This file is indexed.

/usr/include/CGAL/leda_integer.h is in libcgal-dev 4.2-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
// Copyright (c) 1999,2007  
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel).  All rights reserved. 
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
//
//
// Author(s)     : Andreas Fabri, Michael Hemmer

#ifndef CGAL_LEDA_INTEGER_H
#define CGAL_LEDA_INTEGER_H

#include <CGAL/number_type_basic.h>

#ifdef CGAL_USE_LEDA

#include <utility>

#include <CGAL/leda_coercion_traits.h>
#include <CGAL/Interval_nt.h>

#include <CGAL/LEDA_basic.h>
#if CGAL_LEDA_VERSION < 500
#include <LEDA/integer.h>
#include <LEDA/bigfloat.h>// for To_interval
#else
#include <LEDA/numbers/integer.h>
#include <LEDA/numbers/bigfloat.h>// for To_interval
#endif

#include <CGAL/Residue.h>
#include <CGAL/Modular_traits.h>

namespace CGAL {


template <> class Algebraic_structure_traits< leda_integer >
  : public Algebraic_structure_traits_base< leda_integer,
                                            Euclidean_ring_tag >  {
  public:
    typedef Tag_true            Is_exact;
    typedef Tag_false           Is_numerical_sensitive;

    typedef INTERN_AST::Is_square_per_sqrt< Type >
                                                                 Is_square;

    class Gcd
      : public std::binary_function< Type, Type,
                                Type > {
      public:
        Type operator()( const Type& x,
                                        const Type& y ) const {
          // By definition gcd(0,0) == 0
          if( x == Type(0) && y == Type(0) )
            return Type(0);

          return CGAL_LEDA_SCOPE::gcd( x, y );
        }

        CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
    };

    // Unfortunately the behaviour of leda has changed here several times
    // The following Div_mod is invariant under these changes
    // However, the Div and Mod defined below might be more efficient 
    // TODO: recover Div Mod implementation for all leda versions
    class Div_mod {
    public: 
        typedef Type first_argument_type;
        typedef Type second_argument_type; 
        typedef Type& third_argument_type; 
        typedef Type& fourth_argument_type; 
        typedef void result_type;
        
        void operator()(const Type& x, const Type& y, Type& q, Type& r) const {
            
            q = x / y;             
            r = x - q*y;
            CGAL_postcondition(x == y*q + r);  
            
            if (r == 0) return;   
             
            // round q towards zero 
            if ( r.sign() != x.sign() ){
                q -= x.sign();
                r -= x.sign()*y;
            }

            CGAL_postcondition(x == y*q + r);            
            CGAL_postcondition(r.sign() == x.sign());
        }  
    };
    // Div defined via base using Div_mod
    // Mod defined via base using Div_mod

    // This code results in an inconsisten div/mod for some leda versions 
    // TODO: reactivate this code 

//     typedef INTERN_AST::Div_per_operator< Type > Div;
//     class Mod
//       : public std::binary_function< Type, Type,
//                                 Type > {
//       public:
//         Type operator()( const Type& x, const Type& y ) const {
//           Type m = x % y;
// #if CGAL_LEDA_VERSION < 520
//           // Fix wrong leda result
//           if( x < 0 && m != 0 )
//             m -= y;
// #elif CGAL_LEDA_VERSION < 600
//           // Fix another wrong leda result
//           if( x < 0 && y > 0 && m != 0 )
//             m -= y;
// #else
//           // Do nothing, it seems to work now!
//           // TODO: be careful for future improvements of LEDA
// #endif
//           return m;
//         }
//         CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
//     };

    class Sqrt
      : public std::unary_function< Type, Type > {
      public:
        Type operator()( const Type& x ) const {
          return CGAL_LEDA_SCOPE::sqrt( x );
        }
    };
};

template <> class Real_embeddable_traits< leda_integer >
  : public INTERN_RET::Real_embeddable_traits_base< leda_integer , CGAL::Tag_true > {
  public:
  
    class Abs
      : public std::unary_function< Type, Type > {
      public:
        Type operator()( const Type& x ) const {
            return CGAL_LEDA_SCOPE::abs( x );
        }
    };

    class Sgn
      : public std::unary_function< Type, ::CGAL::Sign > {
      public:
        ::CGAL::Sign operator()( const Type& x ) const {
            return (::CGAL::Sign) CGAL_LEDA_SCOPE::sign( x );
        }
    };

    class Compare
      : public std::binary_function< Type, Type,
                                Comparison_result > {
      public:
        Comparison_result operator()( const Type& x,
                                            const Type& y ) const {
          return (Comparison_result) CGAL_LEDA_SCOPE::compare( x, y );
        }

    };

    class To_double
      : public std::unary_function< Type, double > {
      public:
        double operator()( const Type& x ) const {
          return x.to_double();
        }
    };

    class To_interval
      : public std::unary_function< Type, std::pair< double, double > > {
      public:
      std::pair<double, double> operator()( const Type& x ) const {
        leda::bigfloat h(x);
	double abs_err = 0;
	double  low =h.to_double(abs_err, leda::TO_N_INF);
	double high =h.to_double(abs_err, leda::TO_P_INF);
	return std::make_pair(low,high);
      }
    };
};

template<>
class Modular_traits< ::leda::integer > {
    typedef Residue MOD;
 public:
    typedef ::leda::integer NT;
    typedef ::CGAL::Tag_true Is_modularizable;
    typedef MOD Residue_type;

    struct Modular_image{
        Residue_type operator()(const NT& a){
            return Residue_type ((a%NT(MOD::get_current_prime())).to_long());
        }
    };
    struct Modular_image_representative{
        NT operator()(const Residue_type& x){
            return NT(x.get_value());
        }
    };    
};

//
// Needs_parens_as_product
//
template <>
struct Needs_parens_as_product<leda_integer> {
  bool operator()(const leda_integer& x) {
    return CGAL_NTS is_negative(x);
  }
};

// missing mixed operators
inline
bool
operator==(int a, const leda_integer& b)
{ return b == a; }

inline
bool
operator!=(int a, const leda_integer& b)
{ return b != a; }


template <>
struct Split_double<leda_integer>
{
  void operator()(double d, leda_integer &num, leda_integer &den) const
  {
    std::pair<double, double> p = split_numerator_denominator(d);
    num = leda_integer(p.first);
    den = leda_integer(p.second);
  }
};

// Benchmark_rep specialization 
template<>
class Benchmark_rep< leda_integer > {
    const leda_integer& t;
public:
    //! initialize with a const reference to \a t.
    Benchmark_rep( const leda_integer& tt) : t(tt) {}
    //! perform the output, calls \c operator\<\< by default.
    std::ostream& operator()( std::ostream& out) const { 
            out << t;
            return out;
    }
    
    static std::string get_benchmark_name() {
        return "Integer";
    }
};


} //namespace CGAL

// Unary + is missing for leda::integer
namespace leda {
    inline integer operator+( const integer& i) { return i; }
} // namespace leda

//since types are included by leda_coercion_traits.h:
#include <CGAL/leda_integer.h>
#include <CGAL/leda_rational.h>
#include <CGAL/leda_bigfloat.h>
#include <CGAL/leda_real.h>
#include <CGAL/LEDA_arithmetic_kernel.h>

#endif // CGAL_USE_LEDA

#endif // CGAL_LEDA_INTEGER_H