/usr/include/CGAL/constructions/kernel_ftC2.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 | // Copyright (c) 2000
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Sven Schoenherr, Herve Bronnimann, Sylvain Pion
#ifndef CGAL_CONSTRUCTIONS_KERNEL_FTC2_H
#define CGAL_CONSTRUCTIONS_KERNEL_FTC2_H
#include <CGAL/determinant.h>
#include <CGAL/number_utils.h>
namespace CGAL {
template < class FT >
CGAL_KERNEL_INLINE
void
midpointC2( const FT &px, const FT &py,
const FT &qx, const FT &qy,
FT &x, FT &y )
{
x = (px+qx) / 2;
y = (py+qy) / 2;
}
template < class FT >
CGAL_KERNEL_LARGE_INLINE
void
circumcenter_translateC2(const FT &dqx, const FT &dqy,
const FT &drx, const FT &dry,
FT &dcx, FT &dcy)
{
// Given 3 points P, Q, R, this function takes as input:
// qx-px, qy-py, rx-px, ry-py. And returns cx-px, cy-py,
// where (cx, cy) are the coordinates of the circumcenter C.
// What we do is intersect the bisectors.
FT r2 = CGAL_NTS square(drx) + CGAL_NTS square(dry);
FT q2 = CGAL_NTS square(dqx) + CGAL_NTS square(dqy);
FT den = 2 * determinant(dqx, dqy, drx, dry);
// The 3 points aren't collinear.
// Hopefully, this is already checked at the upper level.
CGAL_kernel_assertion ( ! CGAL_NTS is_zero(den) );
// One possible optimization here is to precompute 1/den, to avoid one
// division. However, we loose precision, and it's maybe not worth it (?).
dcx = determinant (dry, dqy, r2, q2) / den;
dcy = - determinant (drx, dqx, r2, q2) / den;
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
void
circumcenterC2( const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry,
FT &x, FT &y )
{
circumcenter_translateC2<FT>(qx-px, qy-py, rx-px, ry-py, x, y);
x += px;
y += py;
}
template < class FT >
void
barycenterC2(const FT &p1x, const FT &p1y, const FT &w1,
const FT &p2x, const FT &p2y,
FT &x, FT &y)
{
FT w2 = 1 - w1;
x = w1 * p1x + w2 * p2x;
y = w1 * p1y + w2 * p2y;
}
template < class FT >
void
barycenterC2(const FT &p1x, const FT &p1y, const FT &w1,
const FT &p2x, const FT &p2y, const FT &w2,
FT &x, FT &y)
{
FT sum = w1 + w2;
CGAL_kernel_assertion(sum != 0);
x = (w1 * p1x + w2 * p2x) / sum;
y = (w1 * p1y + w2 * p2y) / sum;
}
template < class FT >
void
barycenterC2(const FT &p1x, const FT &p1y, const FT &w1,
const FT &p2x, const FT &p2y, const FT &w2,
const FT &p3x, const FT &p3y,
FT &x, FT &y)
{
FT w3 = 1 - w1 - w2;
x = w1 * p1x + w2 * p2x + w3 * p3x;
y = w1 * p1y + w2 * p2y + w3 * p3y;
}
template < class FT >
void
barycenterC2(const FT &p1x, const FT &p1y, const FT &w1,
const FT &p2x, const FT &p2y, const FT &w2,
const FT &p3x, const FT &p3y, const FT &w3,
FT &x, FT &y)
{
FT sum = w1 + w2 + w3;
CGAL_kernel_assertion(sum != 0);
x = (w1 * p1x + w2 * p2x + w3 * p3x) / sum;
y = (w1 * p1y + w2 * p2y + w3 * p3y) / sum;
}
template < class FT >
void
barycenterC2(const FT &p1x, const FT &p1y, const FT &w1,
const FT &p2x, const FT &p2y, const FT &w2,
const FT &p3x, const FT &p3y, const FT &w3,
const FT &p4x, const FT &p4y,
FT &x, FT &y)
{
FT w4 = 1 - w1 - w2 - w3;
x = w1 * p1x + w2 * p2x + w3 * p3x + w4 * p4x;
y = w1 * p1y + w2 * p2y + w3 * p3y + w4 * p4y;
}
template < class FT >
void
barycenterC2(const FT &p1x, const FT &p1y, const FT &w1,
const FT &p2x, const FT &p2y, const FT &w2,
const FT &p3x, const FT &p3y, const FT &w3,
const FT &p4x, const FT &p4y, const FT &w4,
FT &x, FT &y)
{
FT sum = w1 + w2 + w3 + w4;
CGAL_kernel_assertion(sum != 0);
x = (w1 * p1x + w2 * p2x + w3 * p3x + w4 * p4x) / sum;
y = (w1 * p1y + w2 * p2y + w3 * p3y + w4 * p4y) / sum;
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
void
centroidC2( const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry,
FT &x, FT &y)
{
x = (px + qx + rx) / 3;
y = (py + qy + ry) / 3;
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
void
centroidC2( const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry,
const FT &sx, const FT &sy,
FT &x, FT &y)
{
x = (px + qx + rx + sx) / 4;
y = (py + qy + ry + sy) / 4;
}
template < class FT >
inline
void
line_from_pointsC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
FT &a, FT &b, FT &c)
{
// The horizontal and vertical line get a special treatment
// in order to make the intersection code robust for doubles
if(py == qy){
a = 0 ;
if(qx > px){
b = 1;
c = -py;
} else if(qx == px){
b = 0;
c = 0;
}else{
b = -1;
c = py;
}
} else if(qx == px){
b = 0;
if(qy > py){
a = -1;
c = px;
} else if (qy == py){
a = 0;
c = 0;
} else {
a = 1;
c = -px;
}
} else {
a = py - qy;
b = qx - px;
c = -px*a - py*b;
}
}
template < class FT >
inline
void
line_from_point_directionC2(const FT &px, const FT &py,
const FT &dx, const FT &dy,
FT &a, FT &b, FT &c)
{
a = - dy;
b = dx;
c = px*dy - py*dx;
}
template < class FT >
CGAL_KERNEL_INLINE
void
bisector_of_pointsC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
FT &a, FT &b, FT& c )
{
a = 2 * (px - qx);
b = 2 * (py - qy);
c = CGAL_NTS square(qx) + CGAL_NTS square(qy) -
CGAL_NTS square(px) - CGAL_NTS square(py);
}
template < class FT >
CGAL_KERNEL_INLINE
void
bisector_of_linesC2(const FT &pa, const FT &pb, const FT &pc,
const FT &qa, const FT &qb, const FT &qc,
FT &a, FT &b, FT &c)
{
// We normalize the equations of the 2 lines, and we then add them.
FT n1 = CGAL_NTS sqrt(CGAL_NTS square(pa) + CGAL_NTS square(pb));
FT n2 = CGAL_NTS sqrt(CGAL_NTS square(qa) + CGAL_NTS square(qb));
a = n2 * pa + n1 * qa;
b = n2 * pb + n1 * qb;
c = n2 * pc + n1 * qc;
// Care must be taken for the case when this produces a degenerate line.
if (a == 0 && b == 0) {
a = n2 * pa - n1 * qa;
b = n2 * pb - n1 * qb;
c = n2 * pc - n1 * qc;
}
}
template < class FT >
inline
FT
line_y_at_xC2(const FT &a, const FT &b, const FT &c, const FT &x)
{
return (-a*x-c) / b;
}
template < class FT >
inline
void
line_get_pointC2(const FT &a, const FT &b, const FT &c, int i,
FT &x, FT &y)
{
if (CGAL_NTS is_zero(b))
{
x = (-b-c)/a + i * b;
y = 1 - i * a;
}
else
{
x = 1 + i * b;
y = -(a+c)/b - i * a;
}
}
template < class FT >
inline
void
perpendicular_through_pointC2(const FT &la, const FT &lb,
const FT &px, const FT &py,
FT &a, FT &b, FT &c)
{
a = -lb;
b = la;
c = lb * px - la * py;
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
void
line_project_pointC2(const FT &la, const FT &lb, const FT &lc,
const FT &px, const FT &py,
FT &x, FT &y)
{
#if 1 // FIXME
// Original old version
if (CGAL_NTS is_zero(la)) // horizontal line
{
x = px;
y = -lc/lb;
}
else if (CGAL_NTS is_zero(lb)) // vertical line
{
x = -lc/la;
y = py;
}
else
{
FT ab = la/lb, ba = lb/la, ca = lc/la;
y = ( -px + ab*py - ca ) / ( ba + ab );
x = -ba * y - ca;
}
#else
// New version, with more multiplications, but less divisions and tests.
// Let's compare the results of the 2, benchmark them, as well as check
// the precision with the intervals.
FT a2 = CGAL_NTS square(la);
FT b2 = CGAL_NTS square(lb);
FT d = a2 + b2;
x = (la * (lb * py - lc) - px * b2) / d;
y = (lb * (lc - la * px) + py * a2) / d;
#endif
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
FT
squared_radiusC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry,
FT &x, FT &y )
{
circumcenter_translateC2(qx-px, qy-py, rx-px, ry-py, x, y);
FT r2 = CGAL_NTS square(x) + CGAL_NTS square(y);
x += px;
y += py;
return r2;
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
FT
squared_radiusC2(const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry)
{
FT x, y;
circumcenter_translateC2<FT>(qx-px, qy-py, rx-px, ry-py, x, y);
return CGAL_NTS square(x) + CGAL_NTS square(y);
}
template < class FT >
inline
FT
squared_distanceC2( const FT &px, const FT &py,
const FT &qx, const FT &qy)
{
return CGAL_NTS square(px-qx) + CGAL_NTS square(py-qy);
}
template < class FT >
inline
FT
squared_radiusC2(const FT &px, const FT &py,
const FT &qx, const FT &qy)
{
return squared_distanceC2(px, py,qx, qy) / 4;
}
template < class FT >
CGAL_KERNEL_INLINE
FT
scaled_distance_to_lineC2( const FT &la, const FT &lb, const FT &lc,
const FT &px, const FT &py)
{
// for comparisons, use distance_to_directionsC2 instead
// since lc is irrelevant
return la*px + lb*py + lc;
}
template < class FT >
CGAL_KERNEL_INLINE
FT
scaled_distance_to_directionC2( const FT &la, const FT &lb,
const FT &px, const FT &py)
{
// scalar product with direction
return la*px + lb*py;
}
template < class FT >
CGAL_KERNEL_MEDIUM_INLINE
FT
scaled_distance_to_lineC2( const FT &px, const FT &py,
const FT &qx, const FT &qy,
const FT &rx, const FT &ry)
{
return determinant<FT>(px-rx, py-ry, qx-rx, qy-ry);
}
} //namespace CGAL
#endif // CGAL_CONSTRUCTIONS_KERNEL_FTC2_H
|