_vertex(infinite) ) {
	  // c must contain p in its interior
	  lt = OUTSIDE_CONVEX_HULL;
	  return c;
	}

	// else c is finite
	// we test on which direction to continue the traversal
	switch (collinear_position(c->vertex(0)->point(),
		                   p,
				   c->vertex(1)->point()) ) {
	case AFTER:
	  c = c->neighbor(0);
	  continue;
	case BEFORE:
	  c = c->neighbor(1);
	  continue;
	case MIDDLE:
	    lt = EDGE;
	    li = 0;
	    lj = 1;
	    return c;
	case SOURCE:
	    lt = VERTEX;
	    li = 0;
	    return c;
	case TARGET:
	    lt = VERTEX;
	    li = 1;
	    return c;
	}
      }
    }
  case 0:
    {
      Finite_vertices_iterator vit = finite_vertices_begin();
      if ( ! equal( p, vit->point() ) ) {
	lt = OUTSIDE_AFFINE_HULL;
      }
      else {
	lt = VERTEX;
	li = 0;
      }
      return vit->cell();
    }
  case -1:
    {
      lt = OUTSIDE_AFFINE_HULL;
      return Cell_handle();
    }
  default:
    {
      CGAL_triangulation_assertion(false);
      return Cell_handle();
    }
  }
}

#ifndef CGAL_NO_STRUCTURAL_FILTERING
template <class Gt, class Tds >
inline 
typename Triangulation_3<Gt, Tds>::Cell_handle
Triangulation_3<Gt, Tds>::
inexact_locate(const Point & t, Cell_handle start, int n_of_turns) const
{
  CGAL_triangulation_expensive_assertion(start == Cell_handle() || tds().is_simplex(start) );

  if(dimension() < 3) return start;

  // Make sure we continue from here with a finite cell.
  if ( start == Cell_handle() )
    start = infinite_cell();

  int ind_inf;
  if( start->has_vertex(infinite, ind_inf) )
    start = start->neighbor(ind_inf);

  CGAL_triangulation_precondition( start != Cell_handle() );
  CGAL_triangulation_precondition( ! start->has_vertex(infinite) );

  // We implement the remembering visibility walk.
  // in this phase, no need to be stochastic

  // Remembers the previous cell to avoid useless orientation tests.
  Cell_handle previous = Cell_handle();
  Cell_handle c = start;

  // Now treat the cell c.
  try_next_cell:

  n_of_turns--;

  // We know that the 4 vertices of c are positively oriented.
  // So, in order to test if p is seen outside from one of c's facets,
  // we just replace the corresponding point by p in the orientation
  // test.  We do this using the array below.
  const Point* pts[4] = { &(c->vertex(0)->point()),
                          &(c->vertex(1)->point()),
                          &(c->vertex(2)->point()),
                          &(c->vertex(3)->point()) };

  // (non-stochastic) visibility walk
  for (int i=0; i != 4; ++i) {
    Cell_handle next = c->neighbor(i);
    if (previous == next) continue;

    // We temporarily put p at i's place in pts.
    const Point* backup = pts[i];
    pts[i] = &t;
    if( inexact_orientation(*pts[0], *pts[1], *pts[2], *pts[3]) != NEGATIVE) {
      pts[i] = backup;
      continue;
    }
    if(next->has_vertex(infinite)) {
      // We are outside the convex hull.
      return next;
    }
    previous = c;
    c = next;
    if(n_of_turns) goto try_next_cell;
  }

  return c;
}
#endif // no CGAL_NO_STRUCTURAL_FILTERING

template < class GT, class Tds >
Bounded_side
Triangulation_3<GT,Tds>::
side_of_tetrahedron(const Point & p,
		    const Point & p0,
		    const Point & p1,
		    const Point & p2,
		    const Point & p3,
		    Locate_type & lt, int & i, int & j ) const
  // p0,p1,p2,p3 supposed to be non coplanar
  // tetrahedron p0,p1,p2,p3 is supposed to be well oriented
  // returns :
  // ON_BOUNDED_SIDE if p lies strictly inside the tetrahedron
  // ON_BOUNDARY if p lies on one of the facets
  // ON_UNBOUNDED_SIDE if p lies strictly outside the tetrahedron
{
  CGAL_triangulation_precondition
    ( orientation(p0,p1,p2,p3) == POSITIVE );

  Orientation o0,o1,o2,o3;
  if ( ((o0 = orientation(p,p1,p2,p3)) == NEGATIVE) ||
       ((o1 = orientation(p0,p,p2,p3)) == NEGATIVE) ||
       ((o2 = orientation(p0,p1,p,p3)) == NEGATIVE) ||
       ((o3 = orientation(p0,p1,p2,p)) == NEGATIVE) ) {
    lt = OUTSIDE_CONVEX_HULL;
    return ON_UNBOUNDED_SIDE;
  }

  // now all the oi's are >=0
  // sum gives the number of facets p lies on
  int sum = ( (o0 == ZERO) ? 1 : 0 )
          + ( (o1 == ZERO) ? 1 : 0 )
          + ( (o2 == ZERO) ? 1 : 0 )
          + ( (o3 == ZERO) ? 1 : 0 );

  switch (sum) {
  case 0:
    {
      lt = CELL;
      return ON_BOUNDED_SIDE;
    }
  case 1:
    {
      lt = FACET;
      // i = index such that p lies on facet(i)
      i = ( o0 == ZERO ) ? 0 :
	  ( o1 == ZERO ) ? 1 :
	  ( o2 == ZERO ) ? 2 :
	  3;
      return ON_BOUNDARY;
    }
  case 2:
    {
      lt = EDGE;
      // i = smallest index such that p does not lie on facet(i)
      // i must be < 3 since p lies on 2 facets
      i = ( o0 == POSITIVE ) ? 0 :
	  ( o1 == POSITIVE ) ? 1 :
	  2;
      // j = larger index such that p not on facet(j)
      // j must be > 0 since p lies on 2 facets
      j = ( o3 == POSITIVE ) ? 3 :
	  ( o2 == POSITIVE ) ? 2 :
	  1;
      return ON_BOUNDARY;
    }
  case 3:
    {
      lt = VERTEX;
      // i = index such that p does not lie on facet(i)
      i = ( o0 == POSITIVE ) ? 0 :
	  ( o1 == POSITIVE ) ? 1 :
	  ( o2 == POSITIVE ) ? 2 :
	  3;
      return ON_BOUNDARY;
    }
  default:
    {
      // impossible : cannot be on 4 facets for a real tetrahedron
      CGAL_triangulation_assertion(false);
      return ON_BOUNDARY;
    }
  }
}

template < class GT, class Tds >
Bounded_side
Triangulation_3<GT,Tds>::
side_of_cell(const Point & p,
	     Cell_handle c,
	     Locate_type & lt, int & i, int & j) const
  // returns
  // ON_BOUNDED_SIDE if p inside the cell
  // (for an infinite cell this means that p lies strictly in the half space
  // limited by its finite facet)
  // ON_BOUNDARY if p on the boundary of the cell
  // (for an infinite cell this means that p lies on the *finite* facet)
  // ON_UNBOUNDED_SIDE if p lies outside the cell
  // (for an infinite cell this means that p is not in the preceding
  // two cases)
  // lt has a meaning only when ON_BOUNDED_SIDE or ON_BOUNDARY
{
  CGAL_triangulation_precondition( dimension() == 3 );
  if ( ! is_infinite(c) ) {
    return side_of_tetrahedron(p,
			       c->vertex(0)->point(),
			       c->vertex(1)->point(),
			       c->vertex(2)->point(),
			       c->vertex(3)->point(),
			       lt, i, j);
  }
  else {
    int inf = c->index(infinite);
    Orientation o;
    Vertex_handle
      v1=c->vertex((inf+1)&3),
      v2=c->vertex((inf+2)&3),
      v3=c->vertex((inf+3)&3);
    if ( (inf&1) == 0 )
      o = orientation(p, v1->point(), v2->point(), v3->point());
    else
      o =  orientation(v3->point(), p, v1->point(), v2->point());

    switch (o) {
    case POSITIVE:
      {
	lt = CELL;
	return ON_BOUNDED_SIDE;
      }
    case NEGATIVE:
      return ON_UNBOUNDED_SIDE;
    case ZERO:
      {
	// location in the finite facet
	int i_f, j_f;
	Bounded_side side =
	  side_of_triangle(p, v1->point(), v2->point(), v3->point(),
			   lt, i_f, j_f);
	// lt need not be modified in most cases :
	switch (side) {
	case ON_BOUNDED_SIDE:
	  {
	    // lt == FACET ok
	    i = inf;
	    return ON_BOUNDARY;
	  }
	case ON_BOUNDARY:
	  {
	    // lt == VERTEX OR EDGE ok
	    i = ( i_f == 0 ) ? ((inf+1)&3) :
	        ( i_f == 1 ) ? ((inf+2)&3) :
	        ((inf+3)&3);
	    if ( lt == EDGE ) {
	      j = (j_f == 0 ) ? ((inf+1)&3) :
		  ( j_f == 1 ) ? ((inf+2)&3) :
		  ((inf+3)&3);
	    }
	    return ON_BOUNDARY;
	  }
	case ON_UNBOUNDED_SIDE:
	  {
	    // p lies on the plane defined by the finite facet
	    // lt must be initialized
	    return ON_UNBOUNDED_SIDE;
	  }
	default:
	  {
	    CGAL_triangulation_assertion(false);
	    return ON_BOUNDARY;
	  }
	} // switch side
      }// case ZERO
    default:
      {
	CGAL_triangulation_assertion(false);
	return ON_BOUNDARY;
      }
    } // switch o
  } // else infinite cell
} // side_of_cell

template < class GT, class Tds >
Bounded_side
Triangulation_3<GT,Tds>::
side_of_triangle(const Point & p,
		 const Point & p0,
		 const Point & p1,
		 const Point & p2,
		 Locate_type & lt, int & i, int & j ) const
  // p0,p1,p2 supposed to define a plane
  // p supposed to lie on plane p0,p1,p2
  // triangle p0,p1,p2 defines the orientation of the plane
  // returns
  // ON_BOUNDED_SIDE if p lies strictly inside the triangle
  // ON_BOUNDARY if p lies on one of the edges
  // ON_UNBOUNDED_SIDE if p lies strictly outside the triangle
{
  CGAL_triangulation_precondition( coplanar(p,p0,p1,p2) );

  Orientation o012 = coplanar_orientation(p0,p1,p2);
  CGAL_triangulation_precondition( o012 != COLLINEAR );

  Orientation o0; // edge p0 p1
  Orientation o1; // edge p1 p2
  Orientation o2; // edge p2 p0

  if ((o0 = coplanar_orientation(p0,p1,p)) == opposite(o012) ||
      (o1 = coplanar_orientation(p1,p2,p)) == opposite(o012) ||
      (o2 = coplanar_orientation(p2,p0,p)) == opposite(o012)) {
    lt = OUTSIDE_CONVEX_HULL;
    return ON_UNBOUNDED_SIDE;
  }

  // now all the oi's are >=0
  // sum gives the number of edges p lies on
  int sum = ( (o0 == ZERO) ? 1 : 0 )
          + ( (o1 == ZERO) ? 1 : 0 )
          + ( (o2 == ZERO) ? 1 : 0 );

  switch (sum) {
  case 0:
    {
      lt = FACET;
      return ON_BOUNDED_SIDE;
    }
  case 1:
    {
      lt = EDGE;
      i = ( o0 == ZERO ) ? 0 :
	  ( o1 == ZERO ) ? 1 :
	  2;
      if ( i == 2 )
	j=0;
      else
	j = i+1;
      return ON_BOUNDARY;
    }
  case 2:
    {
      lt = VERTEX;
      i = ( o0 == o012 ) ? 2 :
	  ( o1 == o012 ) ? 0 :
	  1;
      return ON_BOUNDARY;
    }
  default:
    {
      // cannot happen
      CGAL_triangulation_assertion(false);
      return ON_BOUNDARY;
    }
  }
}

template < class GT, class Tds >
Bounded_side
Triangulation_3<GT,Tds>::
side_of_facet(const Point & p,
	      Cell_handle c,
	      Locate_type & lt, int & li, int & lj) const
  // supposes dimension 2 otherwise does not work for infinite facets
  // returns :
  // ON_BOUNDED_SIDE if p inside the facet
  // (for an infinite facet this means that p lies strictly in the half plane
  // limited by its finite edge)
  // ON_BOUNDARY if p on the boundary of the facet
  // (for an infinite facet this means that p lies on the *finite* edge)
  // ON_UNBOUNDED_SIDE if p lies outside the facet
  // (for an infinite facet this means that p is not in the
  // preceding two cases)
  // lt has a meaning only when ON_BOUNDED_SIDE or ON_BOUNDARY
  // when they mean anything, li and lj refer to indices in the cell c
  // giving the facet (c,i)
{
  CGAL_triangulation_precondition( dimension() == 2 );
  if ( ! is_infinite(c,3) ) {
    // The following precondition is useless because it is written
    // in side_of_facet
    // 	CGAL_triangulation_precondition( coplanar (p,
    // 					  c->vertex(0)->point,
    // 					  c->vertex(1)->point,
    // 					  c->vertex(2)->point) );
    int i_t, j_t;
    Bounded_side side = side_of_triangle(p,
			    c->vertex(0)->point(),
			    c->vertex(1)->point(),
			    c->vertex(2)->point(),
			    lt, i_t, j_t);
    // We protect the following code by this test to avoid valgrind messages.
    if (side == ON_BOUNDARY) {
        // indices in the original cell :
        li = ( i_t == 0 ) ? 0 :
             ( i_t == 1 ) ? 1 : 2;
        lj = ( j_t == 0 ) ? 0 :
             ( j_t == 1 ) ? 1 : 2;
    }
    return side;
  }
  // else infinite facet
  int inf = c->index(infinite);
    // The following precondition is useless because it is written
    // in side_of_facet
    // 	CGAL_triangulation_precondition( coplanar (p,
    // 				  c->neighbor(inf)->vertex(0)->point(),
    // 				  c->neighbor(inf)->vertex(1)->point(),
    // 				  c->neighbor(inf)->vertex(2)->point()));
  int i2 = next_around_edge(inf,3);
  int i1 = 3-inf-i2;
  Vertex_handle v1 = c->vertex(i1),
                v2 = c->vertex(i2);

  CGAL_triangulation_assertion(coplanar_orientation(v1->point(), v2->point(),
	                       mirror_vertex(c, inf)->point()) == POSITIVE);

  switch (coplanar_orientation(v1->point(), v2->point(), p)) {
  case POSITIVE:
      // p lies on the same side of v1v2 as vn, so not in f
      return ON_UNBOUNDED_SIDE;
  case NEGATIVE:
      // p lies in f
      lt = FACET;
      li = 3;
      return ON_BOUNDED_SIDE;
  default: // case ZERO:
      // p collinear with v1v2
      int i_e;
      switch (side_of_segment(p, v1->point(), v2->point(), lt, i_e)) {
	// computation of the indices in the original cell
      case ON_BOUNDED_SIDE:
	  // lt == EDGE ok
	  li = i1;
	  lj = i2;
	  return ON_BOUNDARY;
      case ON_BOUNDARY:
	  // lt == VERTEX ok
	  li = ( i_e == 0 ) ? i1 : i2;
	  return ON_BOUNDARY;
      default: // case ON_UNBOUNDED_SIDE:
	  // p lies on the line defined by the finite edge
	  return ON_UNBOUNDED_SIDE;
      }
  }
}

template < class GT, class Tds >
Bounded_side
Triangulation_3<GT,Tds>::
side_of_segment(const Point & p,
		const Point & p0,
		const Point & p1,
		Locate_type & lt, int & i ) const
  // p0, p1 supposed to be different
  // p supposed to be collinear to p0, p1
  // returns :
  // ON_BOUNDED_SIDE if p lies strictly inside the edge
  // ON_BOUNDARY if p equals p0 or p1
  // ON_UNBOUNDED_SIDE if p lies strictly outside the edge
{
  CGAL_triangulation_precondition( ! equal(p0, p1) );
  CGAL_triangulation_precondition( collinear(p, p0, p1) );

  switch (collinear_position(p0, p, p1)) {
  case MIDDLE:
    lt = EDGE;
    return ON_BOUNDED_SIDE;
  case SOURCE:
    lt = VERTEX;
    i = 0;
    return ON_BOUNDARY;
  case TARGET:
    lt = VERTEX;
    i = 1;
    return ON_BOUNDARY;
  default: // case BEFORE: case AFTER:
    lt = OUTSIDE_CONVEX_HULL;
    return ON_UNBOUNDED_SIDE;
  }
}

template < class GT, class Tds >
Bounded_side
Triangulation_3<GT,Tds>::
side_of_edge(const Point & p,
	     Cell_handle c,
	     Locate_type & lt, int & li) const
  // supposes dimension 1 otherwise does not work for infinite edges
  // returns :
  // ON_BOUNDED_SIDE if p inside the edge
  // (for an infinite edge this means that p lies in the half line
  // defined by the vertex)
  // ON_BOUNDARY if p equals one of the vertices
  // ON_UNBOUNDED_SIDE if p lies outside the edge
  // (for an infinite edge this means that p lies on the other half line)
  // lt has a meaning when ON_BOUNDED_SIDE and ON_BOUNDARY
  // li refer to indices in the cell c
{
  CGAL_triangulation_precondition( dimension() == 1 );
  if ( ! is_infinite(c,0,1) )
    return side_of_segment(p, c->vertex(0)->point(), c->vertex(1)->point(),
			   lt, li);
  // else infinite edge
  int inf = c->index(infinite);
  switch (collinear_position(c->vertex(1-inf)->point(), p,
	                     mirror_vertex(c, inf)->point())) {
      case SOURCE:
	  lt = VERTEX;
	  li = 1-inf;
	  return ON_BOUNDARY;
      case BEFORE:
          lt = EDGE;
          return ON_BOUNDED_SIDE;
      default: // case MIDDLE: case AFTER: case TARGET:
          return ON_UNBOUNDED_SIDE;
  }
}

template < class GT, class Tds >
bool
Triangulation_3<GT,Tds>::
flip( Cell_handle c, int i )
{
  CGAL_triangulation_precondition( (dimension() == 3) && (0<=i) && (i<4)
				   && (number_of_vertices() >= 5) );

  Cell_handle n = c->neighbor(i);
  int in = n->index(c);
  if ( is_infinite( c ) || is_infinite( n ) ) return false;

  if ( i%2 == 1 ) {
    if ( orientation( c->vertex((i+1)&3)->point(),
		      c->vertex((i+2)&3)->point(),
		      n->vertex(in)->point(),
		      c->vertex(i)->point() )
	 != POSITIVE ) return false;
    if ( orientation( c->vertex((i+2)&3)->point(),
		      c->vertex((i+3)&3)->point(),
		      n->vertex(in)->point(),
		      c->vertex(i)->point() )
	 != POSITIVE ) return false;
    if ( orientation( c->vertex((i+3)&3)->point(),
		      c->vertex((i+1)&3)->point(),
		      n->vertex(in)->point(),
		      c->vertex(i)->point() )
	 != POSITIVE ) return false;
  }
  else {
    if ( orientation( c->vertex((i+2)&3)->point(),
		      c->vertex((i+1)&3)->point(),
		      n->vertex(in)->point(),
		      c->vertex(i)->point() )
	 != POSITIVE ) return false;
    if ( orientation( c->vertex((i+3)&3)->point(),
		      c->vertex((i+2)&3)->point(),
		      n->vertex(in)->point(),
		      c->vertex(i)->point() )
	 != POSITIVE ) return false;
    if ( orientation( c->vertex((i+1)&3)->point(),
		      c->vertex((i+3)&3)->point(),
		      n->vertex(in)->point(),
		      c->vertex(i)->point() )
	 != POSITIVE ) return false;
  }

  _tds.flip_flippable(c, i);
  return true;
}

template < class GT, class Tds >
void
Triangulation_3<GT,Tds>::
flip_flippable( Cell_handle c, int i )
{
  CGAL_triangulation_precondition( (dimension() == 3) && (0<=i) && (i<4)
				   && (number_of_vertices() >= 5) );
  CGAL_triangulation_precondition_code( Cell_handle n = c->neighbor(i); );
  CGAL_triangulation_precondition_code( int in = n->index(c); );
  CGAL_triangulation_precondition( ( ! is_infinite( c ) ) &&
				   ( ! is_infinite( n ) ) );

  if ( i%2 == 1 ) {
    CGAL_triangulation_precondition( orientation( c->vertex((i+1)&3)->point(),
						  c->vertex((i+2)&3)->point(),
						  n->vertex(in)->point(),
						  c->vertex(i)->point() )
				     == POSITIVE );
    CGAL_triangulation_precondition( orientation( c->vertex((i+2)&3)->point(),
						  c->vertex((i+3)&3)->point(),
						  n->vertex(in)->point(),
						  c->vertex(i)->point() )
				     == POSITIVE );
    CGAL_triangulation_precondition( orientation( c->vertex((i+3)&3)->point(),
						  c->vertex((i+1)&3)->point(),
						  n->vertex(in)->point(),
						  c->vertex(i)->point() )
				     == POSITIVE );
  }
  else {
    CGAL_triangulation_precondition( orientation( c->vertex((i+2)&3)->point(),
						  c->vertex((i+1)&3)->point(),
						  n->vertex(in)->point(),
						  c->vertex(i)->point() )
				     == POSITIVE );
    CGAL_triangulation_precondition( orientation( c->vertex((i+3)&3)->point(),
						  c->vertex((i+2)&3)->point(),
						  n->vertex(in)->point(),
						  c->vertex(i)->point() )
				     == POSITIVE );
    CGAL_triangulation_precondition( orientation( c->vertex((i+1)&3)->point(),
						  c->vertex((i+3)&3)->point(),
						  n->vertex(in)->point(),
						  c->vertex(i)->point() )
				     == POSITIVE );
  }

  _tds.flip_flippable(c, i);
}

template < class GT, class Tds >
bool
Triangulation_3<GT,Tds>::
flip( Cell_handle c, int i, int j )
  // flips edge i,j of cell c
{
  CGAL_triangulation_precondition( (dimension() == 3)
				   && (0<=i) && (i<4)
				   && (0<=j) && (j<4)
				   && ( i != j )
				   && (number_of_vertices() >= 5) );

  // checks that degree 3 and not on the convex hull
  int degree = 0;
  Cell_circulator ccir = incident_cells(c,i,j);
  Cell_circulator cdone = ccir;
  do {
    if ( is_infinite(ccir) ) return false;
    ++degree;
    ++ccir;
  } while ( ccir != cdone );

  if ( degree != 3 ) return false;

  // checks that future tetrahedra are well oriented
  Cell_handle n = c->neighbor( next_around_edge(i,j) );
  int in = n->index( c->vertex(i) );
  int jn = n->index( c->vertex(j) );
  if ( orientation( c->vertex(next_around_edge(i,j))->point(),
		    c->vertex(next_around_edge(j,i))->point(),
		    n->vertex(next_around_edge(jn,in))->point(),
		    c->vertex(j)->point() )
       != POSITIVE ) return false;
  if ( orientation( c->vertex(i)->point(),
		    c->vertex(next_around_edge(j,i))->point(),
		    n->vertex(next_around_edge(jn,in))->point(),
		    c->vertex(next_around_edge(i,j))->point() )
       != POSITIVE ) return false;

  _tds.flip_flippable(c, i, j);
  return true;
}

template < class GT, class Tds >
void
Triangulation_3<GT,Tds>::
flip_flippable( Cell_handle c, int i, int j )
  // flips edge i,j of cell c
{
#if !defined CGAL_TRIANGULATION_NO_PRECONDITIONS && \
    !defined CGAL_NO_PRECONDITIONS && !defined NDEBUG
  CGAL_triangulation_precondition( (dimension() == 3)
				   && (0<=i) && (i<4)
				   && (0<=j) && (j<4)
				   && ( i != j )
				   && (number_of_vertices() >= 5) );
  int degree = 0;
  Cell_circulator ccir = incident_cells(c,i,j);
  Cell_circulator cdone = ccir;
  do {
    CGAL_triangulation_precondition( ! is_infinite(ccir) );
    ++degree;
    ++ccir;
  } while ( ccir != cdone );
  CGAL_triangulation_precondition( degree == 3 );

  Cell_handle n = c->neighbor( next_around_edge(i, j) );
  int in = n->index( c->vertex(i) );
  int jn = n->index( c->vertex(j) );
  CGAL_triangulation_precondition
    ( orientation( c->vertex(next_around_edge(i,j))->point(),
		   c->vertex(next_around_edge(j,i))->point(),
		   n->vertex(next_around_edge(jn,in))->point(),
		   c->vertex(j)->point() ) == POSITIVE );
  CGAL_triangulation_precondition
    ( orientation( c->vertex(i)->point(),
		   c->vertex(next_around_edge(j,i))->point(),
		   n->vertex(next_around_edge(jn,in))->point(),
		   c->vertex(next_around_edge(i,j))->point() ) == POSITIVE );
#endif
  _tds.flip_flippable(c, i, j);
}

template < class GT, class Tds >
typename Triangulation_3<GT,Tds>::Vertex_handle
Triangulation_3<GT,Tds>::
insert(const Point & p, Cell_handle start)
{
  Locate_type lt;
  int li, lj;
  Cell_handle c = locate( p, lt, li, lj, start);
  return insert(p, lt, c, li, lj);
}

template < class GT, class Tds >
typename Triangulation_3<GT,Tds>::Vertex_handle
Triangulation_3<GT,Tds>::
insert(const Point & p, Locate_type lt, Cell_handle c, int li, int lj)
{
  switch (lt) {
  case VERTEX:
    return c->vertex(li);
  case EDGE:
    return insert_in_edge(p, c, li, lj);
  case FACET:
    return insert_in_facet(p, c, li);
  case CELL:
    return insert_in_cell(p, c);
  case OUTSIDE_CONVEX_HULL:
    return insert_outside_convex_hull(p, c);
  case OUTSIDE_AFFINE_HULL:
  default:
    return insert_outside_affine_hull(p);
  }
}



template < class GT, class Tds >
template < class Conflict_tester, class Hidden_points_visitor >
typename Triangulation_3<GT,Tds>::Vertex_handle
Triangulation_3<GT,Tds>::
insert_in_conflict(const Point & p,
		   Locate_type lt, Cell_handle c, int li, int /*lj*/,
		   const Conflict_tester &tester,
		   Hidden_points_visitor &hider)
{
  switch (dimension()) {
  case 3:
    {
      if ((lt == VERTEX) &&
	  (tester.compare_weight(c->vertex(li)->point(), p)==0) ) {
	return c->vertex(li);
      }
      // If the new point is not in conflict with its cell, it is hidden.
      if (!tester.test_initial_cell(c)) {
	hider.hide_point(c,p);
	return Vertex_handle();
      }

      // Ok, we really insert the point now.
      // First, find the conflict region.
      std::vector<Cell_handle> cells;
      Facet facet;

      cells.reserve(32);
      find_conflicts
	(c, tester, make_triple(Oneset_iterator<Facet>(facet),
				std::back_inserter(cells),
				Emptyset_iterator()));

      // Remember the points that are hidden by the conflicting cells,
      // as they will be deleted during the insertion.
      hider.process_cells_in_conflict(cells.begin(), cells.end());

      Vertex_handle v = _insert_in_hole(p, cells.begin(), cells.end(),
			                facet.first, facet.second);

      // Store the hidden points in their new cells.
      hider.reinsert_vertices(v);
      return v;
    }
  case 2:
    {
      // This check is added compared to the 3D case
      if (lt == OUTSIDE_AFFINE_HULL)
	return insert_outside_affine_hull (p);

      if ((lt == VERTEX) &&
	  (tester.compare_weight(c->vertex(li)->point(), p)==0) ) {
	return c->vertex(li);
      }
      // If the new point is not in conflict with its cell, it is hidden.
      if (!tester.test_initial_cell(c)) {
	hider.hide_point(c,p);
	return Vertex_handle();
      }

      // Ok, we really insert the point now.
      // First, find the conflict region.
      std::vector<Cell_handle> cells;
      Facet facet;

      cells.reserve(32);
      find_conflicts
	(c, tester, make_triple(Oneset_iterator<Facet>(facet),
				std::back_inserter(cells),
				Emptyset_iterator()));

      // Remember the points that are hidden by the conflicting cells,
      // as they will be deleted during the insertion.
      hider.process_cells_in_conflict(cells.begin(), cells.end());

      Vertex_handle v = _insert_in_hole(p, cells.begin(), cells.end(),
			                facet.first, facet.second);

      // Store the hidden points in their new cells.
      hider.reinsert_vertices(v);
      return v;
    }
  default:
    {
      // dimension() <= 1
      if (lt == OUTSIDE_AFFINE_HULL)
	return insert_outside_affine_hull (p);

      if (lt == VERTEX &&
	  tester.compare_weight(c->vertex(li)->point(), p) == 0) {
	return c->vertex(li);
      }

      // If the new point is not in conflict with its cell, it is hidden.
      if (! tester.test_initial_cell(c)) {
	hider.hide_point(c,p);
	return Vertex_handle();
      }

      if (dimension() == 0) {
	return hider.replace_vertex(c, li, p);
      }


      // dimension() == 1;

      // Ok, we really insert the point now.
      // First, find the conflict region.
      std::vector<Cell_handle> cells;
      Facet facet;
      Cell_handle bound[2];
      // corresponding index: bound[j]->neighbor(1-j) is in conflict.

      // We get all cells in conflict,
      // and remember the 2 external boundaries.
      cells.push_back(c);

      for (int j = 0; j<2; ++j) {
	Cell_handle n = c->neighbor(j);
	while ( tester(n) ) {
	  cells.push_back(n);
	  n = n->neighbor(j);
	}
	bound[j] = n;
      }

      // Insertion.
      hider.process_cells_in_conflict(cells.begin(), cells.end());

      tds().delete_cells(cells.begin(), cells.end());

      // We preserve the order (like the orientation in 2D-3D).
      Vertex_handle v = tds().create_vertex();
      Cell_handle c0 = tds().create_face(v, bound[0]->vertex(0), Vertex_handle());
      Cell_handle c1 = tds().create_face(bound[1]->vertex(1), v, Vertex_handle());
      tds().set_adjacency(c0, 1, c1, 0);
      tds().set_adjacency(bound[0], 1, c0, 0);
      tds().set_adjacency(c1, 1, bound[1], 0);
      bound[0]->vertex(0)->set_cell(bound[0]);
      bound[1]->vertex(1)->set_cell(bound[1]);
      v->set_cell(c0);
      v->set_point (p);

      hider.reinsert_vertices(v);

      return v;
    }
  }
}

template < class GT, class Tds >
typename Triangulation_3<GT,Tds>::Vertex_handle
Triangulation_3<GT,Tds>::
insert_in_cell(const Point & p, Cell_handle c)
{
  CGAL_triangulation_precondition( dimension() == 3 );
  CGAL_triangulation_precondition_code
    ( Locate_type lt;
      int i; int j; );
  CGAL_triangulation_precondition
    ( side_of_tetrahedron( p,
			   c->vertex(0)->point(),
			   c->vertex(1)->point(),
			   c->vertex(2)->point(),
			   c->vertex(3)->point(),
			   lt,i,j ) == ON_BOUNDED_SIDE );

    Vertex_handle v = _tds.insert_in_cell(c);
    v->set_point(p);
    return v;
}

template < class GT, class Tds >
inline
typename Triangulation_3<GT,Tds>::Vertex_handle
Triangulation_3<GT,Tds>::
insert_in_facet(const Point & p, Cell_handle c, int i)
{
  CGAL_triangulation_precondition( dimension() == 2 || dimension() == 3);
  CGAL_triangulation_precondition( (dimension() == 2 && i == 3)
	                        || (dimension() == 3 && i >= 0 && i <= 3) );
  CGAL_triangulation_exactness_precondition_code
    ( Locate_type lt;
      int li; int lj; );
  CGAL_triangulation_exactness_precondition
    ( coplanar( p, c->vertex((i+1)&3)->point(),
		   c->vertex((i+2)&3)->point(),
		   c->vertex((i+3)&3)->point() )
      &&
      side_of_triangle( p,
			c->vertex((i+1)&3)->point(),
			c->vertex((i+2)&3)->point(),
			c->vertex((i+3)&3)->point(),
			lt, li, lj) == ON_BOUNDED_SIDE );

    Vertex_handle v = _tds.insert_in_facet(c, i);
    v->set_point(p);
    return v;
}

template < class GT, class Tds >
typename Triangulation_3<GT,Tds>::Vertex_handle
Triangulation_3<GT,Tds>::
insert_in_edge(const Point & p, Cell_handle c, int i, int j)
{
  CGAL_triangulation_precondition( i != j );
  CGAL_triangulation_precondition( dimension() >= 1 && dimension() <= 3 );
  CGAL_triangulation_precondition( i >= 0 && i <= dimension()
				   && j >= 0 && j <= dimension() );
  CGAL_triangulation_exactness_precondition_code( Locate_type lt; int li; );
  switch ( dimension() ) {
  case 3:
  case 2:
    {
      CGAL_triangulation_precondition( ! is_infinite(c, i, j) );
      CGAL_triangulation_exactness_precondition(
                         collinear( c->vertex(i)->point(),
				    p,
				    c->vertex(j)->point() )
	              && side_of_segment( p,
					  c->vertex(i)->point(),
					  c->vertex(j)->point(),
					  lt, li ) == ON_BOUNDED_SIDE );
      break;
    }
  case 1:
    {
      CGAL_triangulation_exactness_precondition( side_of_edge(p, c, lt, li)
				                 == ON_BOUNDED_SIDE );
      break;
    }
  }

  Vertex_handle v = _tds.insert_in_edge(c, i, j);
  v->set_point(p);
  return v;
}

template < class GT, class Tds >
typename Triangulation_3<GT,Tds>::Vertex_handle
Triangulation_3<GT,Tds>::
insert_outside_convex_hull(const Point & p, Cell_handle c)
  // c is an infinite cell containing p
  // p is strictly outside the convex hull
  // dimension 0 not allowed, use outside-affine-hull
{
  CGAL_triangulation_precondition( dimension() > 0 );
  CGAL_triangulation_precondition( c->has_vertex(infinite) );
  // the precondition that p is in c is tested in each of the
  // insertion methods called from this method
  switch ( dimension() ) {
  case 1:
    {
      // 	// p lies in the infinite edge neighboring c
      // 	// on the other side of li
      // 	return insert_in_edge(p,c->neighbor(1-li),0,1);
      return insert_in_edge(p,c,0,1);
    }
  case 2:
    {
      Conflict_tester_outside_convex_hull_2 tester(p, this);
      Vertex_handle v = insert_conflict(c, tester);
      v->set_point(p);
      return v;
    }
  default: // case 3:
    {
      Conflict_tester_outside_convex_hull_3 tester(p, this);
      Vertex_handle v = insert_conflict(c, tester);
      v->set_point(p);
      return v;
    }
  }
}

template < class GT, class Tds >
typename Triangulation_3<GT,Tds>::Vertex_handle
Triangulation_3<GT,Tds>::
insert_outside_affine_hull(const Point & p)
{
  CGAL_triangulation_precondition( dimension() < 3 );
  bool reorient;
  switch ( dimension() ) {
  case 1:
    {
      Cell_handle c = infinite_cell();
      Cell_handle n = c->neighbor(c->index(infinite_vertex()));
      Orientation o = coplanar_orientation(n->vertex(0)->point(),
					   n->vertex(1)->point(), p);
      CGAL_triangulation_precondition ( o != COLLINEAR );
      reorient = o == NEGATIVE;
      break;
    }
  case 2:
    {
      Cell_handle c = infinite_cell();
      Cell_handle n = c->neighbor(c->index(infinite_vertex()));
      Orientation o = orientation( n->vertex(0)->point(),
			           n->vertex(1)->point(),
			           n->vertex(2)->point(), p );
      CGAL_triangulation_precondition ( o != COPLANAR );
      reorient = o == NEGATIVE;
      break;
    }
  default:
    reorient = false;
  }

  Vertex_handle v = _tds.insert_increase_dimension(infinite_vertex());
  v->set_point(p);

  if (reorient)
      _tds.reorient();

  return v;
}

template < class GT, class Tds >
template < class OutputItCells >
typename Triangulation_3<GT,Tds>::Vertex_handle
Triangulation_3<GT,Tds>::insert_and_give_new_cells(const Point  &p, 
                                                   OutputItCells fit,
                                                   Cell_handle start)
{
  Vertex_handle v = insert(p, start);
  int dimension = this->dimension();
  if(dimension == 3) this->incident_cells(v, fit);
  else if(dimension == 2)
  {
    Cell_handle c = v->cell(), end = c;
    do {
      *fit++ = c;
      int i = c->index(v);
      c = c->neighbor((i+1)%3);
    } while(c != end);			
  } 
  else if(dimension == 1)
  {
    Cell_handle c = v->cell();
    *fit++ = c;
    *fit++ = c->neighbor((~(c->index(v)))&1);
  }
  else *fit++ = v->cell(); // dimension = 0
  return v;		
}

template < class GT, class Tds >
template < class OutputItCells >
typename Triangulation_3<GT,Tds>::Vertex_handle
Triangulation_3<GT,Tds>::insert_and_give_new_cells(const Point& p,
                                                   OutputItCells fit,
                                                   Vertex_handle hint)
{
  Vertex_handle v = insert(p, hint);
  int dimension = this->dimension();
  if(dimension == 3) this->incident_cells(v, fit);
  else if(dimension == 2)
  {
    Cell_handle c = v->cell(), end = c;
    do {
      *fit++ = c;
      int i = c->index(v);
      c = c->neighbor((i+1)%3);
    } while(c != end);			
  } 
  else if(dimension == 1)
  {
    Cell_handle c = v->cell();
    *fit++ = c;
    *fit++ = c->neighbor((~(c->index(v)))&1);
  }
  else *fit++ = v->cell(); // dimension = 0
  return v;
}

template < class GT, class Tds >
template < class OutputItCells >
typename Triangulation_3<GT,Tds>::Vertex_handle
Triangulation_3<GT,Tds>::insert_and_give_new_cells(const Point& p,
                                                   Locate_type lt,
                                                   Cell_handle c, int li, int lj, 
                                                   OutputItCells fit)
{
  Vertex_handle v = insert(p, lt, c, li, lj);
  int dimension = this->dimension();
  if(dimension == 3) this->incident_cells(v, fit);
  else if(dimension == 2)
  {
    Cell_handle c = v->cell(), end = c;
    do {
      *fit++ = c;
      int i = c->index(v);
      c = c->neighbor((i+1)%3);
    } while(c != end);			
  } 
  else if(dimension == 1)
  {
    Cell_handle c = v->cell();
    *fit++ = c;
    *fit++ = c->neighbor((~(c->index(v)))&1);
  }
  else *fit++ = v->cell(); // dimension = 0		 
  return v;
}

template < class Gt, class Tds >
typename Triangulation_3<Gt,Tds>::Vertex_triple
Triangulation_3<Gt,Tds>::
make_vertex_triple(const Facet& f) const
{
  Cell_handle ch = f.first;
  int i = f.second;

  return Vertex_triple(ch->vertex(vertex_triple_index(i,0)),
      ch->vertex(vertex_triple_index(i,1)),
      ch->vertex(vertex_triple_index(i,2)));
}

template < class Gt, class Tds >
void
Triangulation_3<Gt,Tds>::
make_canonical(Vertex_triple& t) const
{
  int i = (&*(t.first) < &*(t.second))? 0 : 1;
  if(i==0) {
    i = (&*(t.first) < &*(t.third))? 0 : 2;
  } else {
    i = (&*(t.second) < &*(t.third))? 1 : 2;
  }
  Vertex_handle tmp;
  switch(i){
  case 0: return;
  case 1:
    tmp = t.first;
    t.first = t.second;
    t.second = t.third;
    t.third = tmp;
    return;
  default:
    tmp = t.first;
    t.first = t.third;
    t.third = t.second;
    t.second = tmp;
  }
}

template < class GT, class Tds >
bool
Triangulation_3<GT,Tds>::
test_dim_down(Vertex_handle v) const
  // tests whether removing v decreases the dimension of the triangulation
  // true iff
  // v is incident to all finite cells/facets
  // and all the other vertices are coplanar/collinear in dim3/2.
{
  CGAL_triangulation_precondition(dimension() >= 0);
  CGAL_triangulation_precondition(! is_infinite(v) );

  if (dimension() == 3) {
      Finite_cells_iterator cit = finite_cells_begin();

      int iv;
      if ( ! cit->has_vertex(v,iv) )
          return false;
      const Point &p1=cit->vertex((iv+1)&3)->point();
      const Point &p2=cit->vertex((iv+2)&3)->point();
      const Point &p3=cit->vertex((iv+3)&3)->point();
      ++cit;

      for (; cit != finite_cells_end(); ++cit ) {
          if ( ! cit->has_vertex(v,iv) )
              return false;
          for (int i=1; i<4; i++ )
	      if ( !coplanar(p1,p2,p3,cit->vertex((iv+i)&3)->point()) )
	          return false;
      }
  }
  else if (dimension() == 2)
  {
      Finite_facets_iterator cit = finite_facets_begin();

      int iv;
      if ( ! cit->first->has_vertex(v,iv) )
          return false;
      const Point &p1 = cit->first->vertex(cw(iv))->point();
      const Point &p2 = cit->first->vertex(ccw(iv))->point();
      ++cit;

      for (; cit != finite_facets_end(); ++cit ) {
          if ( ! cit->first->has_vertex(v,iv) )
              return false;
          if ( !collinear(p1, p2, cit->first->vertex(cw(iv))->point()) ||
	       !collinear(p1, p2, cit->first->vertex(ccw(iv))->point()) )
	      return false;
      }
  }
  else // dimension() == 1 or 0
      return number_of_vertices() == (size_type) dimension() + 1;

  return true;
}

template <class Gt, class Tds >
template < class VertexRemover >
VertexRemover&
Triangulation_3<Gt, Tds>::
make_hole_2D(Vertex_handle v, std::list<Edge_2D> &hole, VertexRemover &remover)
{
  std::vector<Cell_handle> to_delete;
  to_delete.reserve(32);
	
  Face_circulator fc = tds().incident_faces(v);
  Face_circulator done(fc);

  // We prepare for deleting all interior cells.
  // We ->set_cell() pointers to cells outside the hole.
  // We push the Edges_2D of the boundary (seen from outside) in "hole".
  do {
    Cell_handle f = fc;
    int i = f->index(v);
    Cell_handle fn = f->neighbor(i);
    int in = fn->index(f);

    f->vertex(cw(i))->set_cell(fn);
    fn->set_neighbor(in, Cell_handle());

    hole.push_back(Edge_2D(fn, in));
    remover.add_hidden_points(f);
    to_delete.push_back(f);

    ++fc;
  } while (fc != done);

  tds().delete_cells(to_delete.begin(), to_delete.end());
  return remover;
}

// this one also erases a set of cells
// which is useful to the move method
// outputting newly created cells
template <class Gt, class Tds >
template < class VertexRemover >
VertexRemover&
Triangulation_3<Gt, Tds>::
make_hole_2D(Vertex_handle v, std::list<Edge_2D> &hole, VertexRemover &remover,
             std::set<Cell_handle> &cells_set)
{
  std::vector<Cell_handle> to_delete;
  to_delete.reserve(32);

  Face_circulator fc = tds().incident_faces(v);
  Face_circulator done(fc);

  // We prepare for deleting all interior cells.
  // We ->set_cell() pointers to cells outside the hole.
  // We push the Edges_2D of the boundary (seen from outside) in "hole".
  do {
    Cell_handle f = fc;
    int i = f->index(v);
    Cell_handle fn = f->neighbor(i);
    int in = fn->index(f);

    f->vertex(cw(i))->set_cell(fn);
    fn->set_neighbor(in, Cell_handle());

    hole.push_back(Edge_2D(fn, in));
    remover.add_hidden_points(f);
    to_delete.push_back(f);

    ++fc;
  } while (fc != done);

  for(typename std::vector<Cell_handle>::const_iterator ib = to_delete.begin(),
        iend = to_delete.end(); ib != iend; ib++) cells_set.erase(*ib);

  tds().delete_cells(to_delete.begin(), to_delete.end());
  return remover;
}

template <class Gt, class Tds >
template < class VertexRemover >
void
Triangulation_3<Gt, Tds>::
fill_hole_2D(std::list<Edge_2D> & first_hole, VertexRemover &remover)
{
  typedef std::list<Edge_2D> Hole;

  std::vector<Hole> hole_list;

  Cell_handle  f, ff, fn;
  int i, ii, in;

  hole_list.push_back(first_hole);

  while( ! hole_list.empty())
    {
      Hole hole = hole_list.back();
      hole_list.pop_back();

      // if the hole has only three edges, create the triangle
      if (hole.size() == 3) {
	typename Hole::iterator hit = hole.begin();
	f = (*hit).first;        i = (*hit).second;
	ff = (* ++hit).first;    ii = (*hit).second;
	fn = (* ++hit).first;    in = (*hit).second;
	tds().create_face(f, i, ff, ii, fn, in);
	continue;
      }

      // else find an edge with two finite vertices
      // on the hole boundary
      // and the new triangle adjacent to that edge
      //  cut the hole and push it back

      // first, ensure that a neighboring face
      // whose vertices on the hole boundary are finite
      // is the first of the hole
      while (1) {
	ff = (hole.front()).first;
	ii = (hole.front()).second;
	if ( is_infinite(ff->vertex(cw(ii))) ||
	     is_infinite(ff->vertex(ccw(ii)))) {
          hole.push_back(hole.front());
          hole.pop_front();
	}
	else
	    break;
      }

      // take the first neighboring face and pop it;
      ff = (hole.front()).first;
      ii = (hole.front()).second;
      hole.pop_front();

      Vertex_handle v0 = ff->vertex(cw(ii));
      Vertex_handle v1 = ff->vertex(ccw(ii));
      Vertex_handle v2 = infinite_vertex();
      const Point &p0 = v0->point();
      const Point &p1 = v1->point();
      const Point *p2 = NULL; // Initialize to NULL to avoid warning.

      typename Hole::iterator hdone = hole.end();
      typename Hole::iterator hit = hole.begin();
      typename Hole::iterator cut_after(hit);

      // if tested vertex is c with respect to the vertex opposite
      // to NULL neighbor,
      // stop at the before last face;
      hdone--;
      for (; hit != hdone; ++hit) {
	fn = hit->first;
	in = hit->second;
        Vertex_handle vv = fn->vertex(ccw(in));
	if (is_infinite(vv)) {
	  if (is_infinite(v2))
	      cut_after = hit;
	}
	else {     // vv is a finite vertex
	  const Point &p = vv->point();
	  if (coplanar_orientation(p0, p1, p) == COUNTERCLOCKWISE) {
	    if (is_infinite(v2) ||
	        remover.side_of_bounded_circle(p0, p1, *p2, p, true)
		  == ON_BOUNDED_SIDE) {
		v2 = vv;
		p2 = &p;
		cut_after = hit;
	    }
	  }
	}
      }

      // create new triangle and update adjacency relations
      Cell_handle newf;

      //update the hole and push back in the Hole_List stack
      // if v2 belongs to the neighbor following or preceding *f
      // the hole remain a single hole
      // otherwise it is split in two holes

      fn = (hole.front()).first;
      in = (hole.front()).second;
      if (fn->has_vertex(v2, i) && i == ccw(in)) {
	newf = tds().create_face(ff, ii, fn, in);
	hole.pop_front();
	hole.push_front(Edge_2D(newf, 1));
	hole_list.push_back(hole);
      }
      else{
	fn = (hole.back()).first;
	in = (hole.back()).second;
	if (fn->has_vertex(v2, i) && i == cw(in)) {
	  newf = tds().create_face(fn, in, ff, ii);
	  hole.pop_back();
	  hole.push_back(Edge_2D(newf, 1));
	  hole_list.push_back(hole);
	}
	else{
	  // split the hole in two holes
	  newf = tds().create_face(ff, ii, v2);
	  Hole new_hole;
	  ++cut_after;
	  while( hole.begin() != cut_after )
            {
              new_hole.push_back(hole.front());
              hole.pop_front();
            }

	  hole.push_front(Edge_2D(newf, 1));
	  new_hole.push_front(Edge_2D(newf, 0));
	  hole_list.push_back(hole);
	  hole_list.push_back(new_hole);
	}
      }
    }
}

template <class Gt, class Tds >
template < class VertexRemover, class OutputItCells >
void
Triangulation_3<Gt, Tds>::
fill_hole_2D(std::list<Edge_2D> & first_hole, VertexRemover &remover,
             OutputItCells fit)
{
  typedef std::list<Edge_2D> Hole;

  std::vector<Hole> hole_list;

  Cell_handle  f, ff, fn;
  int i, ii, in;

  hole_list.push_back(first_hole);

  while( ! hole_list.empty())
  {
    Hole hole = hole_list.back();
    hole_list.pop_back();

    // if the hole has only three edges, create the triangle
    if (hole.size() == 3) {
      typename Hole::iterator hit = hole.begin();
      f = (*hit).first;        i = (*hit).second;
      ff = (* ++hit).first;    ii = (*hit).second;
      fn = (* ++hit).first;    in = (*hit).second;
      *fit++ = tds().create_face(f, i, ff, ii, fn, in);
      continue;
    }

    // else find an edge with two finite vertices
    // on the hole boundary
    // and the new triangle adjacent to that edge
    //  cut the hole and push it back

    // first, ensure that a neighboring face
    // whose vertices on the hole boundary are finite
    // is the first of the hole
    while (1) {
      ff = (hole.front()).first;
      ii = (hole.front()).second;
      if ( is_infinite(ff->vertex(cw(ii))) ||
           is_infinite(ff->vertex(ccw(ii)))) {
        hole.push_back(hole.front());
        hole.pop_front();
      }
      else
        break;
    }

    // take the first neighboring face and pop it;
    ff = (hole.front()).first;
    ii = (hole.front()).second;
    hole.pop_front();

    Vertex_handle v0 = ff->vertex(cw(ii));
    Vertex_handle v1 = ff->vertex(ccw(ii));
    Vertex_handle v2 = infinite_vertex();
    const Point &p0 = v0->point();
    const Point &p1 = v1->point();
    const Point *p2 = NULL; // Initialize to NULL to avoid warning.

    typename Hole::iterator hdone = hole.end();
    typename Hole::iterator hit = hole.begin();
    typename Hole::iterator cut_after(hit);

    // if tested vertex is c with respect to the vertex opposite
    // to NULL neighbor,
    // stop at the before last face;
    hdone--;
    for (; hit != hdone; ++hit) {
      fn = hit->first;
      in = hit->second;
      Vertex_handle vv = fn->vertex(ccw(in));
      if (is_infinite(vv)) {
        if (is_infinite(v2))
          cut_after = hit;
      }
      else {     // vv is a finite vertex
        const Point &p = vv->point();
        if (coplanar_orientation(p0, p1, p) == COUNTERCLOCKWISE) {
          if (is_infinite(v2) ||
              remover.side_of_bounded_circle(p0, p1, *p2, p, true)
              == ON_BOUNDED_SIDE) {
            v2 = vv;
            p2 = &p;
            cut_after = hit;
          }
        }
      }
    }

    // create new triangle and update adjacency relations
    Cell_handle newf;

    //update the hole and push back in the Hole_List stack
    // if v2 belongs to the neighbor following or preceding *f
    // the hole remain a single hole
    // otherwise it is split in two holes

    fn = (hole.front()).first;
    in = (hole.front()).second;
    if (fn->has_vertex(v2, i) && i == ccw(in)) {
      newf = tds().create_face(ff, ii, fn, in);
      hole.pop_front();
      hole.push_front(Edge_2D(newf, 1));
      hole_list.push_back(hole);
    } else {
      fn = (hole.back()).first;
      in = (hole.back()).second;
      if (fn->has_vertex(v2, i) && i == cw(in)) {
        newf = tds().create_face(fn, in, ff, ii);
        hole.pop_back();
        hole.push_back(Edge_2D(newf, 1));
        hole_list.push_back(hole);
      } else {
        // split the hole in two holes
        newf = tds().create_face(ff, ii, v2);
        Hole new_hole;
        ++cut_after;
        while( hole.begin() != cut_after )
        {
          new_hole.push_back(hole.front());
          hole.pop_front();
        }
        hole.push_front(Edge_2D(newf, 1));
        new_hole.push_front(Edge_2D(newf, 0));
        hole_list.push_back(hole);
        hole_list.push_back(new_hole);
      }
    }

    *fit++ = newf;

  }
}

template < class Gt, class Tds >
void
Triangulation_3<Gt,Tds>::
make_hole_3D( Vertex_handle v,
	      std::map<Vertex_triple,Facet>& outer_map,
	      std::vector<Cell_handle> & hole)
{
  CGAL_triangulation_expensive_precondition( ! test_dim_down(v) );

  incident_cells(v, std::back_inserter(hole));

  for (typename std::vector<Cell_handle>::iterator cit = hole.begin(),
       end = hole.end(); cit != end; ++cit) {
    int indv = (*cit)->index(v);
    Cell_handle opp_cit = (*cit)->neighbor( indv );
    Facet f(opp_cit, opp_cit->index(*cit));
    Vertex_triple vt = make_vertex_triple(f);
    make_canonical(vt);
    outer_map[vt] = f;
    for (int i=0; i<4; i++)
      if ( i != indv )
	(*cit)->vertex(i)->set_cell(opp_cit);
  }
}

template < class Gt, class Tds >
template < class VertexRemover >
VertexRemover&
Triangulation_3<Gt,Tds>::
remove_dim_down(Vertex_handle v, VertexRemover &remover)
{
    CGAL_triangulation_precondition (dimension() >= 0);

    // Collect all the hidden points.
    for (All_cells_iterator ci = tds().raw_cells_begin(),
            end = tds().raw_cells_end(); ci != end; ++ci)
        remover.add_hidden_points(ci);

    tds().remove_decrease_dimension(v, infinite_vertex());

    // Now try to see if we need to re-orient.
    if (dimension() == 2) {
        Facet f = *finite_facets_begin();
        if (coplanar_orientation(f.first->vertex(0)->point(),
                                 f.first->vertex(1)->point(),
                                 f.first->vertex(2)->point()) == NEGATIVE)
            tds().reorient();
    }

    return remover;
}

template < class Gt, class Tds >
template < class VertexRemover >
VertexRemover&
Triangulation_3<Gt,Tds>::
remove_1D(Vertex_handle v, VertexRemover &remover)
{
    CGAL_triangulation_precondition (dimension() == 1);

    Cell_handle c1 = v->cell();
    Cell_handle c2 = c1->neighbor(c1->index(v) == 0 ? 1 : 0);
    remover.add_hidden_points(c1);
    remover.add_hidden_points(c2);

    tds().remove_from_maximal_dimension_simplex (v);

    return remover;
}

template < class Gt, class Tds >
template < class VertexRemover >
VertexRemover&
Triangulation_3<Gt,Tds>::
remove_2D(Vertex_handle v, VertexRemover &remover)
{
    CGAL_triangulation_precondition(dimension() == 2);
    std::list<Edge_2D> hole;
    make_hole_2D(v, hole, remover);
    fill_hole_2D(hole, remover);
    tds().delete_vertex(v);
    return remover;
}

template < class Gt, class Tds >
template < class VertexRemover >
VertexRemover&
Triangulation_3<Gt,Tds>::
remove_3D(Vertex_handle v, VertexRemover &remover)
{
  std::vector<Cell_handle> hole;
  hole.reserve(64);

  // Construct the set of vertex triples on the boundary
  // with the facet just behind
  typedef std::map<Vertex_triple,Facet> Vertex_triple_Facet_map;
  Vertex_triple_Facet_map outer_map;
  Vertex_triple_Facet_map inner_map;

  make_hole_3D(v, outer_map, hole);
  CGAL_assertion(remover.hidden_points_begin() ==
      remover.hidden_points_end() );

  // Output the hidden points.
  for (typename std::vector<Cell_handle>::iterator
      hi = hole.begin(), hend = hole.end(); hi != hend; ++hi)
    remover.add_hidden_points(*hi);

  bool inf = false;
  unsigned int i;
  // collect all vertices on the boundary
  std::vector<Vertex_handle> vertices;
  vertices.reserve(64);

  adjacent_vertices(v, std::back_inserter(vertices));

  // create a Delaunay triangulation of the points on the boundary
  // and make a map from the vertices in remover.tmp towards the vertices
  // in *this

  Unique_hash_map<Vertex_handle,Vertex_handle> vmap;
  Cell_handle ch = Cell_handle();
  for(i=0; i < vertices.size(); i++){
    if(! is_infinite(vertices[i])){
      Vertex_handle vh = remover.tmp.insert(vertices[i]->point(), ch);
      ch = vh->cell();
      vmap[vh] = vertices[i];
    }else {
      inf = true;
    }
  }

  if(remover.tmp.dimension()==2){
    Vertex_handle fake_inf = remover.tmp.insert(v->point());
    vmap[fake_inf] = infinite_vertex();
  } else {
    vmap[remover.tmp.infinite_vertex()] = infinite_vertex();
  }

  CGAL_triangulation_assertion(remover.tmp.dimension() == 3);

  // Construct the set of vertex triples of remover.tmp
  // We reorient the vertex triple so that it matches those from outer_map
  // Also note that we use the vertices of *this, not of remover.tmp

  if(inf){
    for(All_cells_iterator it = remover.tmp.all_cells_begin(),
	end = remover.tmp.all_cells_end(); it != end; ++it){
      for(i=0; i < 4; i++){
	Facet f = std::pair<Cell_handle,int>(it,i);
	Vertex_triple vt_aux = make_vertex_triple(f);
	Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
	make_canonical(vt);
	inner_map[vt]= f;
      }
    }
  } else {
      for(Finite_cells_iterator it = remover.tmp.finite_cells_begin(),
	end = remover.tmp.finite_cells_end(); it != end; ++it){
      for(i=0; i < 4; i++){
	Facet f = std::pair<Cell_handle,int>(it,i);
	Vertex_triple vt_aux = make_vertex_triple(f);
	Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
	make_canonical(vt);
	inner_map[vt]= f;
      }
    }
  }
  // Grow inside the hole, by extending the surface
  while(! outer_map.empty()){
    typename Vertex_triple_Facet_map::iterator oit = outer_map.begin();
    while(is_infinite(oit->first.first) ||
	  is_infinite(oit->first.second) ||
	  is_infinite(oit->first.third)){
      ++oit;
      // otherwise the lookup in the inner_map fails
      // because the infinite vertices are different
    }
    typename Vertex_triple_Facet_map::value_type o_vt_f_pair = *oit;
    Cell_handle o_ch = o_vt_f_pair.second.first;
    unsigned int o_i = o_vt_f_pair.second.second;

    typename Vertex_triple_Facet_map::iterator iit =
             inner_map.find(o_vt_f_pair.first);
    CGAL_triangulation_assertion(iit != inner_map.end());
    typename Vertex_triple_Facet_map::value_type i_vt_f_pair = *iit;
    Cell_handle i_ch = i_vt_f_pair.second.first;
    unsigned int i_i = i_vt_f_pair.second.second;

    // create a new cell and glue it to the outer surface
    Cell_handle new_ch = tds().create_cell();
    new_ch->set_vertices(vmap[i_ch->vertex(0)], vmap[i_ch->vertex(1)],
			 vmap[i_ch->vertex(2)], vmap[i_ch->vertex(3)]);

    o_ch->set_neighbor(o_i,new_ch);
    new_ch->set_neighbor(i_i, o_ch);

    // for the other faces check, if they can also be glued
    for(i = 0; i < 4; i++){
      if(i != i_i){
	Facet f = std::pair<Cell_handle,int>(new_ch,i);
	Vertex_triple vt = make_vertex_triple(f);
	make_canonical(vt);
	std::swap(vt.second,vt.third);
	typename Vertex_triple_Facet_map::iterator oit2 = outer_map.find(vt);
	if(oit2 == outer_map.end()){
	  std::swap(vt.second,vt.third);
	  outer_map[vt]= f;
	} else {
	  // glue the faces
	  typename Vertex_triple_Facet_map::value_type o_vt_f_pair2 = *oit2;
	  Cell_handle o_ch2 = o_vt_f_pair2.second.first;
	  int o_i2 = o_vt_f_pair2.second.second;
	  o_ch2->set_neighbor(o_i2,new_ch);
	  new_ch->set_neighbor(i, o_ch2);
	  outer_map.erase(oit2);
	}
      }
    }
    outer_map.erase(oit);
  }
  tds().delete_vertex(v);
  tds().delete_cells(hole.begin(), hole.end());

  return remover;
}

template < class Gt, class Tds >
template < class VertexRemover >
void
Triangulation_3<Gt, Tds>::
remove(Vertex_handle v, VertexRemover &remover) {
  CGAL_triangulation_precondition( v != Vertex_handle());
  CGAL_triangulation_precondition( !is_infinite(v));
  CGAL_triangulation_expensive_precondition( tds().is_vertex(v) );

  if (test_dim_down (v)) {
    remove_dim_down (v, remover);
  }
  else {
    switch (dimension()) {
    case 1: remove_1D (v, remover); break;
    case 2: remove_2D (v, remover); break;
    case 3: remove_3D (v, remover); break;
    default:
      CGAL_triangulation_assertion (false);
    }
  }
}

// The remove here uses the remover, but
// no function envolving hidden points
// will be used in this internal version
template < class Gt, class Tds >
template < class VertexRemover, class OutputItCells >
VertexRemover&
Triangulation_3<Gt, Tds>::
remove_dim_down(Vertex_handle v, VertexRemover &remover, OutputItCells fit) {
  remove_dim_down(v, remover);
  for(All_cells_iterator afi = tds().raw_cells_begin(); 
      afi != tds().raw_cells_end(); 
      afi++) *fit++ = afi;
  return remover;
}

template < class Gt, class Tds >
template < class VertexRemover, class OutputItCells >
VertexRemover&
Triangulation_3<Gt, Tds>::
remove_1D(Vertex_handle v, VertexRemover &remover, OutputItCells fit) {
  Point p = v->point();
  remove_1D(v, remover);
  *fit++ = locate(p);
  return remover;
}

template < class Gt, class Tds >
template < class VertexRemover, class OutputItCells >
VertexRemover&
Triangulation_3<Gt, Tds>::
remove_2D(Vertex_handle v, VertexRemover &remover, OutputItCells fit) {
  CGAL_triangulation_precondition(dimension() == 2);
  std::list<Edge_2D> hole;
  make_hole_2D(v, hole, remover);
  fill_hole_2D(hole, remover, fit);
  tds().delete_vertex(v);
  return remover;
}

template < class Gt, class Tds >
template < class VertexRemover, class OutputItCells >
VertexRemover&
Triangulation_3<Gt, Tds>::
remove_3D(Vertex_handle v, VertexRemover &remover, OutputItCells fit) {
  CGAL_triangulation_precondition(dimension() == 3);

  std::vector<Cell_handle> hole;
  hole.reserve(64);

  // Construct the set of vertex triples on the boundary
  // with the facet just behind
  typedef std::map<Vertex_triple,Facet> Vertex_triple_Facet_map;
  Vertex_triple_Facet_map outer_map;
  Vertex_triple_Facet_map inner_map;

  make_hole_3D(v, outer_map, hole);

  CGAL_assertion(remover.hidden_points_begin() ==
                 remover.hidden_points_end() );

  // Output the hidden points.
  for (typename std::vector<Cell_handle>::iterator
         hi = hole.begin(), hend = hole.end(); hi != hend; ++hi)
    remover.add_hidden_points(*hi);

  bool inf = false;
  unsigned int i;
  // collect all vertices on the boundary
  std::vector<Vertex_handle> vertices;
  vertices.reserve(64);

  adjacent_vertices(v, std::back_inserter(vertices));

  // create a Delaunay triangulation of the points on the boundary
  // and make a map from the vertices in remover.tmp towards the vertices
  // in *this

  Unique_hash_map<Vertex_handle,Vertex_handle> vmap;
  Cell_handle ch = Cell_handle();
  for(i=0; i < vertices.size(); i++){
    if(! is_infinite(vertices[i])){
      Vertex_handle vh = remover.tmp.insert(vertices[i]->point(), ch);
      ch = vh->cell();
      vmap[vh] = vertices[i];
    }else {
      inf = true;
    }
  }

  if(remover.tmp.dimension()==2){
    Vertex_handle fake_inf = remover.tmp.insert(v->point());
    vmap[fake_inf] = infinite_vertex();
  } else {
    vmap[remover.tmp.infinite_vertex()] = infinite_vertex();
  }

  CGAL_triangulation_assertion(remover.tmp.dimension() == 3);

  // Construct the set of vertex triples of remover.tmp
  // We reorient the vertex triple so that it matches those from outer_map
  // Also note that we use the vertices of *this, not of remover.tmp

  if(inf){
    for(All_cells_iterator it = remover.tmp.all_cells_begin(),
          end = remover.tmp.all_cells_end(); it != end; ++it)
    {
      for(i=0; i < 4; i++){
	Facet f = std::pair<Cell_handle,int>(it,i);
	Vertex_triple vt_aux = make_vertex_triple(f);
	Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
	make_canonical(vt);
	inner_map[vt]= f;
      }
    }
  } else {
    for(Finite_cells_iterator it = remover.tmp.finite_cells_begin(),
	end = remover.tmp.finite_cells_end(); it != end; ++it)
    {
      for(i=0; i < 4; i++){
	Facet f = std::pair<Cell_handle,int>(it,i);
	Vertex_triple vt_aux = make_vertex_triple(f);
	Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
	make_canonical(vt);
	inner_map[vt]= f;
      }
    }
  }
  // Grow inside the hole, by extending the surface
  while(! outer_map.empty()){
    typename Vertex_triple_Facet_map::iterator oit = outer_map.begin();
    while(is_infinite(oit->first.first) ||
	  is_infinite(oit->first.second) ||
	  is_infinite(oit->first.third)){
      ++oit;
      // otherwise the lookup in the inner_map fails
      // because the infinite vertices are different
    }
    typename Vertex_triple_Facet_map::value_type o_vt_f_pair = *oit;
    Cell_handle o_ch = o_vt_f_pair.second.first;
    unsigned int o_i = o_vt_f_pair.second.second;

    typename Vertex_triple_Facet_map::iterator iit =
             inner_map.find(o_vt_f_pair.first);
    CGAL_triangulation_assertion(iit != inner_map.end());
    typename Vertex_triple_Facet_map::value_type i_vt_f_pair = *iit;
    Cell_handle i_ch = i_vt_f_pair.second.first;
    unsigned int i_i = i_vt_f_pair.second.second;

    // create a new cell and glue it to the outer surface
    Cell_handle new_ch = tds().create_cell();
		*fit++ = new_ch;

    new_ch->set_vertices(vmap[i_ch->vertex(0)], vmap[i_ch->vertex(1)],
			 vmap[i_ch->vertex(2)], vmap[i_ch->vertex(3)]);

    o_ch->set_neighbor(o_i,new_ch);
    new_ch->set_neighbor(i_i, o_ch);

    // for the other faces check, if they can also be glued
    for(i = 0; i < 4; i++){
      if(i != i_i){
	Facet f = std::pair<Cell_handle,int>(new_ch,i);
	Vertex_triple vt = make_vertex_triple(f);
	make_canonical(vt);
	std::swap(vt.second,vt.third);
	typename Vertex_triple_Facet_map::iterator oit2 = outer_map.find(vt);
	if(oit2 == outer_map.end()){
	  std::swap(vt.second,vt.third);
	  outer_map[vt]= f;
	} else {
	  // glue the faces
	  typename Vertex_triple_Facet_map::value_type o_vt_f_pair2 = *oit2;
	  Cell_handle o_ch2 = o_vt_f_pair2.second.first;
	  int o_i2 = o_vt_f_pair2.second.second;
	  o_ch2->set_neighbor(o_i2,new_ch);
	  new_ch->set_neighbor(i, o_ch2);
	  outer_map.erase(oit2);
	}
      }
    }
    outer_map.erase(oit);
  }
  tds().delete_vertex(v);
  tds().delete_cells(hole.begin(), hole.end());

  return remover;
}


template < class Gt, class Tds >
template < class VertexRemover, class OutputItCells >
void
Triangulation_3<Gt, Tds>::
remove_and_give_new_cells(Vertex_handle v, VertexRemover &remover,
  OutputItCells fit) {
  CGAL_triangulation_precondition( v != Vertex_handle());
  CGAL_triangulation_precondition( !is_infinite(v));
  CGAL_triangulation_expensive_precondition( tds().is_vertex(v) );

  if (test_dim_down (v)) {
    remove_dim_down (v, remover, fit);
  }
  else {
    switch (dimension()) {
    case 1: remove_1D (v, remover, fit); break;
    case 2: remove_2D (v, remover, fit); break;
    case 3: remove_3D (v, remover, fit); break;
    default:
      CGAL_triangulation_assertion (false);
    }
  }
}

// The VertexInserter is needed so as to 
// allow us the usage of the insertion method
// from the particular triangulation
template <class Gt, class Tds >
template < class VertexRemover, class VertexInserter >
typename Triangulation_3<Gt,Tds>::Vertex_handle
Triangulation_3<Gt,Tds>::
move_if_no_collision(Vertex_handle v, const Point &p, 
                     VertexRemover &remover, VertexInserter &inserter) {
  CGAL_assertion(remover.hidden_points_begin() ==
                 remover.hidden_points_end() );
  CGAL_triangulation_precondition(!is_infinite(v));
  if(v->point() == p) return v;
  const int dim = dimension();
	
  // If displacements are known to be small
  // we might want to optimize by checking
  // whether there is a topological change
  // or not before.
  // In this version this will not be put inside this method
  // because it is for general purposes,
  // and remaining Delaunay after motion is a bit too restrictive.
  // In the filtered version optimized for displacements
  // it will be used as an a priori.
  // However, a non-fully optimized but good version of
  // is_delaunay_after_displacement is provided as an internal method of
  // Delaunay_triangulation_3 (see the class for more details).

  Locate_type lt;
  int li, lj;
  Cell_handle loc = locate(p, lt, li, lj, v->cell());

  if(lt == VERTEX) return loc->vertex(li);

  if(dim == 0) {
    v->set_point(p);
    return v;
  }

  size_type n_vertices = tds().number_of_vertices();

  if((lt == OUTSIDE_AFFINE_HULL) && (dim == 1) && (n_vertices == 3)) {
    v->set_point(p);
    return v;
  }

  if((lt == OUTSIDE_AFFINE_HULL) && (dim == 2) && (n_vertices == 4)) {
    v->set_point(p);
    return v;
  }

  if((lt != OUTSIDE_AFFINE_HULL) && (dim == 1)) {
	
    if(loc->has_vertex(v)) {
      v->set_point(p);
    } else {
      Vertex_handle inserted = insert(p, lt, loc, li, lj);
      Cell_handle f = v->cell();
      int i = f->index(v);
      if (i==0) {f = f->neighbor(1);}
      CGAL_triangulation_assertion(f->index(v) == 1);
      Cell_handle g= f->neighbor(0);
      f->set_vertex(1, g->vertex(1));
      f->set_neighbor(0,g->neighbor(0));
      g->neighbor(0)->set_neighbor(1,f);
      g->vertex(1)->set_cell(f);
      tds().delete_cell(g);
      Cell_handle f_ins = inserted->cell();
      i = f_ins->index(inserted);
      if (i==0) {f_ins = f_ins->neighbor(1);}
      CGAL_triangulation_assertion(f_ins->index(inserted) == 1);
      Cell_handle g_ins = f_ins->neighbor(0);
      f_ins->set_vertex(1, v);
      g_ins->set_vertex(0, v);
      v->set_point(p);
      v->set_cell(inserted->cell());
      tds().delete_vertex(inserted);
    }
    return v;
  }

  bool dim_down = test_dim_down(v);

  if((lt != OUTSIDE_AFFINE_HULL) && dim_down && (dim == 2)) {
    // verify if p and two static vertices are collinear in this case
    int iinf;
    Cell_handle finf = infinite_vertex()->cell(), fdone;
    fdone = finf;
    do { 
      iinf = finf->index(infinite_vertex());
      if(!finf->has_vertex(v)) break;
      finf = finf->neighbor((iinf+1)%3);
    } while(finf != fdone);
    iinf = ~iinf;
    if(this->collinear(finf->vertex(iinf&1)->point(),
                       finf->vertex(iinf&2)->point(),
                       p))
    {
      v->set_point(p);
      _tds.decrease_dimension(loc, loc->index(v));
      return v;
    }
  }

  if(((dim == 2) && (lt != OUTSIDE_AFFINE_HULL)) || 
     ((lt == OUTSIDE_AFFINE_HULL) && (dim == 1)))
  {
	
    // This is insert must be from Delaunay (or the particular trian.)
    // not Triangulation_3 !
    Vertex_handle inserted = inserter.insert(p, lt, loc, li, lj);
				
    std::list<Edge_2D> hole;
    make_hole_2D(v, hole, remover);				
    fill_hole_2D(hole, remover);
	  
    // fixing pointer
    Cell_handle fc = inserted->cell(), done(fc);
    std::vector<Cell_handle> faces_pt;
    faces_pt.reserve(16);
    do { 
      faces_pt.push_back(fc);
      fc = fc->neighbor((fc->index(inserted) + 1)%3);
    } while(fc != done);
    std::size_t ss = faces_pt.size();
    for(std::size_t k=0; k<ss; k++)
    {
      Cell_handle f = faces_pt[k];
      int i = f->index(inserted);
      f->set_vertex(i, v);
    }
    v->set_point(p);
    v->set_cell(inserted->cell());

    tds().delete_vertex(inserted);

    return v;
  }

  if((lt != OUTSIDE_AFFINE_HULL) && dim_down && (dim == 3)) {
    // verify if p and two static vertices are collinear in this case
    std::vector<Cell_handle> ics;
    incident_cells(infinite_vertex(), std::back_inserter(ics));
    std::size_t size = ics.size();
    Cell_handle finf;
    for (std::size_t i=0; i<size; i++) {
      finf = ics[i];
      if(!finf->has_vertex(v)) break;
    }
    int iinf = finf->index(infinite_vertex());
    if(remover.tmp.coplanar(finf->vertex((iinf+1)&3)->point(),
	                    finf->vertex((iinf+2)&3)->point(),
	                    finf->vertex((iinf+3)&3)->point(),
	                    p))
    {
      v->set_point(p);
      _tds.decrease_dimension(loc, loc->index(v));
      Facet f = *finite_facets_begin();
      if (coplanar_orientation(f.first->vertex(0)->point(),
                               f.first->vertex(1)->point(),
                               f.first->vertex(2)->point()) == NEGATIVE)
        tds().reorient();
      restore_edges_after_decrease_dimension(v, remover,inserter);
      return v;
    }
  }

  // This is insert must be from Delaunay (or the particular trian.)
  // not Triangulation_3 !	
  Vertex_handle inserted = inserter.insert(p, lt, loc, li, lj);

  std::vector<Cell_handle> hole;
  hole.reserve(64);

  // Construct the set of vertex triples on the boundary
  // with the facet just behind
  typedef std::map<Vertex_triple,Facet> Vertex_triple_Facet_map;
  Vertex_triple_Facet_map outer_map;
  Vertex_triple_Facet_map inner_map;

  make_hole_3D(v, outer_map, hole);

  CGAL_assertion(remover.hidden_points_begin() ==
                 remover.hidden_points_end() );

  // Output the hidden points.
  for (typename std::vector<Cell_handle>::iterator
         hi = hole.begin(), hend = hole.end(); hi != hend; ++hi)
    remover.add_hidden_points(*hi);

  bool inf = false;
  unsigned int i;
  // collect all vertices on the boundary
  std::vector<Vertex_handle> vertices;
  vertices.reserve(64);

  adjacent_vertices(v, std::back_inserter(vertices));

  // create a Delaunay triangulation of the points on the boundary
  // and make a map from the vertices in remover.tmp towards the vertices
  // in *this

  Unique_hash_map<Vertex_handle,Vertex_handle> vmap;
  Cell_handle ch = Cell_handle();
  for(i=0; i < vertices.size(); i++){
    if(! is_infinite(vertices[i])){
      Vertex_handle vh = remover.tmp.insert(vertices[i]->point(), ch);
      ch = vh->cell();
      vmap[vh] = vertices[i];
    }else {
      inf = true;
    }
  }

  if(remover.tmp.dimension()==2){
    Vertex_handle fake_inf = remover.tmp.insert(v->point());
    vmap[fake_inf] = infinite_vertex();
  } else {
    vmap[remover.tmp.infinite_vertex()] = infinite_vertex();
  }

  CGAL_triangulation_assertion(remover.tmp.dimension() == 3);

  // Construct the set of vertex triples of remover.tmp
  // We reorient the vertex triple so that it matches those from outer_map
  // Also note that we use the vertices of *this, not of remover.tmp

  if(inf){
    for(All_cells_iterator it = remover.tmp.all_cells_begin(),
          end = remover.tmp.all_cells_end(); it != end; ++it){
      for(i=0; i < 4; i++){
	Facet f = std::pair<Cell_handle,int>(it,i);
	Vertex_triple vt_aux = make_vertex_triple(f);
	Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
	make_canonical(vt);
	inner_map[vt]= f;
      }
    }
  } else {
    for(Finite_cells_iterator it = remover.tmp.finite_cells_begin(),
          end = remover.tmp.finite_cells_end(); it != end; ++it){
      for(i=0; i < 4; i++){
	Facet f = std::pair<Cell_handle,int>(it,i);
	Vertex_triple vt_aux = make_vertex_triple(f);
	Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
	make_canonical(vt);
	inner_map[vt]= f;
      }
    }
  }
  // Grow inside the hole, by extending the surface
  while(! outer_map.empty()){
    typename Vertex_triple_Facet_map::iterator oit = outer_map.begin();
    while(is_infinite(oit->first.first) ||
	  is_infinite(oit->first.second) ||
	  is_infinite(oit->first.third)){
      ++oit;
      // otherwise the lookup in the inner_map fails
      // because the infinite vertices are different
    }
    typename Vertex_triple_Facet_map::value_type o_vt_f_pair = *oit;
    Cell_handle o_ch = o_vt_f_pair.second.first;
    unsigned int o_i = o_vt_f_pair.second.second;

    typename Vertex_triple_Facet_map::iterator iit =
      inner_map.find(o_vt_f_pair.first);
    CGAL_triangulation_assertion(iit != inner_map.end());
    typename Vertex_triple_Facet_map::value_type i_vt_f_pair = *iit;
    Cell_handle i_ch = i_vt_f_pair.second.first;
    unsigned int i_i = i_vt_f_pair.second.second;

    // create a new cell and glue it to the outer surface
    Cell_handle new_ch = tds().create_cell();

    new_ch->set_vertices(vmap[i_ch->vertex(0)], vmap[i_ch->vertex(1)],
			 vmap[i_ch->vertex(2)], vmap[i_ch->vertex(3)]);

    o_ch->set_neighbor(o_i,new_ch);
    new_ch->set_neighbor(i_i, o_ch);

    // for the other faces check, if they can also be glued
    for(i = 0; i < 4; i++){
      if(i != i_i){
	Facet f = std::pair<Cell_handle,int>(new_ch,i);
	Vertex_triple vt = make_vertex_triple(f);
	make_canonical(vt);
	std::swap(vt.second,vt.third);
	typename Vertex_triple_Facet_map::iterator oit2 = outer_map.find(vt);
	if(oit2 == outer_map.end()){
	  std::swap(vt.second,vt.third);
	  outer_map[vt]= f;
	} else {
	  // glue the faces
	  typename Vertex_triple_Facet_map::value_type o_vt_f_pair2 = *oit2;
	  Cell_handle o_ch2 = o_vt_f_pair2.second.first;
	  int o_i2 = o_vt_f_pair2.second.second;
	  o_ch2->set_neighbor(o_i2,new_ch);
	  new_ch->set_neighbor(i, o_ch2);
	  outer_map.erase(oit2);
	}
      }
    }
    outer_map.erase(oit);
  }

  // fixing pointer
  std::vector<Cell_handle> cells_pt;
  cells_pt.reserve(64);
  incident_cells(inserted, std::back_inserter(cells_pt));
  std::size_t size = cells_pt.size();
  for(std::size_t i=0; i<size; i++) {
    Cell_handle c = cells_pt[i];
    c->set_vertex(c->index(inserted), v);
  }
  v->set_point(p);
  v->set_cell(inserted->cell());
  tds().delete_vertex(inserted);
  tds().delete_cells(hole.begin(), hole.end());
  return v;
} // end of Vertex_handle 
  // Triangulation_3<Gt,Tds>::
  // move_if_no_collision(Vertex_handle,Point, VertexRemover, VertexInserter)

template <class Gt, class Tds >
template < class VertexRemover, class VertexInserter >
typename Triangulation_3<Gt,Tds>::Vertex_handle
Triangulation_3<Gt,Tds>::
move(Vertex_handle v, const Point &p,
     VertexRemover &remover, VertexInserter &inserter) {
  CGAL_assertion(remover.hidden_points_begin() ==
                 remover.hidden_points_end() );
  CGAL_triangulation_precondition(!is_infinite(v));
  if(v->point() == p) return v;
  Vertex_handle w = move_if_no_collision(v,p,remover,inserter);
  if(w != v) {
    remove(v, remover);
    return w;
  }
  return v;
}

// The VertexInserter is needed so as to 
// allow us the usage of the insertion method
// from the particular triangulation
template <class Gt, class Tds >
template < class VertexRemover, class VertexInserter, class OutputItCells >
typename Triangulation_3<Gt,Tds>::Vertex_handle
Triangulation_3<Gt,Tds>::
move_if_no_collision_and_give_new_cells(Vertex_handle v, const Point &p, 
                                        VertexRemover &remover, VertexInserter &inserter, OutputItCells fit) {
  CGAL_assertion(remover.hidden_points_begin() ==
                 remover.hidden_points_end() );
  CGAL_triangulation_precondition(!is_infinite(v));
  if(v->point() == p) return v;
  const int dim = dimension();
	
  // If displacements are known to be small
  // we might want to optimize by checking
  // whether there is a topological change
  // or not before.
  // In this version this will not be put inside this method
  // because it is for general purposes,
  // and remaining Delaunay after motion is a bit too restrictive.
  // In the filtered version optimized for displacements
  // it will be used as an a priori.
  // However, a non-fully optimized but good version of
  // is_delaunay_after_displacement is provided as an internal method of
  // Delaunay_triangulation_3 (see the class for more details).
 
  Locate_type lt;
  int li, lj;
  Cell_handle loc = locate(p, lt, li, lj, v->cell());

  if(lt == VERTEX) return loc->vertex(li);

  if(dim == 0) {
    v->set_point(p);
    return v;
  }

  int n_vertices = tds().number_of_vertices();

  if((lt == OUTSIDE_AFFINE_HULL) && (dim == 1) && (n_vertices == 3)) {
    v->set_point(p);
    for(All_cells_iterator afi = tds().raw_cells_begin(); 
        afi != tds().raw_cells_end(); 
        afi++) *fit++ = afi;
    return v;
  }

  if((lt == OUTSIDE_AFFINE_HULL) && (dim == 2) && (n_vertices == 4)) {
    v->set_point(p);
    for(All_cells_iterator afi = tds().raw_cells_begin(); 
        afi != tds().raw_cells_end(); 
        afi++) *fit++ = afi;
    return v;
  }

  if((lt != OUTSIDE_AFFINE_HULL) && (dim == 1)) {
    if(loc->has_vertex(v)) {
      v->set_point(p);
    } else {
      Vertex_handle inserted = insert(p, lt, loc, li, lj);
      Cell_handle f = v->cell();
      int i = f->index(v);
      if (i==0) {f = f->neighbor(1);}
      CGAL_triangulation_assertion(f->index(v) == 1);
      Cell_handle g= f->neighbor(0);
      f->set_vertex(1, g->vertex(1));
      f->set_neighbor(0,g->neighbor(0));
      g->neighbor(0)->set_neighbor(1,f);
      g->vertex(1)->set_cell(f);
      tds().delete_cell(g);
      *fit++ = f;
      Cell_handle f_ins = inserted->cell();
      i = f_ins->index(inserted);
      if (i==0) {f_ins = f_ins->neighbor(1);}
      CGAL_triangulation_assertion(f_ins->index(inserted) == 1);
      Cell_handle g_ins = f_ins->neighbor(0);
      f_ins->set_vertex(1, v);
      g_ins->set_vertex(0, v);
      v->set_point(p);
      v->set_cell(inserted->cell());
      tds().delete_vertex(inserted);
    }
    *fit++ = v->cell();
    if(v->cell()->neighbor(0)->has_vertex(v)) 
      *fit++ = v->cell()->neighbor(0);
    if(v->cell()->neighbor(1)->has_vertex(v)) 
      *fit++ = v->cell()->neighbor(1);
    return v;
  }

  bool dim_down = test_dim_down(v);

  if((lt != OUTSIDE_AFFINE_HULL) && dim_down && (dim == 2)) {
    // verify if p and two static vertices are collinear in this case
    int iinf;
    Cell_handle finf = infinite_vertex()->cell(), fdone;
    fdone = finf;
    do { 
      iinf = finf->index(infinite_vertex());
      if(!finf->has_vertex(v)) break;
      finf = finf->neighbor((iinf+1)%3);
    } while(finf != fdone);
    iinf = ~iinf;
    if(this->collinear(finf->vertex(iinf&1)->point(),
                       finf->vertex(iinf&2)->point(),
                       p))
    {
      v->set_point(p);
      _tds.decrease_dimension(loc, loc->index(v));
      for(All_cells_iterator afi = tds().raw_cells_begin(); 
          afi != tds().raw_cells_end(); 
          afi++) *fit++ = afi;
      return v;
    }
  }

  if(((dim == 2) && (lt != OUTSIDE_AFFINE_HULL)) || 
     ((lt == OUTSIDE_AFFINE_HULL) && (dim == 1)))
  {
	
    std::set<Cell_handle> cells_set;
    // This is insert must be from Delaunay (or the particular trian.)
    // not Triangulation_3 !
    Vertex_handle inserted = inserter.insert(p, lt, loc, li, lj);
    Cell_handle c = inserted->cell(), end = c;
    do { 
      cells_set.insert(c); 
      int i = c->index(inserted); 
      c = c->neighbor((i+1)%3); 
    }	while(c != end);
					
    std::list<Edge_2D> hole;
    make_hole_2D(v, hole, remover, cells_set);
    fill_hole_2D(hole, remover, fit);
	  
    // fixing pointer
    Cell_handle fc = inserted->cell(), done(fc);
    std::vector<Cell_handle> faces_pt;
    faces_pt.reserve(16);
    do { 
      faces_pt.push_back(fc);
      fc = fc->neighbor((fc->index(inserted) + 1)%3);
    } while(fc != done);
    int ss = faces_pt.size();
    for(int k=0; k<ss; k++)
    {
      Cell_handle f = faces_pt[k];
      int i = f->index(inserted);
      f->set_vertex(i, v);
    }
    v->set_point(p);
    v->set_cell(inserted->cell());

    tds().delete_vertex(inserted);
	
    for(typename std::set<Cell_handle>::const_iterator ib = cells_set.begin(),
          iend = cells_set.end(); ib != iend; ib++) *fit++ = *ib;	

    return v;
  }

  if((lt != OUTSIDE_AFFINE_HULL) && dim_down && (dim == 3)) {
    // verify if p and two static vertices are collinear in this case
    std::vector<Cell_handle> ics;
    incident_cells(infinite_vertex(), std::back_inserter(ics));
    int size = ics.size();
    Cell_handle finf;
    for (int i=0; i<size; i++) {
      finf = ics[i];
      if(!finf->has_vertex(v)) break;
    }
    int iinf = finf->index(infinite_vertex());
    if(remover.tmp.coplanar(finf->vertex((iinf+1)&3)->point(),
	                    finf->vertex((iinf+2)&3)->point(),
	                    finf->vertex((iinf+3)&3)->point(),
	                    p))
    {
      v->set_point(p);
      _tds.decrease_dimension(loc, loc->index(v));
      Facet f = *finite_facets_begin();
      if (coplanar_orientation(f.first->vertex(0)->point(),
                               f.first->vertex(1)->point(),
                               f.first->vertex(2)->point()) == NEGATIVE)
        tds().reorient();
      restore_edges_after_decrease_dimension(v, remover,inserter);
      for(All_cells_iterator afi = tds().raw_cells_begin(); 
          afi != tds().raw_cells_end(); 
          afi++) *fit++ = afi;
      return v;
    }
  }

  std::set<Cell_handle> cells_set;

  // This is insert must be from Delaunay (or the particular trian.)
  // not Triangulation_3 !	
  Vertex_handle inserted = inserter.insert(p, lt, loc, li, lj);

  std::vector<Cell_handle> cells_tmp;
  cells_tmp.reserve(64);
  incident_cells(inserted, std::back_inserter(cells_tmp));
  int size = cells_tmp.size();
  for(int i=0; i<size; i++) {
    cells_set.insert(cells_tmp[i]);
  }

  std::vector<Cell_handle> hole;
  hole.reserve(64);

  // Construct the set of vertex triples on the boundary
  // with the facet just behind
  typedef std::map<Vertex_triple,Facet> Vertex_triple_Facet_map;
  Vertex_triple_Facet_map outer_map;
  Vertex_triple_Facet_map inner_map;

  make_hole_3D(v, outer_map, hole);
	
  for(typename std::vector<Cell_handle>::const_iterator ib = hole.begin(),
        iend = hole.end(); ib != iend; ib++) cells_set.erase(*ib);	

  CGAL_assertion(remover.hidden_points_begin() ==
                 remover.hidden_points_end() );

  // Output the hidden points.
  for (typename std::vector<Cell_handle>::iterator
         hi = hole.begin(), hend = hole.end(); hi != hend; ++hi)
    remover.add_hidden_points(*hi);

  bool inf = false;
  unsigned int i;
  // collect all vertices on the boundary
  std::vector<Vertex_handle> vertices;
  vertices.reserve(64);

  adjacent_vertices(v, std::back_inserter(vertices));

  // create a Delaunay triangulation of the points on the boundary
  // and make a map from the vertices in remover.tmp towards the vertices
  // in *this

  Unique_hash_map<Vertex_handle,Vertex_handle> vmap;
  Cell_handle ch = Cell_handle();
  for(i=0; i < vertices.size(); i++){
    if(! is_infinite(vertices[i])){
      Vertex_handle vh = remover.tmp.insert(vertices[i]->point(), ch);
      ch = vh->cell();
      vmap[vh] = vertices[i];
    }else {
      inf = true;
    }
  }

  if(remover.tmp.dimension()==2){
    Vertex_handle fake_inf = remover.tmp.insert(v->point());
    vmap[fake_inf] = infinite_vertex();
  } else {
    vmap[remover.tmp.infinite_vertex()] = infinite_vertex();
  }

  CGAL_triangulation_assertion(remover.tmp.dimension() == 3);

  // Construct the set of vertex triples of remover.tmp
  // We reorient the vertex triple so that it matches those from outer_map
  // Also note that we use the vertices of *this, not of remover.tmp

  if(inf){
    for(All_cells_iterator it = remover.tmp.all_cells_begin(),
          end = remover.tmp.all_cells_end(); it != end; ++it){
      for(i=0; i < 4; i++){
	Facet f = std::pair<Cell_handle,int>(it,i);
	Vertex_triple vt_aux = make_vertex_triple(f);
	Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
	make_canonical(vt);
	inner_map[vt]= f;
      }
    }
  } else {
    for(Finite_cells_iterator it = remover.tmp.finite_cells_begin(),
          end = remover.tmp.finite_cells_end(); it != end; ++it){
      for(i=0; i < 4; i++){
	Facet f = std::pair<Cell_handle,int>(it,i);
	Vertex_triple vt_aux = make_vertex_triple(f);
	Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
	make_canonical(vt);
	inner_map[vt]= f;
      }
    }
  }
  // Grow inside the hole, by extending the surface
  while(! outer_map.empty()){
    typename Vertex_triple_Facet_map::iterator oit = outer_map.begin();
    while(is_infinite(oit->first.first) ||
	  is_infinite(oit->first.second) ||
	  is_infinite(oit->first.third)){
      ++oit;
      // otherwise the lookup in the inner_map fails
      // because the infinite vertices are different
    }
    typename Vertex_triple_Facet_map::value_type o_vt_f_pair = *oit;
    Cell_handle o_ch = o_vt_f_pair.second.first;
    unsigned int o_i = o_vt_f_pair.second.second;

    typename Vertex_triple_Facet_map::iterator iit =
      inner_map.find(o_vt_f_pair.first);
    CGAL_triangulation_assertion(iit != inner_map.end());
    typename Vertex_triple_Facet_map::value_type i_vt_f_pair = *iit;
    Cell_handle i_ch = i_vt_f_pair.second.first;
    unsigned int i_i = i_vt_f_pair.second.second;

    // create a new cell and glue it to the outer surface
    Cell_handle new_ch = tds().create_cell();
    *fit++ = new_ch;
		
    new_ch->set_vertices(vmap[i_ch->vertex(0)], vmap[i_ch->vertex(1)],
			 vmap[i_ch->vertex(2)], vmap[i_ch->vertex(3)]);

    o_ch->set_neighbor(o_i,new_ch);
    new_ch->set_neighbor(i_i, o_ch);

    // for the other faces check, if they can also be glued
    for(i = 0; i < 4; i++){
      if(i != i_i){
	Facet f = std::pair<Cell_handle,int>(new_ch,i);
	Vertex_triple vt = make_vertex_triple(f);
	make_canonical(vt);
	std::swap(vt.second,vt.third);
	typename Vertex_triple_Facet_map::iterator oit2 = outer_map.find(vt);
	if(oit2 == outer_map.end()){
	  std::swap(vt.second,vt.third);
	  outer_map[vt]= f;
	} else {
	  // glue the faces
	  typename Vertex_triple_Facet_map::value_type o_vt_f_pair2 = *oit2;
	  Cell_handle o_ch2 = o_vt_f_pair2.second.first;
	  int o_i2 = o_vt_f_pair2.second.second;
	  o_ch2->set_neighbor(o_i2,new_ch);
	  new_ch->set_neighbor(i, o_ch2);
	  outer_map.erase(oit2);
	}
      }
    }
    outer_map.erase(oit);
  }

  // fixing pointer
  std::vector<Cell_handle> cells_pt;
  cells_pt.reserve(64);
  incident_cells(inserted, std::back_inserter(cells_pt));
  size = cells_pt.size();
  for(int i=0; i<size; i++) {
    Cell_handle c = cells_pt[i];
    c->set_vertex(c->index(inserted), v);
  }
  v->set_point(p);
  v->set_cell(inserted->cell());
  tds().delete_vertex(inserted);
  tds().delete_cells(hole.begin(), hole.end());
	
  for(typename std::set<Cell_handle>::const_iterator ib = cells_set.begin(),
        iend = cells_set.end(); ib != iend; ib++) *fit++ = *ib;
  return v;
}

template < class Gt, class Tds >
void
Triangulation_3<Gt,Tds>::
_make_big_hole_3D( Vertex_handle v,
                   std::map<Vertex_triple,Facet>& outer_map,
                   std::vector<Cell_handle> & hole,
                   std::vector<Vertex_handle> & vertices,
                   std::map<Vertex_handle, REMOVE_VERTEX_STATE> &vstates)
{
	
  Cell_handle start = v->cell();
  start->tds_data().mark_processed();
  hole.push_back(start);
  std::size_t i=0, n=1;
  while(i < n)
  {
		
    Cell_handle c = hole[i++];
				
    for(int k=0; k<4; k++)
    {
      Vertex_handle v0 = c->vertex(k);
			
      const REMOVE_VERTEX_STATE vst = vstates[v0];
			
      if(vst == CLEAR)
      {
        vstates[v0] = EXTREMITY;
        vertices.push_back(v0);
      }	else if(vst == TO_REMOVE) {
        // we mark the vertices, so all the vertices
        // from the same cluster will be skipped
        // in the remove_cluster_3D function 
        vstates[v0] = PROCESSED;
      }
			
      int i1 = vertex_triple_index(k, 0);
      int i2 = vertex_triple_index(k, 1);
      int i3 = vertex_triple_index(k, 2);
			
      Vertex_handle v1 = c->vertex(i1);
      Vertex_handle v2 = c->vertex(i2);
      Vertex_handle v3 = c->vertex(i3);
			
      Cell_handle opp_cit = c->neighbor(k);
      int opp_i = tds().mirror_index(c,k);
      Vertex_handle vm = opp_cit->vertex(opp_i);
			
      bool pb1 = false, pb2 = false, pb3 = false, pbm = false;
			
      const REMOVE_VERTEX_STATE vst1 = vstates[v1];
      pb1 = vst1 == TO_REMOVE || vst1 == PROCESSED;
			
      if(!pb1) {
        const REMOVE_VERTEX_STATE vst2 = vstates[v2];
        pb2 = vst2 == TO_REMOVE || vst2 == PROCESSED;
				
        if(!pb2) {
          const REMOVE_VERTEX_STATE vst3 = vstates[v3];
          pb3 = vst3 == TO_REMOVE || vst3 == PROCESSED;
					
          if(!pb3) {
            const REMOVE_VERTEX_STATE vstm = vstates[vm];
            pbm = vstm == TO_REMOVE || vstm == PROCESSED;
          }
					
        }
				
      }

      bool bad_opposite_cell = pb1 || pb2 || pb3 || pbm;
			
      // update the hole if needed
      // when the vertex is not to be removed
      if(bad_opposite_cell)
      {
        if(opp_cit->tds_data().is_clear())
        {
          hole.push_back(opp_cit);
          opp_cit->tds_data().mark_processed();
          n++;
        }
        continue;
      }

      Facet f(opp_cit, opp_i);
      Vertex_triple vt = make_vertex_triple(f);
      make_canonical(vt);
      outer_map[vt] = f;
      v1->set_cell(opp_cit);
      v2->set_cell(opp_cit);
      v3->set_cell(opp_cit);
      vm->set_cell(opp_cit);
			
    }
  }
	
  std::size_t vsize = vertices.size();
  for(std::size_t i=0; i<vsize; i++) vstates[vertices[i]] = CLEAR;

}


template < class Gt, class Tds >
template < class InputIterator, class VertexRemover >
bool
Triangulation_3<Gt, Tds>::
_remove_cluster_3D(InputIterator first, InputIterator beyond, VertexRemover &remover,
                   std::map<Vertex_handle, REMOVE_VERTEX_STATE> &vstates) {
  InputIterator init = first;
  while(first != beyond)
  {
    Vertex_handle v = *first++;
		
    if(vstates[v] == PROCESSED) continue;
	
    //  _make_big_hole_3D and we fill the hole for each cluster
    vstates[v] = PROCESSED;
		
    // here, we make the hole for the cluster with v inside
    typedef std::map<Vertex_triple,Facet> Vertex_triple_Facet_map;
    std::vector<Cell_handle> hole;
    std::vector<Vertex_handle> vertices;
    hole.reserve(64);
    vertices.reserve(32);
    Vertex_triple_Facet_map outer_map;
    _make_big_hole_3D(v, outer_map, hole, vertices, vstates);
	
    // the connectivity is totally lost, we need to rebuild
    if(!outer_map.size())
    {
      std::size_t nh = hole.size();
      for(std::size_t i=0; i<nh; i++) hole[i]->tds_data().clear();
      return false;
    }
	
    std::size_t vsi = vertices.size();
		
    bool inf = false;
    std::size_t i;
    Unique_hash_map<Vertex_handle,Vertex_handle> vmap;
    Cell_handle ch = Cell_handle();
		
    if(vsi > 100)
    {
      // spatial sort if too many points
      std::vector<Point> vps;
      std::map<Point, Vertex_handle> mp_vps;
      for(i=0; i<vsi;i++)
      {
        Vertex_handle vv = vertices[i];
        if(! this->is_infinite(vv)) {
          vps.push_back(vv->point());
          mp_vps[vv->point()] = vv;
        } else inf = true;
      }
      spatial_sort(vps.begin(), vps.end());
			
      std::size_t svps = vps.size();
		
      for(i=0; i < svps; i++){
        Vertex_handle vv = mp_vps[vps[i]];
        Vertex_handle vh = remover.tmp.insert(vv->point(), ch);
        ch = vh->cell();
        vmap[vh] = vv;												 
      }

      if(remover.tmp.dimension()==2){
        Vertex_handle fake_inf = remover.tmp.insert(v->point());
        vmap[fake_inf] = this->infinite_vertex();
      } else {
        vmap[remover.tmp.infinite_vertex()] = this->infinite_vertex();
      }
    } else {
		
      for(i=0; i < vsi; i++){
        if(!this->is_infinite(vertices[i])){
          Vertex_handle vh = remover.tmp.insert(vertices[i]->point(), ch);
          ch = vh->cell();
          vmap[vh] = vertices[i];												
        } else {
          inf = true;		
        }
      }

      if(remover.tmp.dimension()==2){
        Vertex_handle fake_inf = remover.tmp.insert(v->point());
        vmap[fake_inf] = this->infinite_vertex();
      } else {
        vmap[remover.tmp.infinite_vertex()] = this->infinite_vertex();
      }
    }
		
    Vertex_triple_Facet_map inner_map;
			
    if(inf){
      for(All_cells_iterator it = remover.tmp.all_cells_begin(),
            end = remover.tmp.all_cells_end(); it != end; ++it){
        for(unsigned int index=0; index < 4; index++) {
          Facet f = std::pair<Cell_handle,int>(it,index);
          Vertex_triple vt_aux = this->make_vertex_triple(f);
          Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
          this->make_canonical(vt);
          inner_map[vt]= f;
        }
      }
    } else {
      for(Finite_cells_iterator it = remover.tmp.finite_cells_begin(),
            end = remover.tmp.finite_cells_end(); it != end; ++it){
        for(unsigned int index=0; index < 4; index++){
          Facet f = std::pair<Cell_handle,int>(it,index);
          Vertex_triple vt_aux = this->make_vertex_triple(f);
          Vertex_triple vt(vmap[vt_aux.first],vmap[vt_aux.third],vmap[vt_aux.second]);
          this->make_canonical(vt);
          inner_map[vt]= f;
        }
      }
    }

    // Grow inside the hole, by extending the surface
    while(! outer_map.empty()){
      typename Vertex_triple_Facet_map::iterator oit = outer_map.begin();
			
      while(this->is_infinite(oit->first.first) ||
            this->is_infinite(oit->first.second) ||
            this->is_infinite(oit->first.third)){
        ++oit;
        // otherwise the lookup in the inner_map fails
        // because the infinite vertices are different
      }
      typename Vertex_triple_Facet_map::value_type o_vt_f_pair = *oit;
      Cell_handle o_ch = o_vt_f_pair.second.first;
      unsigned int o_i = o_vt_f_pair.second.second;

      typename Vertex_triple_Facet_map::iterator iit =
        inner_map.find(o_vt_f_pair.first);
      CGAL_triangulation_assertion(iit != inner_map.end());
      typename Vertex_triple_Facet_map::value_type i_vt_f_pair = *iit;
      Cell_handle i_ch = i_vt_f_pair.second.first;
      unsigned int i_i = i_vt_f_pair.second.second;

      // create a new cell and glue it to the outer surface
      Cell_handle new_ch = tds().create_cell();
      new_ch->set_vertices(vmap[i_ch->vertex(0)], vmap[i_ch->vertex(1)],
                           vmap[i_ch->vertex(2)], vmap[i_ch->vertex(3)]);

      o_ch->set_neighbor(o_i,new_ch);
      new_ch->set_neighbor(i_i, o_ch);
      
      for(int j=0;j<4;j++) new_ch->vertex(j)->set_cell(new_ch);
      
      // for the other faces check, if they can also be glued
      for(unsigned int index = 0; index < 4; index++){
        if(index != i_i){
          Facet f = std::pair<Cell_handle,int>(new_ch,index);
          Vertex_triple vt = this->make_vertex_triple(f);
          this->make_canonical(vt);
          std::swap(vt.second,vt.third);
          typename Vertex_triple_Facet_map::iterator oit2 = outer_map.find(vt);
          if(oit2 == outer_map.end()){
            std::swap(vt.second,vt.third);
            outer_map[vt]= f;
          } else {
            // glue the faces
            typename Vertex_triple_Facet_map::value_type o_vt_f_pair2 = *oit2;
            Cell_handle o_ch2 = o_vt_f_pair2.second.first;
            int o_i2 = o_vt_f_pair2.second.second;
            o_ch2->set_neighbor(o_i2,new_ch);
            new_ch->set_neighbor(index, o_ch2);
            outer_map.erase(oit2);
          }
        }
      }

      outer_map.erase(oit);
    }
		
    this->tds().delete_cells(hole.begin(), hole.end());
    remover.tmp.clear();

  }
	
  this->tds().delete_vertices(init, beyond);
	
  return true;
}

template < class Gt, class Tds >
template < class InputIterator >
bool 
Triangulation_3<Gt, Tds>::
does_repeat_in_range(InputIterator first, InputIterator beyond) const {
  std::set<Vertex_handle> s;
  while (first!=beyond) if (! s.insert(*first++).second ) return true;
  return false;
}

template < class Gt, class Tds >
template < class InputIterator >
bool 
Triangulation_3<Gt, Tds>::
infinite_vertex_in_range(InputIterator first, InputIterator beyond) const {
  while(first != beyond) if(is_infinite(*first++)) return true;
  return false;
}

template < class Gt, class Tds >
template < class InputIterator, class VertexRemover >
typename Triangulation_3<Gt, Tds>::size_type
Triangulation_3<Gt, Tds>::
remove(InputIterator first, InputIterator beyond, VertexRemover &remover) {
  CGAL_triangulation_precondition(!does_repeat_in_range(first, beyond));
  CGAL_triangulation_precondition(!infinite_vertex_in_range(first, beyond));
  size_type n = number_of_vertices();
  InputIterator init = first, init2 = first;
  if(dimension() == 3 && n > 4)
  {
    // If we could add states on a vertex base as it is done
    // for cells, it would improve the performance.
    std::map<Vertex_handle, REMOVE_VERTEX_STATE> vstates;
    _mark_vertices_to_remove(first, beyond, vstates);
    if(!_test_dim_down_cluster(vstates))
    {
      if(_remove_cluster_3D(init, beyond, remover, vstates))
        return n - number_of_vertices();
    }
  }

  // dimension() < 3 or
  // no connectivity of the remaining vertices
  // we remove one by one
  while (init2 != beyond) {
    Vertex_handle v = *init2++;
    remover.tmp.clear();
    remove(v, remover);
  }
  return n - number_of_vertices();
}

template < class GT, class Tds >
bool
Triangulation_3<GT,Tds>::
is_valid(bool verbose, int level) const
{
  if ( ! _tds.is_valid(verbose,level) ) {
    if (verbose)
	std::cerr << "invalid data structure" << std::endl;
    CGAL_triangulation_assertion(false);
    return false;
  }

  if ( infinite_vertex() == Vertex_handle() ) {
    if (verbose)
	std::cerr << "no infinite vertex" << std::endl;
    CGAL_triangulation_assertion(false);
    return false;
  }

  switch ( dimension() ) {
  case 3:
    {
      for(Finite_cells_iterator it = finite_cells_begin(), end = finite_cells_end();
	      it != end; ++it)
	is_valid_finite(it, verbose, level);
      break;
    }
  case 2:
    {
      for(Finite_facets_iterator it = finite_facets_begin(), end = finite_facets_end();
	     it != end; ++it)
	is_valid_finite(it->first,verbose,level);
      break;
    }
  case 1:
    {
      for(Finite_edges_iterator it = finite_edges_begin(), end = finite_edges_end();
	     it != end; ++it)
	is_valid_finite(it->first,verbose,level);
      break;
    }
  }
  if (verbose)
      std::cerr << "valid triangulation" << std::endl;
  return true;
}

template < class GT, class Tds >
bool
Triangulation_3<GT,Tds>::
is_valid(Cell_handle c, bool verbose, int level) const
{
  if ( ! _tds.is_valid(c,verbose,level) ) {
    if (verbose) {
      std::cerr << "combinatorially invalid cell";
      for (int i=0; i <= dimension(); i++ )
	std::cerr << c->vertex(i)->point() << ", ";
      std::cerr << std::endl;
    }
    CGAL_triangulation_assertion(false);
    return false;
  }
  if ( ! is_infinite(c) )
    is_valid_finite(c, verbose, level);
  if (verbose)
      std::cerr << "geometrically valid cell" << std::endl;
  return true;
}


template < class GT, class Tds >
bool
Triangulation_3<GT,Tds>::
is_valid_finite(Cell_handle c, bool verbose, int) const
{
  switch ( dimension() ) {
  case 3:
    {
      if ( orientation(c->vertex(0)->point(),
		       c->vertex(1)->point(),
		       c->vertex(2)->point(),
		       c->vertex(3)->point()) != POSITIVE ) {
	if (verbose)
	    std::cerr << "badly oriented cell "
		      << c->vertex(0)->point() << ", "
		      << c->vertex(1)->point() << ", "
		      << c->vertex(2)->point() << ", "
		      << c->vertex(3)->point() << std::endl;
	CGAL_triangulation_assertion(false);
	return false;
      }
      break;
    }
  case 2:
    {
	if (coplanar_orientation(c->vertex(0)->point(),
	                         c->vertex(1)->point(),
	                         c->vertex(2)->point()) != POSITIVE) {
	  if (verbose)
	      std::cerr << "badly oriented face "
		        << c->vertex(0)->point() << ", "
		        << c->vertex(1)->point() << ", "
		        << c->vertex(2)->point() << std::endl;
	  CGAL_triangulation_assertion(false);
	  return false;
	}
      break;
    }
  case 1:
    {
      const Point & p0 = c->vertex(0)->point();
      const Point & p1 = c->vertex(1)->point();

      Vertex_handle v = c->neighbor(0)->vertex(c->neighbor(0)->index(c));
      if ( ! is_infinite(v) )
      {
	if ( collinear_position(p0, p1, v->point()) != MIDDLE ) {
	  if (verbose)
	      std::cerr << "badly oriented edge "
		        << p0 << ", " << p1 << std::endl
		        << "with neighbor 0"
		        << c->neighbor(0)->vertex(1-c->neighbor(0)->index(c))
			                 ->point()
		        << ", " << v->point() << std::endl;
	  CGAL_triangulation_assertion(false);
	  return false;
	}
      }

      v = c->neighbor(1)->vertex(c->neighbor(1)->index(c));
      if ( ! is_infinite(v) )
      {
	if ( collinear_position(p1, p0, v->point()) != MIDDLE ) {
	  if (verbose)
	      std::cerr << "badly oriented edge "
		        << p0 << ", " << p1 << std::endl
		        << "with neighbor 1"
		        << c->neighbor(1)->vertex(1-c->neighbor(1)->index(c))
			                 ->point()
		        << ", " << v->point() << std::endl;
	  CGAL_triangulation_assertion(false);
	  return false;
	}
      }
      break;
    }
  }
  return true;
}


namespace internal {

// Internal function used by operator==.
template < class GT, class Tds1, class Tds2 >
bool
test_next(const Triangulation_3<GT, Tds1> &t1,
          const Triangulation_3<GT, Tds2> &t2,
	  typename Triangulation_3<GT, Tds1>::Cell_handle c1,
	  typename Triangulation_3<GT, Tds2>::Cell_handle c2,
	  std::map<typename Triangulation_3<GT, Tds1>::Cell_handle,
                   typename Triangulation_3<GT, Tds2>::Cell_handle> &Cmap,
	  std::map<typename Triangulation_3<GT, Tds1>::Vertex_handle,
                   typename Triangulation_3<GT, Tds2>::Vertex_handle> &Vmap)
{
    // This function tests and registers the 4 neighbors of c1/c2,
    // and recursively calls itself over them.
    // Returns false if an inequality has been found.

    // Precondition: c1, c2 have been registered as well as their 4 vertices.
    CGAL_triangulation_precondition(t1.dimension() >= 2);
    CGAL_triangulation_precondition(Cmap[c1] == c2);
    CGAL_triangulation_precondition(Vmap.find(c1->vertex(0)) != Vmap.end());
    CGAL_triangulation_precondition(Vmap.find(c1->vertex(1)) != Vmap.end());
    CGAL_triangulation_precondition(Vmap.find(c1->vertex(2)) != Vmap.end());
    CGAL_triangulation_precondition(t1.dimension() == 2 ||
                                    Vmap.find(c1->vertex(3)) != Vmap.end());

    typedef Triangulation_3<GT, Tds1> Tr1;
    typedef Triangulation_3<GT, Tds2> Tr2;
    typedef typename Tr1::Vertex_handle  Vertex_handle1;
    typedef typename Tr1::Cell_handle    Cell_handle1;
    typedef typename Tr2::Vertex_handle  Vertex_handle2;
    typedef typename Tr2::Cell_handle    Cell_handle2;
    typedef typename std::map<Cell_handle1, Cell_handle2>::const_iterator  Cit;
    typedef typename std::map<Vertex_handle1,
                              Vertex_handle2>::const_iterator Vit;

    for (int i=0; i <= t1.dimension(); ++i) {
	Cell_handle1 n1 = c1->neighbor(i);
	Cit cit = Cmap.find(n1);
	Vertex_handle1 v1 = c1->vertex(i);
	Vertex_handle2 v2 = Vmap[v1];
	Cell_handle2 n2 = c2->neighbor(c2->index(v2));
	if (cit != Cmap.end()) {
            // n1 was already registered.
	    if (cit->second != n2)
		return false;
	    continue;
	}
        // n1 has not yet been registered.
        // We check that the new vertices match geometrically.
        // And we register them.
        Vertex_handle1 vn1 = n1->vertex(n1->index(c1));
        Vertex_handle2 vn2 = n2->vertex(n2->index(c2));
        Vit vit = Vmap.find(vn1);
        if (vit != Vmap.end()) {
            // vn1 already registered
            if (vit->second != vn2)
                return false;
        }
        else {
            if (t2.is_infinite(vn2))
                return false; // vn1 can't be infinite,
                              // since it would have been registered.
            if (t1.geom_traits().compare_xyz_3_object()(vn1->point(),
                                                        vn2->point()) != 0)
                return false;
            // We register vn1/vn2.
            Vmap.insert(std::make_pair(vn1, vn2));
        }

        // We register n1/n2.
        Cmap.insert(std::make_pair(n1, n2));

        // We recurse on n1/n2.
	if (!test_next(t1, t2, n1, n2, Cmap, Vmap))
	    return false;
    }

    return true;
}

} // namespace internal


template < class GT, class Tds1, class Tds2 >
bool
operator==(const Triangulation_3<GT, Tds1> &t1,
	   const Triangulation_3<GT, Tds2> &t2)
{
    typedef typename Triangulation_3<GT, Tds1>::Vertex_handle Vertex_handle1;
    typedef typename Triangulation_3<GT, Tds1>::Cell_handle   Cell_handle1;
    typedef typename Triangulation_3<GT, Tds2>::Vertex_handle Vertex_handle2;
    typedef typename Triangulation_3<GT, Tds2>::Cell_handle   Cell_handle2;

    typedef typename Triangulation_3<GT, Tds1>::Point                       Point;
    typedef typename Triangulation_3<GT, Tds1>::Geom_traits::Equal_3        Equal_3;
    typedef typename Triangulation_3<GT, Tds1>::Geom_traits::Compare_xyz_3  Compare_xyz_3;

    Equal_3 equal = t1.geom_traits().equal_3_object();
    Compare_xyz_3 cmp1 = t1.geom_traits().compare_xyz_3_object();
    Compare_xyz_3 cmp2 = t2.geom_traits().compare_xyz_3_object();

    // Some quick checks.
    if (t1.dimension() != t2.dimension()
        || t1.number_of_vertices() != t2.number_of_vertices()
        || t1.number_of_cells() != t2.number_of_cells())
	return false;

    int dim = t1.dimension();
    // Special case for dimension < 1.
    // The triangulation is uniquely defined in these cases.
    if (dim < 1)
        return true;

    // Special case for dimension == 1.
    if (dim == 1) {
        // It's enough to test that the points are the same,
        // since the triangulation is uniquely defined in this case.
        using namespace boost;
        std::vector<Point> V1 (t1.points_begin(), t1.points_end());
        std::vector<Point> V2 (t2.points_begin(), t2.points_end());
        std::sort(V1.begin(), V1.end(), boost::bind(cmp1, _1, _2) == NEGATIVE);
        std::sort(V2.begin(), V2.end(), boost::bind(cmp2, _1, _2) == NEGATIVE);
        return V1 == V2;
    }

    // We will store the mapping between the 2 triangulations vertices and
    // cells in 2 maps.
    std::map<Vertex_handle1, Vertex_handle2> Vmap;
    std::map<Cell_handle1, Cell_handle2> Cmap;

    // Handle the infinite vertex.
    Vertex_handle1 v1 = t1.infinite_vertex();
    Vertex_handle2 iv2 = t2.infinite_vertex();
    Vmap.insert(std::make_pair(v1, iv2));

    // We pick one infinite cell of t1, and try to match it against the
    // infinite cells of t2.
    Cell_handle1 c = v1->cell();
    Vertex_handle1 v2 = c->vertex((c->index(v1)+1)%(dim+1));
    Vertex_handle1 v3 = c->vertex((c->index(v1)+2)%(dim+1));
    Vertex_handle1 v4 = c->vertex((c->index(v1)+3)%(dim+1));
    const Point &p2 = v2->point();
    const Point &p3 = v3->point();
    const Point &p4 = v4->point();

    std::vector<Cell_handle2> ics;
    t2.incident_cells(iv2, std::back_inserter(ics));
    for (typename std::vector<Cell_handle2>::const_iterator cit = ics.begin();
	    cit != ics.end(); ++cit) {
	int inf = (*cit)->index(iv2);

	if (equal(p2, (*cit)->vertex((inf+1)%(dim+1))->point()))
	    Vmap.insert(std::make_pair(v2, (*cit)->vertex((inf+1)%(dim+1))));
	else if (equal(p2, (*cit)->vertex((inf+2)%(dim+1))->point()))
	    Vmap.insert(std::make_pair(v2, (*cit)->vertex((inf+2)%(dim+1))));
	else if (dim == 3 &&
                 equal(p2, (*cit)->vertex((inf+3)%(dim+1))->point()))
	    Vmap.insert(std::make_pair(v2, (*cit)->vertex((inf+3)%(dim+1))));
	else
	    continue; // None matched v2.

	if (equal(p3, (*cit)->vertex((inf+1)%(dim+1))->point()))
	    Vmap.insert(std::make_pair(v3, (*cit)->vertex((inf+1)%(dim+1))));
	else if (equal(p3, (*cit)->vertex((inf+2)%(dim+1))->point()))
	    Vmap.insert(std::make_pair(v3, (*cit)->vertex((inf+2)%(dim+1))));
	else if (dim == 3 &&
                 equal(p3, (*cit)->vertex((inf+3)%(dim+1))->point()))
	    Vmap.insert(std::make_pair(v3, (*cit)->vertex((inf+3)%(dim+1))));
	else
	    continue; // None matched v3.

        if (dim == 3) {
	    if (equal(p4, (*cit)->vertex((inf+1)%(dim+1))->point()))
	        Vmap.insert(std::make_pair(v4,
                                           (*cit)->vertex((inf+1)%(dim+1))));
	    else if (equal(p4, (*cit)->vertex((inf+2)%(dim+1))->point()))
	        Vmap.insert(std::make_pair(v4,
                                           (*cit)->vertex((inf+2)%(dim+1))));
	    else if (equal(p4, (*cit)->vertex((inf+3)%(dim+1))->point()))
	        Vmap.insert(std::make_pair(v4,
                                           (*cit)->vertex((inf+3)%(dim+1))));
	    else
	        continue; // None matched v4.
        }

	// Found it !
	Cmap.insert(std::make_pair(c, *cit));
	break;
    }

    if (Cmap.size() == 0)
	return false;

    // We now have one cell, we need to propagate recursively.
    return internal::test_next(t1, t2,
	             Cmap.begin()->first, Cmap.begin()->second, Cmap, Vmap);
}

template < class GT, class Tds1, class Tds2 >
inline
bool
operator!=(const Triangulation_3<GT, Tds1> &t1,
	   const Triangulation_3<GT, Tds2> &t2)
{
  return ! (t1 == t2);
}

} //namespace CGAL

#endif // CGAL_TRIANGULATION_3_H