/usr/include/CGAL/convexity_check_3.h is in libcgal-dev 4.2-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | // Copyright (c) 2001 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s) : Susan Hert <hert@mpi-sb.mpg.de>
// : Amol Prakash <prakash@mpi-sb.mpg.de>
#ifndef CGAL_CONVEXITY_CHECK_3_H
#define CGAL_CONVEXITY_CHECK_3_H
#include <CGAL/intersections.h>
namespace CGAL {
template <class Plane, class Facet_handle>
void get_plane2(Plane& plane, Facet_handle f)
{
typedef typename Facet_handle::value_type Facet;
typedef typename Facet::Halfedge_handle Halfedge_handle;
Halfedge_handle h = (*f).halfedge();
plane = Plane(h->opposite()->vertex()->point(),
h->vertex()->point(),
h->next()->vertex()->point());
}
template <class Facet_handle, class Traits>
bool is_locally_convex(Facet_handle f_hdl, const Traits& traits)
{
// This function checks if all the faces around facet *f_hdl form part of
// the convex hull
typedef typename Facet_handle::value_type Facet;
typedef typename Facet::Halfedge_around_facet_circulator Halfedge_circ;
typedef typename Traits::Point_3 Point_3;
typedef typename Traits::Plane_3 Plane_3;
typename Traits::Has_on_positive_side_3 has_on_positive_side =
traits.has_on_positive_side_3_object();
Halfedge_circ h_circ = (*f_hdl).facet_begin();
do
{
// Take the point on the other facet not shared by this facet
Point_3 point= h_circ->opposite()->next()->vertex()->point();
Plane_3 plane;
get_plane2(plane, f_hdl);
// Point must be on the plane or on the negative side
if (has_on_positive_side(plane, point)) {
return false;
}
h_circ++;
}
while ( h_circ != (*f_hdl).facet_begin());
return true;
}
// Pre: equations of facet planes have been computed
template<class Polyhedron, class Traits>
bool is_strongly_convex_3(Polyhedron& P, const Traits& traits)
{
typedef typename Polyhedron::Facet_iterator Facet_iterator;
typedef typename Polyhedron::Vertex_iterator Vertex_iterator;
typedef typename Traits::Point_3 Point_3;
typedef typename Traits::Ray_3 Ray_3;
typedef typename Traits::Triangle_3 Triangle_3;
typedef typename Traits::Plane_3 Plane_3;
if (P.vertices_begin() == P.vertices_end()) return false;
Facet_iterator f_it;
for ( f_it = P.facets_begin(); f_it != P.facets_end(); ++f_it)
if (!is_locally_convex(f_it, traits))
return false;
// Check 2: see if a point interior to the hull is actually on the same
// side of each facet of P
typename Traits::Coplanar_3 coplanar = traits.coplanar_3_object();
Vertex_iterator v_it = P.vertices_begin();
Point_3 p;
Point_3 q;
Point_3 r;
Point_3 s;
// First take 3 arbitrary points
p = v_it->point(); v_it++;
q = v_it->point(); v_it++;
r = v_it->point(); v_it++;
// three vertices that form a single (triangular) facet
if (v_it == P.vertices_end()) return P.facets_begin() != P.facets_end();
// Now take 4th point s.t. it's not coplaner with them
while (v_it != P.vertices_end() && coplanar(p, q, r, (*v_it).point()))
v_it++;
// if no such point, all are coplanar so it is not strongly convex
if( v_it == P.vertices_end() ){
return false;
}
s = (*v_it).point();
// else construct a point inside the polyhedron
typename Traits::Construct_centroid_3 construct_centroid =
traits.construct_centroid_3_object();
Point_3 inside_pt = construct_centroid(p,q,r,s);
typename Traits::Oriented_side_3 oriented_side =
traits.oriented_side_3_object();
f_it = P.facets_begin();
Plane_3 plane;
get_plane2(plane, f_it);
Oriented_side side = oriented_side(plane, inside_pt);
// the point inside should not be on the facet plane
if (side == ON_ORIENTED_BOUNDARY){
return false;
}
// now make sure this point that is inside the polyhedron is on the same
// side of each facet
for (f_it++; f_it != P.facets_end(); f_it++)
{
Plane_3 plane;
get_plane2(plane, f_it);
if ( oriented_side(plane, inside_pt) != side ){
return false;
}
}
// Check 3 : see if a ray from the interior point to a point in the
// middle of one of the facets intersects any other facets
typename Traits::Construct_ray_3 construct_ray =
traits.construct_ray_3_object();
typename Traits::Construct_triangle_3 construct_triangle =
traits.construct_triangle_3_object();
typename Traits::Do_intersect_3 do_intersect =
traits.do_intersect_3_object();
f_it = P.facets_begin();
Point_3 facet_pt =
construct_centroid(f_it->halfedge()->opposite()->vertex()->point(),
f_it->halfedge()->vertex()->point(),
f_it->halfedge()->next()->vertex()->point());
Ray_3 ray = construct_ray(inside_pt, facet_pt);
for ( ++f_it ; f_it != P.facets_end(); f_it++)
{
Triangle_3 facet_tri =
construct_triangle(f_it->halfedge()->opposite()->vertex()->point(),
f_it->halfedge()->vertex()->point(),
f_it->halfedge()->next()->vertex()->point());
if (do_intersect(facet_tri, ray)){
return false;
}
}
return true;
}
template<class Polyhedron, class R>
bool CGAL_is_strongly_convex_3(Polyhedron& P, Point_3<R>*)
{
return is_strongly_convex_3(P, R());
}
template<class Polyhedron>
bool is_strongly_convex_3(Polyhedron& P)
{
typedef typename Polyhedron::Point_3 Point_3;
return CGAL_is_strongly_convex_3(P, reinterpret_cast<Point_3*>(0));
}
template <class ForwardIterator, class Polyhedron, class Traits>
bool all_points_inside( ForwardIterator first,
ForwardIterator last,
Polyhedron& P,
const Traits& traits)
{
typedef typename Traits::Plane_3 Plane_3;
typedef typename Polyhedron::Facet_iterator Facet_iterator;
typename Traits::Has_on_positive_side_3 has_on_positive_side =
traits.has_on_positive_side_3_object();
for (ForwardIterator p_it = first; p_it != last; p_it++)
{
Facet_iterator f_it;
for (f_it = P.facets_begin(); f_it != P.facets_end(); f_it++)
{
Plane_3 plane;
get_plane2(plane, f_it);
if (has_on_positive_side(plane,*p_it)){
return false;
}
}
}
return true;
}
} // namespace CGAL
#endif // CGAL_CONVEXITY_CHECK_3_H
|